freebsd-dev/sys/dev/fatm/if_fatmvar.h
Hartmut Brandt fb24f088ae This is a driver for Fore PCA200E cards that uses busdma and works on
little endian and big endian and with 32 and 64 bit pointers. It already
has the hooks to be used for HARP, NATM and ngATM.
2003-06-23 14:46:12 +00:00

391 lines
12 KiB
C

/*
* Copyright (c) 2001-2003
* Fraunhofer Institute for Open Communication Systems (FhG Fokus).
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Author: Hartmut Brandt <harti@freebsd.org>
*
* $FreeBSD$
*
* Fore PCA200E driver definitions.
*/
/*
* Debug statistics of the PCA200 driver
*/
struct istats {
uint32_t cmd_queue_full;
uint32_t get_stat_errors;
uint32_t clr_stat_errors;
uint32_t get_prom_errors;
uint32_t suni_reg_errors;
uint32_t tx_queue_full;
uint32_t tx_queue_almost_full;
uint32_t tx_pdu2big;
uint32_t tx_too_many_segs;
uint32_t tx_retry;
uint32_t fix_empty;
uint32_t fix_addr_copy;
uint32_t fix_addr_noext;
uint32_t fix_addr_ext;
uint32_t fix_len_noext;
uint32_t fix_len_copy;
uint32_t fix_len;
uint32_t rx_badvc;
uint32_t rx_closed;
};
/*
* Addresses on the on-board RAM are expressed as offsets to the
* start of that RAM.
*/
typedef uint32_t cardoff_t;
/*
* The card uses a number of queues for communication with the host.
* Parts of the queue are located on the card (pointers to the status
* word and the ioblk and the command blocks), the rest in host memory.
* Each of these queues forms a ring, where the head and tail pointers are
* managed * either by the card or the host. For the receive queue the
* head is managed by the card (and not used altogether by the host) and the
* tail by the host - for all other queues its the other way around.
* The host resident parts of the queue entries contain pointers to
* the host resident status and the host resident ioblk (the latter not for
* the command queue) as well as DMA addresses for supply to the card.
*/
struct fqelem {
cardoff_t card; /* corresponding element on card */
bus_addr_t card_ioblk; /* ioblk address to supply to card */
volatile uint32_t *statp; /* host status pointer */
void *ioblk; /* host ioblk (not for commands) */
};
struct fqueue {
struct fqelem *chunk; /* pointer to the element array */
int head; /* queue head */
int tail; /* queue tail */
};
/*
* Queue manipulation macros
*/
#define NEXT_QUEUE_ENTRY(HEAD,LEN) ((HEAD) = ((HEAD) + 1) % LEN)
#define GET_QUEUE(Q,TYPE,IDX) (&((TYPE *)(Q).chunk)[(IDX)])
/*
* Now define structures for the different queues. Each of these structures
* must start with a struct fqelem.
*/
struct txqueue { /* transmit queue element */
struct fqelem q;
struct mbuf *m; /* the chain we are transmitting */
bus_dmamap_t map; /* map for the packet */
};
struct rxqueue { /* receive queue element */
struct fqelem q;
};
struct supqueue { /* supply queue element */
struct fqelem q;
};
struct cmdqueue;
struct fatm_softc;
typedef void (*completion_cb)(struct fatm_softc *, struct cmdqueue *);
struct cmdqueue { /* command queue element */
struct fqelem q;
completion_cb cb; /* call on command completion */
int error; /* set if error occured */
};
/*
* Card-DMA-able memory is managed by means of the bus_dma* functions.
* To allocate a chunk of memory with a specific size and alignment one
* has to:
* 1. create a DMA tag
* 2. allocate the memory
* 3. load the memory into a map.
* This finally gives the physical address that can be given to the card.
* The card can DMA the entire 32-bit space without boundaries. We assume,
* that all the allocations can be mapped in one contiguous segment. This
* may be wrong in the future if we have more than 32 bit addresses.
* Allocation is done at attach time and managed by the following structure.
*
* This could be done easier with the NetBSD bus_dma* functions. They appear
* to be more useful and consistent.
*/
struct fatm_mem {
u_int size; /* size */
u_int align; /* alignment */
bus_dma_tag_t dmat; /* DMA tag */
void *mem; /* memory block */
bus_addr_t paddr; /* pysical address */
bus_dmamap_t map; /* map */
};
/*
* Each of these structures describes one receive buffer while the buffer
* is on the card or in the receive return queue. These structures are
* allocated at initialisation time together with the DMA maps. The handle that
* is given to the card is the index into the array of these structures.
