freebsd-dev/sys/dev/uart/uart_dev_pl011.c
Ian Lepore bf8bdd6762 Extend the pl011 small-fifos fix to other SoCs that indicate rev 5
hardware but lack the larger fifos rev 5 hardware should have.

The linux world (where our FDT data comes from) solved this by adding
a new property to pl011 nodes, "arm,primecell-periphid".  When this
property is present, its values override the values in the hardware
periphid registers.  For pl011 rev 5 hardware with small fifos, they
override the id so that it appears to be rev 4 hardware.

The driver now uses the new property when present.  It also continues
to check the device compat string, to handle older fdt data that may
still be in use on existing systems (on RPi systems it is common to
update system software without updating fdt data which is part of the
boot firmware).

Reviewed by:	imp
2017-03-11 22:34:02 +00:00

591 lines
15 KiB
C

/*-
* Copyright (c) 2012 Semihalf.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_acpi.h"
#include "opt_platform.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <dev/uart/uart.h>
#include <dev/uart/uart_cpu.h>
#ifdef FDT
#include <dev/uart/uart_cpu_fdt.h>
#include <dev/ofw/ofw_bus.h>
#endif
#include <dev/uart/uart_bus.h>
#include "uart_if.h"
#ifdef DEV_ACPI
#include <dev/uart/uart_cpu_acpi.h>
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <contrib/dev/acpica/include/actables.h>
#endif
#include <sys/kdb.h>
/* PL011 UART registers and masks*/
#define UART_DR 0x00 /* Data register */
#define DR_FE (1 << 8) /* Framing error */
#define DR_PE (1 << 9) /* Parity error */
#define DR_BE (1 << 10) /* Break error */
#define DR_OE (1 << 11) /* Overrun error */
#define UART_FR 0x06 /* Flag register */
#define FR_RXFE (1 << 4) /* Receive FIFO/reg empty */
#define FR_TXFF (1 << 5) /* Transmit FIFO/reg full */
#define FR_RXFF (1 << 6) /* Receive FIFO/reg full */
#define FR_TXFE (1 << 7) /* Transmit FIFO/reg empty */
#define UART_IBRD 0x09 /* Integer baud rate register */
#define IBRD_BDIVINT 0xffff /* Significant part of int. divisor value */
#define UART_FBRD 0x0a /* Fractional baud rate register */
#define FBRD_BDIVFRAC 0x3f /* Significant part of frac. divisor value */
#define UART_LCR_H 0x0b /* Line control register */
#define LCR_H_WLEN8 (0x3 << 5)
#define LCR_H_WLEN7 (0x2 << 5)
#define LCR_H_WLEN6 (0x1 << 5)
#define LCR_H_FEN (1 << 4) /* FIFO mode enable */
#define LCR_H_STP2 (1 << 3) /* 2 stop frames at the end */
#define LCR_H_EPS (1 << 2) /* Even parity select */
#define LCR_H_PEN (1 << 1) /* Parity enable */
#define UART_CR 0x0c /* Control register */
#define CR_RXE (1 << 9) /* Receive enable */
#define CR_TXE (1 << 8) /* Transmit enable */
#define CR_UARTEN (1 << 0) /* UART enable */
#define UART_IFLS 0x0d /* FIFO level select register */
#define IFLS_RX_SHIFT 3 /* RX level in bits [5:3] */
#define IFLS_TX_SHIFT 0 /* TX level in bits [2:0] */
#define IFLS_MASK 0x07 /* RX/TX level is 3 bits */
#define IFLS_LVL_1_8th 0 /* Interrupt at 1/8 full */
#define IFLS_LVL_2_8th 1 /* Interrupt at 1/4 full */
#define IFLS_LVL_4_8th 2 /* Interrupt at 1/2 full */
