freebsd-dev/sys/dev/liquidio/base/cn23xx_pf_device.c
Sean Bruno 3de0952fba Enable i386 build of the Cavium LiquidIO driver (lio) module.
Submitted by:	pkanneganti@cavium.com (Prasad V Kanneganti)
MFC after:	1 week
Sponsored by:	Cavium Networks
Differential Revision:	https://reviews.freebsd.org/D12415
2017-10-25 17:49:17 +00:00

1009 lines
28 KiB
C

/*
* BSD LICENSE
*
* Copyright(c) 2017 Cavium, Inc.. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Cavium, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*$FreeBSD$*/
#include "lio_bsd.h"
#include "lio_common.h"
#include "lio_droq.h"
#include "lio_iq.h"
#include "lio_response_manager.h"
#include "lio_device.h"
#include "cn23xx_pf_device.h"
#include "lio_main.h"
#include "lio_rss.h"
static int
lio_cn23xx_pf_soft_reset(struct octeon_device *oct)
{
lio_write_csr64(oct, LIO_CN23XX_SLI_WIN_WR_MASK_REG, 0xFF);
lio_dev_dbg(oct, "BIST enabled for CN23XX soft reset\n");
lio_write_csr64(oct, LIO_CN23XX_SLI_SCRATCH1, 0x1234ULL);
/* Initiate chip-wide soft reset */
lio_pci_readq(oct, LIO_CN23XX_RST_SOFT_RST);
lio_pci_writeq(oct, 1, LIO_CN23XX_RST_SOFT_RST);
/* Wait for 100ms as Octeon resets. */
lio_mdelay(100);
if (lio_read_csr64(oct, LIO_CN23XX_SLI_SCRATCH1)) {
lio_dev_err(oct, "Soft reset failed\n");
return (1);
}
lio_dev_dbg(oct, "Reset completed\n");
/* restore the reset value */
lio_write_csr64(oct, LIO_CN23XX_SLI_WIN_WR_MASK_REG, 0xFF);
return (0);
}
static void
lio_cn23xx_pf_enable_error_reporting(struct octeon_device *oct)
{
uint32_t corrtable_err_status, uncorrectable_err_mask, regval;
regval = lio_read_pci_cfg(oct, LIO_CN23XX_CFG_PCIE_DEVCTL);
if (regval & LIO_CN23XX_CFG_PCIE_DEVCTL_MASK) {
uncorrectable_err_mask = 0;
corrtable_err_status = 0;
uncorrectable_err_mask =
lio_read_pci_cfg(oct,
LIO_CN23XX_CFG_PCIE_UNCORRECT_ERR_MASK);
corrtable_err_status =
lio_read_pci_cfg(oct,
LIO_CN23XX_CFG_PCIE_CORRECT_ERR_STATUS);
lio_dev_err(oct, "PCI-E Fatal error detected;\n"
"\tdev_ctl_status_reg = 0x%08x\n"
"\tuncorrectable_error_mask_reg = 0x%08x\n"
"\tcorrectable_error_status_reg = 0x%08x\n",
regval, uncorrectable_err_mask,
corrtable_err_status);
}
regval |= 0xf; /* Enable Link error reporting */
lio_dev_dbg(oct, "Enabling PCI-E error reporting..\n");
lio_write_pci_cfg(oct, LIO_CN23XX_CFG_PCIE_DEVCTL, regval);
}
static uint32_t
lio_cn23xx_pf_coprocessor_clock(struct octeon_device *oct)
{
/*
* Bits 29:24 of RST_BOOT[PNR_MUL] holds the ref.clock MULTIPLIER
* for SLI.
*/
/* TBD: get the info in Hand-shake */
return (((lio_pci_readq(oct, LIO_CN23XX_RST_BOOT) >> 24) & 0x3f) * 50);
}
uint32_t
lio_cn23xx_pf_get_oq_ticks(struct octeon_device *oct, uint32_t time_intr_in_us)
{
/* This gives the SLI clock per microsec */
uint32_t oqticks_per_us = lio_cn23xx_pf_coprocessor_clock(oct);
oct->pfvf_hsword.coproc_tics_per_us = oqticks_per_us;
/* This gives the clock cycles per millisecond */
oqticks_per_us *= 1000;
/* This gives the oq ticks (1024 core clock cycles) per millisecond */
oqticks_per_us /= 1024;
/*
* time_intr is in microseconds. The next 2 steps gives the oq ticks
* corresponding to time_intr.