*/
struct rbuf {
struct mbuf *m; /* the mbuf while we are on the card */
bus_dmamap_t map; /* the map */
LIST_ENTRY(rbuf) link; /* the free list link */
};
LIST_HEAD(rbuf_list, rbuf);
/*
* The driver maintains a list of all open VCCs. Because we
* use only VPI=0 and a maximum VCI of 1024, the list is rather an array
* than a list. We also store the atm pseudoheader flags here and the
* rxhand (aka. protocol block).
*/
struct card_vcc {
void *rxhand;
uint32_t pcr;
uint32_t flags;
uint8_t aal;
uint8_t traffic;
};
#define FATM_VCC_OPEN 0x00010000 /* is open */
#define FATM_VCC_TRY_OPEN 0x00020000 /* is currently opening */
#define FATM_VCC_TRY_CLOSE 0x00040000 /* is currently closing */
#define FATM_VCC_BUSY 0x00070000 /* one of the above */
/*
* Finally the softc structure
*/
struct fatm_softc {
struct ifatm ifatm; /* common part */
struct mtx mtx; /* lock this structure */
struct ifmedia media; /* media */
int init_state; /* initialisation step */
int memid; /* resource id for card memory */
struct resource *memres; /* resource for card memory */
bus_space_handle_t memh; /* handle for card memory */
bus_space_tag_t memt; /* tag for card memory */
int irqid; /* resource id for interrupt */
struct resource *irqres; /* resource for interrupt */
void *ih; /* interrupt handler */
bus_dma_tag_t parent_dmat; /* parent DMA tag */
struct fatm_mem stat_mem; /* memory for status blocks */
struct fatm_mem txq_mem; /* TX descriptor queue */
struct fatm_mem rxq_mem; /* RX descriptor queue */
struct fatm_mem s1q_mem; /* Small buffer 1 queue */
struct fatm_mem l1q_mem; /* Large buffer 1 queue */
struct fatm_mem prom_mem; /* PROM memory */
struct fqueue txqueue; /* transmission queue */
struct fqueue rxqueue; /* receive queue */
struct fqueue s1queue; /* SMALL S1 queue */
struct fqueue l1queue; /* LARGE S1 queue */
struct fqueue cmdqueue; /* command queue */
/* fields for access to the SUNI registers */
struct fatm_mem reg_mem; /* DMAable memory for readregs */
struct cv cv_regs; /* to serialize access to reg_mem */
/* fields for access to statistics */
struct fatm_mem sadi_mem; /* sadistics memory */
struct cv cv_stat; /* to serialize access to sadi_mem */
u_int flags;
#define FATM_STAT_INUSE 0x0001
#define FATM_REGS_INUSE 0x0002
u_int txcnt; /* number of used transmit desc */
int retry_tx; /* keep mbufs in queue if full */
struct card_vcc *vccs; /* table of vccs */
int open_vccs; /* number of vccs in use */
int small_cnt; /* number of buffers owned by card */
int large_cnt; /* number of buffers owned by card */
/* receiving */
struct rbuf *rbufs; /* rbuf array */
struct rbuf_list rbuf_free; /* free rbufs list */
struct rbuf_list rbuf_used; /* used rbufs list */
u_int rbuf_total; /* total number of buffs */
bus_dma_tag_t rbuf_tag; /* tag for rbuf mapping */
/* transmission */
bus_dma_tag_t tx_tag; /* transmission tag */
uint32_t heartbeat; /* last heartbeat */
u_int stop_cnt; /* how many times checked */
struct istats istats; /* internal statistics */
/* SUNI state */
struct utopia utopia;
/* sysctl support */
struct sysctl_ctx_list sysctl_ctx;
struct sysctl_oid *sysctl_tree;
#ifdef FATM_DEBUG
/* debugging */
u_int debug;
#endif
};
#ifndef FATM_DEBUG
#define FATM_LOCK(SC) mtx_lock(&(SC)->mtx)
#define FATM_UNLOCK(SC) mtx_unlock(&(SC)->mtx)
#else
#define FATM_LOCK(SC) do { \
DBG(SC, LOCK, ("locking in line %d", __LINE__)); \
mtx_lock(&(SC)->mtx); \
} while (0)
#define FATM_UNLOCK(SC) do { \
DBG(SC, LOCK, ("unlocking in line %d", __LINE__)); \
mtx_unlock(&(SC)->mtx); \
} while (0)
#endif
#define FATM_CHECKLOCK(SC) mtx_assert(&sc->mtx, MA_OWNED)
/*
* Macros to access host memory fields that are also access by the card.
* These fields need to little-endian always.