#define IFLS_LVL_6_8th 3 /* Interrupt at 3/4 full */
#define IFLS_LVL_7_8th 4 /* Interrupt at 7/8 full */
#define UART_IMSC 0x0e /* Interrupt mask set/clear register */
#define IMSC_MASK_ALL 0x7ff /* Mask all interrupts */
#define UART_RIS 0x0f /* Raw interrupt status register */
#define UART_RXREADY (1 << 4) /* RX buffer full */
#define UART_TXEMPTY (1 << 5) /* TX buffer empty */
#define RIS_RTIM (1 << 6) /* Receive timeout */
#define RIS_FE (1 << 7) /* Framing error interrupt status */
#define RIS_PE (1 << 8) /* Parity error interrupt status */
#define RIS_BE (1 << 9) /* Break error interrupt status */
#define RIS_OE (1 << 10) /* Overrun interrupt status */
#define UART_MIS 0x10 /* Masked interrupt status register */
#define UART_ICR 0x11 /* Interrupt clear register */
#define UART_PIDREG_0 0x3f8 /* Peripheral ID register 0 */
#define UART_PIDREG_1 0x3f9 /* Peripheral ID register 1 */
#define UART_PIDREG_2 0x3fa /* Peripheral ID register 2 */
#define UART_PIDREG_3 0x3fb /* Peripheral ID register 3 */
/*
* The hardware FIFOs are 16 bytes each on rev 2 and earlier hardware, 32 bytes
* on rev 3 and later. We configure them to interrupt when 3/4 full/empty. For
* RX we set the size to the full hardware capacity so that the uart core
* allocates enough buffer space to hold a complete fifo full of incoming data.
* For TX, we need to limit the size to the capacity we know will be available
* when the interrupt occurs; uart_core will feed exactly that many bytes to
* uart_pl011_bus_transmit() which must consume them all.
*/
#define FIFO_RX_SIZE_R2 16
#define FIFO_TX_SIZE_R2 12
#define FIFO_RX_SIZE_R3 32
#define FIFO_TX_SIZE_R3 24
#define FIFO_IFLS_BITS ((IFLS_LVL_6_8th << IFLS_RX_SHIFT) | (IFLS_LVL_2_8th))
/*
* FIXME: actual register size is SoC-dependent, we need to handle it
*/
#define __uart_getreg(bas, reg) \
bus_space_read_4((bas)->bst, (bas)->bsh, uart_regofs(bas, reg))
#define __uart_setreg(bas, reg, value) \
bus_space_write_4((bas)->bst, (bas)->bsh, uart_regofs(bas, reg), value)
/*
* Low-level UART interface.
*/
static int uart_pl011_probe(struct uart_bas *bas);
static void uart_pl011_init(struct uart_bas *bas, int, int, int, int);
static void uart_pl011_term(struct uart_bas *bas);
static void uart_pl011_putc(struct uart_bas *bas, int);
static int uart_pl011_rxready(struct uart_bas *bas);
static int uart_pl011_getc(struct uart_bas *bas, struct mtx *);
static struct uart_ops uart_pl011_ops = {
.probe = uart_pl011_probe,
.init = uart_pl011_init,
.term = uart_pl011_term,
.putc = uart_pl011_putc,
.rxready = uart_pl011_rxready,
.getc = uart_pl011_getc,
};
static int
uart_pl011_probe(struct uart_bas *bas)
{
return (0);
}
static void
uart_pl011_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
int parity)
{
uint32_t ctrl, line;
uint32_t baud;
/*
* Zero all settings to make sure
* UART is disabled and not configured
*/
ctrl = line = 0x0;
__uart_setreg(bas, UART_CR, ctrl);
/* As we know UART is disabled we may setup the line */
switch (databits) {
case 7:
line |= LCR_H_WLEN7;
break;
case 6:
line |= LCR_H_WLEN6;
break;
case 8:
default:
line |= LCR_H_WLEN8;
break;
}
if (stopbits == 2)
line |= LCR_H_STP2;
else
line &= ~LCR_H_STP2;
if (parity)
line |= LCR_H_PEN;
else
line &= ~LCR_H_PEN;
line |= LCR_H_FEN;
/* Configure the rest */
ctrl |= (CR_RXE | CR_TXE | CR_UARTEN);
if (bas->rclk != 0 && baudrate != 0) {
baud = bas->rclk * 4 / baudrate;
__uart_setreg(bas, UART_IBRD, ((uint32_t)(baud >> 6)) & IBRD_BDIVINT);
__uart_setreg(bas, UART_FBRD, (uint32_t)(baud & 0x3F) & FBRD_BDIVFRAC);
}
/* Add config. to line before reenabling UART */
__uart_setreg(bas, UART_LCR_H, (__uart_getreg(bas, UART_LCR_H) &
~0xff) | line);
/* Set rx and tx fifo levels. */
__uart_setreg(bas, UART_IFLS, FIFO_IFLS_BITS);
__uart_setreg(bas, UART_CR, ctrl);
}
static void
uart_pl011_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
int parity)
{
/* Mask all interrupts */
__uart_setreg(bas, UART_IMSC, __uart_getreg(bas, UART_IMSC) &
~IMSC_MASK_ALL);
uart_pl011_param(bas, baudrate, databits, stopbits, parity);
}
static void
uart_pl011_term(struct uart_bas *bas)
{
}
static void
uart_pl011_putc(struct uart_bas *bas, int c)
{
/* Wait when TX FIFO full. Push character otherwise. */
while (__uart_getreg(bas, UART_FR) & FR_TXFF)
;
__uart_setreg(bas, UART_DR, c & 0xff);
}
static int
uart_pl011_rxready(struct uart_bas *bas)
{
return !(__uart_getreg(bas, UART_FR) & FR_RXFE);
}
static int
uart_pl011_getc(struct uart_bas *bas, struct mtx *hwmtx)
{
int c;
while (!uart_pl011_rxready(bas))
;
c = __uart_getreg(bas, UART_DR) & 0xff;
return (c);
}
/*
* High-level UART interface.
*/
struct uart_pl011_softc {
struct uart_softc base;
uint16_t imsc; /* Interrupt mask */
};
static int uart_pl011_bus_attach(struct uart_softc *);
static int uart_pl011_bus_detach(struct uart_softc *);
static int uart_pl011_bus_flush(struct uart_softc *, int);
static int uart_pl011_bus_getsig(struct uart_softc *);
static int uart_pl011_bus_ioctl(struct uart_softc *, int, intptr_t);
static int uart_pl011_bus_ipend(struct uart_softc *);
static int uart_pl011_bus_param(struct uart_softc *, int, int, int, int);
static int uart_pl011_bus_probe(struct uart_softc *);
static int uart_pl011_bus_receive(struct uart_softc *);
static int uart_pl011_bus_setsig(struct uart_softc *, int);
static int uart_pl011_bus_transmit(struct uart_softc *);
static void uart_pl011_bus_grab(struct uart_softc *);
static void uart_pl011_bus_ungrab(struct uart_softc *);
static kobj_method_t uart_pl011_methods[] = {
KOBJMETHOD(uart_attach, uart_pl011_bus_attach),
KOBJMETHOD(uart_detach, uart_pl011_bus_detach),
KOBJMETHOD(uart_flush, uart_pl011_bus_flush),
KOBJMETHOD(uart_getsig, uart_pl011_bus_getsig),
KOBJMETHOD(uart_ioctl, uart_pl011_bus_ioctl),
KOBJMETHOD(uart_ipend, uart_pl011_bus_ipend),
KOBJMETHOD(uart_param, uart_pl011_bus_param),
KOBJMETHOD(uart_probe, uart_pl011_bus_probe),
KOBJMETHOD(uart_receive, uart_pl011_bus_receive),
KOBJMETHOD(uart_setsig, uart_pl011_bus_setsig),
KOBJMETHOD(uart_transmit, uart_pl011_bus_transmit),
KOBJMETHOD(uart_grab, uart_pl011_bus_grab),
KOBJMETHOD(uart_ungrab, uart_pl011_bus_ungrab),