*/
#define H_GETSTAT(STATP) (le32toh(*(STATP)))
#define H_SETSTAT(STATP, S) do { *(STATP) = htole32(S); } while (0)
#define H_SETDESC(DESC, D) do { (DESC) = htole32(D); } while (0)
#ifdef notyet
#define H_SYNCSTAT_POSTREAD(SC, P) \
bus_dmamap_sync_size((SC)->stat_mem.dmat, \
(SC)->stat_mem.map, \
(volatile char *)(P) - (volatile char *)(SC)->stat_mem.mem, \
sizeof(volatile uint32_t), BUS_DMASYNC_POSTREAD)
#define H_SYNCSTAT_PREWRITE(SC, P) \
bus_dmamap_sync_size((SC)->stat_mem.dmat, \
(SC)->stat_mem.map, \
(volatile char *)(P) - (volatile char *)(SC)->stat_mem.mem, \
sizeof(volatile uint32_t), BUS_DMASYNC_PREWRITE)
#define H_SYNCQ_PREWRITE(M, P, SZ) \
bus_dmamap_sync_size((M)->dmat, (M)->map, \
(volatile char *)(P) - (volatile char *)(M)->mem, (SZ), \
BUS_DMASYNC_PREWRITE)
#define H_SYNCQ_POSTREAD(M, P, SZ) \
bus_dmamap_sync_size((M)->dmat, (M)->map, \
(volatile char *)(P) - (volatile char *)(M)->mem, (SZ), \
BUS_DMASYNC_POSTREAD)
#else
#define H_SYNCSTAT_POSTREAD(SC, P) do { } while (0)
#define H_SYNCSTAT_PREWRITE(SC, P) do { } while (0)
#define H_SYNCQ_PREWRITE(M, P, SZ) do { } while (0)
#define H_SYNCQ_POSTREAD(M, P, SZ) do { } while (0)
#endif
/*
* Macros to manipulate VPVCs
*/
#define MKVPVC(VPI,VCI) (((VPI) << 16) | (VCI))
#define GETVPI(VPVC) (((VPVC) >> 16) & 0xff)
#define GETVCI(VPVC) ((VPVC) & 0xffff)
/*
* These macros encapsulate the bus_space functions for better readabiliy.
*/
#define WRITE4(SC, OFF, VAL) bus_space_write_4(SC->memt, SC->memh, OFF, VAL)
#define WRITE1(SC, OFF, VAL) bus_space_write_1(SC->memt, SC->memh, OFF, VAL)
#define READ4(SC, OFF) bus_space_read_4(SC->memt, SC->memh, OFF)
#define READ1(SC, OFF) bus_space_read_1(SC->memt, SC->memh, OFF)
#define BARRIER_R(SC) \
bus_space_barrier(SC->memt, SC->memh, 0, FATMO_END, \
BUS_SPACE_BARRIER_READ)
#define BARRIER_W(SC) \
bus_space_barrier(SC->memt, SC->memh, 0, FATMO_END, \
BUS_SPACE_BARRIER_WRITE)
#define BARRIER_RW(SC) \
bus_space_barrier(SC->memt, SC->memh, 0, FATMO_END, \
BUS_SPACE_BARRIER_WRITE|BUS_SPACE_BARRIER_READ)
#ifdef FATM_DEBUG
#define DBG(SC, FL, PRINT) do { \
if ((SC)->debug & DBG_##FL) { \
if_printf(&(SC)->ifatm.ifnet, "%s: ", __func__); \
printf PRINT; \
printf("\n"); \
} \
} while (0)
#define DBGC(SC, FL, PRINT) do { \
if ((SC)->debug & DBG_##FL) \
printf PRINT; \
} while (0)
enum {
DBG_RCV = 0x0001,
DBG_XMIT = 0x0002,
DBG_VCC = 0x0004,
DBG_IOCTL = 0x0008,
DBG_ATTACH = 0x0010,
DBG_INIT = 0x0020,
DBG_DMA = 0x0040,
DBG_BEAT = 0x0080,
DBG_UART = 0x0100,
DBG_LOCK = 0x0200,
DBG_ALL = 0xffff
};
#else
#define DBG(SC, FL, PRINT)
#define DBGC(SC, FL, PRINT)
#endif
/*
* Configuration.
*
* This section contains tunable parameters and dependend defines.
*/
#define FATM_CMD_QLEN 16 /* command queue length */
#ifndef TEST_DMA_SYNC
#define FATM_TX_QLEN 128 /* transmit queue length */
#define FATM_RX_QLEN 64 /* receive queue length */
#else
#define FATM_TX_QLEN 8 /* transmit queue length */
#define FATM_RX_QLEN 8 /* receive queue length */
#endif
#define SMALL_SUPPLY_QLEN 16
#define SMALL_POOL_SIZE 256
#define SMALL_SUPPLY_BLKSIZE 8
#define LARGE_SUPPLY_QLEN 16
#define LARGE_POOL_SIZE 128
#define LARGE_SUPPLY_BLKSIZE 8