{ 0, 0 }
};
static struct uart_class uart_pl011_class = {
"uart_pl011",
uart_pl011_methods,
sizeof(struct uart_pl011_softc),
.uc_ops = &uart_pl011_ops,
.uc_range = 0x48,
.uc_rclk = 0,
.uc_rshift = 2
};
#ifdef FDT
static struct ofw_compat_data compat_data[] = {
{"arm,pl011", (uintptr_t)&uart_pl011_class},
{NULL, (uintptr_t)NULL},
};
UART_FDT_CLASS_AND_DEVICE(compat_data);
#endif
#ifdef DEV_ACPI
static struct acpi_uart_compat_data acpi_compat_data[] = {
{"ARMH0011", &uart_pl011_class, ACPI_DBG2_ARM_PL011},
{NULL, NULL, 0},
};
UART_ACPI_CLASS_AND_DEVICE(acpi_compat_data);
#endif
static int
uart_pl011_bus_attach(struct uart_softc *sc)
{
struct uart_pl011_softc *psc;
struct uart_bas *bas;
psc = (struct uart_pl011_softc *)sc;
bas = &sc->sc_bas;
/* Enable interrupts */
psc->imsc = (UART_RXREADY | RIS_RTIM | UART_TXEMPTY);
__uart_setreg(bas, UART_IMSC, psc->imsc);
/* Clear interrupts */
__uart_setreg(bas, UART_ICR, IMSC_MASK_ALL);
return (0);
}
static int
uart_pl011_bus_detach(struct uart_softc *sc)
{
return (0);
}
static int
uart_pl011_bus_flush(struct uart_softc *sc, int what)
{
return (0);
}
static int
uart_pl011_bus_getsig(struct uart_softc *sc)
{
return (0);
}
static int
uart_pl011_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
{
struct uart_bas *bas;
int error;
bas = &sc->sc_bas;
error = 0;
uart_lock(sc->sc_hwmtx);
switch (request) {
case UART_IOCTL_BREAK:
break;
case UART_IOCTL_BAUD:
*(int*)data = 115200;
break;
default:
error = EINVAL;
break;
}
uart_unlock(sc->sc_hwmtx);
return (error);
}
static int
uart_pl011_bus_ipend(struct uart_softc *sc)
{
struct uart_pl011_softc *psc;
struct uart_bas *bas;
uint32_t ints;
int ipend;
psc = (struct uart_pl011_softc *)sc;
bas = &sc->sc_bas;
uart_lock(sc->sc_hwmtx);
ints = __uart_getreg(bas, UART_MIS);
ipend = 0;
if (ints & (UART_RXREADY | RIS_RTIM))
ipend |= SER_INT_RXREADY;
if (ints & RIS_BE)
ipend |= SER_INT_BREAK;
if (ints & RIS_OE)
ipend |= SER_INT_OVERRUN;
if (ints & UART_TXEMPTY) {
if (sc->sc_txbusy)
ipend |= SER_INT_TXIDLE;
/* Disable TX interrupt */
__uart_setreg(bas, UART_IMSC, psc->imsc & ~UART_TXEMPTY);
}
uart_unlock(sc->sc_hwmtx);
return (ipend);
}
static int
uart_pl011_bus_param(struct uart_softc *sc, int baudrate, int databits,
int stopbits, int parity)
{
uart_lock(sc->sc_hwmtx);
uart_pl011_param(&sc->sc_bas, baudrate, databits, stopbits, parity);
uart_unlock(sc->sc_hwmtx);
return (0);
}
static int
uart_pl011_bus_probe(struct uart_softc *sc)
{
uint8_t hwrev;
#ifdef FDT
pcell_t node;
uint32_t periphid;
/*
* The FIFO sizes vary depending on hardware; rev 2 and below have 16
* byte FIFOs, rev 3 and up are 32 byte. The hardware rev is in the
* primecell periphid register, but we get a bit of drama, as always,
* with the bcm2835 (rpi), which claims to be rev 3, but has 16 byte
* FIFOs. We check for both the old freebsd-historic and the proper
* bindings-defined compatible strings for bcm2835, and also check the
* workaround the linux drivers use for rpi3, which is to override the
* primecell periphid register value with a property.
*/
if (ofw_bus_is_compatible(sc->sc_dev, "brcm,bcm2835-pl011") ||
ofw_bus_is_compatible(sc->sc_dev, "broadcom,bcm2835-uart")) {
hwrev = 2;
} else {
node = ofw_bus_get_node(sc->sc_dev);
if (OF_getencprop(node, "arm,primecell-periphid", &periphid,
sizeof(periphid)) > 0) {
hwrev = (periphid >> 20) & 0x0f;
} else {
hwrev = __uart_getreg(&sc->sc_bas, UART_PIDREG_2) >> 4;
}
}
#else
hwrev = __uart_getreg(&sc->sc_bas, UART_PIDREG_2) >> 4;
#endif
if (hwrev <= 2) {
sc->sc_rxfifosz = FIFO_RX_SIZE_R2;
sc->sc_txfifosz = FIFO_TX_SIZE_R2;
} else {
sc->sc_rxfifosz = FIFO_RX_SIZE_R3;
sc->sc_txfifosz = FIFO_TX_SIZE_R3;
}
device_set_desc(sc->sc_dev, "PrimeCell UART (PL011)");
return (0);
}
static int
uart_pl011_bus_receive(struct uart_softc *sc)
{
struct uart_bas *bas;
uint32_t ints, xc;
int rx;
bas = &sc->sc_bas;
uart_lock(sc->sc_hwmtx);
for (;;) {
ints = __uart_getreg(bas, UART_FR);
if (ints & FR_RXFE)
break;
if (uart_rx_full(sc)) {
sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
break;
}
xc = __uart_getreg(bas, UART_DR);
rx = xc & 0xff;
if (xc & DR_FE)
rx |= UART_STAT_FRAMERR;
if (xc & DR_PE)
rx |= UART_STAT_PARERR;
uart_rx_put(sc, rx);
}
uart_unlock(sc->sc_hwmtx);
return (0);
}
static int
uart_pl011_bus_setsig(struct uart_softc *sc, int sig)
{
return (0);
}
static int
uart_pl011_bus_transmit(struct uart_softc *sc)
{
struct uart_pl011_softc *psc;
struct uart_bas *bas;
int i;
psc = (struct uart_pl011_softc *)sc;
bas = &sc->sc_bas;
uart_lock(sc->sc_hwmtx);
for (i = 0; i < sc->sc_txdatasz; i++) {
__uart_setreg(bas, UART_DR, sc->sc_txbuf[i]);
uart_barrier(bas);
}
/* Mark busy and enable TX interrupt */
sc->sc_txbusy = 1;
__uart_setreg(bas, UART_IMSC, psc->imsc);
uart_unlock(sc->sc_hwmtx);
return (0);
}
static void
uart_pl011_bus_grab(struct uart_softc *sc)
{
struct uart_pl011_softc *psc;
struct uart_bas *bas;
psc = (struct uart_pl011_softc *)sc;
bas = &sc->sc_bas;
/* Disable interrupts on switch to polling */
uart_lock(sc->sc_hwmtx);
__uart_setreg(bas, UART_IMSC, psc->imsc & ~IMSC_MASK_ALL);
uart_unlock(sc->sc_hwmtx);
}
static void
uart_pl011_bus_ungrab(struct uart_softc *sc)
{
struct uart_pl011_softc *psc;
struct uart_bas *bas;
psc = (struct uart_pl011_softc *)sc;
bas = &sc->sc_bas;
/* Switch to using interrupts while not grabbed */
uart_lock(sc->sc_hwmtx);
__uart_setreg(bas, UART_IMSC, psc->imsc);
uart_unlock(sc->sc_hwmtx);
}