*/
oqticks_per_us *= time_intr_in_us;
oqticks_per_us /= 1000;
return (oqticks_per_us);
}
static void
lio_cn23xx_pf_setup_global_mac_regs(struct octeon_device *oct)
{
uint64_t reg_val;
uint16_t mac_no = oct->pcie_port;
uint16_t pf_num = oct->pf_num;
/* programming SRN and TRS for each MAC(0..3) */
lio_dev_dbg(oct, "%s: Using pcie port %d\n", __func__, mac_no);
/* By default, mapping all 64 IOQs to a single MACs */
reg_val =
lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num));
/* setting SRN <6:0> */
reg_val = pf_num * LIO_CN23XX_PF_MAX_RINGS;
/* setting TRS <23:16> */
reg_val = reg_val |
(oct->sriov_info.trs << LIO_CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS);
/* write these settings to MAC register */
lio_write_csr64(oct, LIO_CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num),
reg_val);
lio_dev_dbg(oct, "SLI_PKT_MAC(%d)_PF(%d)_RINFO : 0x%016llx\n", mac_no,
pf_num,
LIO_CAST64(lio_read_csr64(oct,
LIO_CN23XX_SLI_PKT_MAC_RINFO64(mac_no,
pf_num))));
}
static int
lio_cn23xx_pf_reset_io_queues(struct octeon_device *oct)
{
uint64_t d64;
uint32_t ern, loop = BUSY_READING_REG_PF_LOOP_COUNT;
uint32_t q_no, srn;
int ret_val = 0;
srn = oct->sriov_info.pf_srn;
ern = srn + oct->sriov_info.num_pf_rings;
/* As per HRM reg description, s/w cant write 0 to ENB. */
/* to make the queue off, need to set the RST bit. */
/* Reset the Enable bit for all the 64 IQs. */
for (q_no = srn; q_no < ern; q_no++) {
/* set RST bit to 1. This bit applies to both IQ and OQ */
d64 = lio_read_csr64(oct,
LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
d64 = d64 | LIO_CN23XX_PKT_INPUT_CTL_RST;
lio_write_csr64(oct,
LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), d64);
}
/* wait until the RST bit is clear or the RST and quiet bits are set */
for (q_no = srn; q_no < ern; q_no++) {
volatile uint64_t reg_val =
lio_read_csr64(oct,
LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
while ((reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) &&
!(reg_val & LIO_CN23XX_PKT_INPUT_CTL_QUIET) &&
loop) {
reg_val = lio_read_csr64(oct,
LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
loop--;
}
if (!loop) {
lio_dev_err(oct,
"clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
q_no);
return (-1);
}
reg_val &= ~LIO_CN23XX_PKT_INPUT_CTL_RST;
lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
reg_val);
reg_val = lio_read_csr64(oct,
LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
if (reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) {
lio_dev_err(oct, "clearing the reset failed for qno: %u\n",
q_no);
ret_val = -1;
}
}
return (ret_val);
}
static int
lio_cn23xx_pf_setup_global_input_regs(struct octeon_device *oct)
{
struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip;
struct lio_instr_queue *iq;
uint64_t intr_threshold;
uint64_t pf_num, reg_val;
uint32_t q_no, ern, srn;
pf_num = oct->pf_num;
srn = oct->sriov_info.pf_srn;
ern = srn + oct->sriov_info.num_pf_rings;
if (lio_cn23xx_pf_reset_io_queues(oct))
return (-1);
/*
* Set the MAC_NUM and PVF_NUM in IQ_PKT_CONTROL reg
* for all queues.Only PF can set these bits.
* bits 29:30 indicate the MAC num.
* bits 32:47 indicate the PVF num.
*/
for (q_no = 0; q_no < ern; q_no++) {
reg_val = oct->pcie_port <<
LIO_CN23XX_PKT_INPUT_CTL_MAC_NUM_POS;
reg_val |= pf_num << LIO_CN23XX_PKT_INPUT_CTL_PF_NUM_POS;
lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
reg_val);
}
/*
* Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for
* pf queues
*/
for (q_no = srn; q_no < ern; q_no++) {
uint32_t inst_cnt_reg;
iq = oct->instr_queue[q_no];
if (iq != NULL)
inst_cnt_reg = iq->inst_cnt_reg;
else
inst_cnt_reg = LIO_CN23XX_SLI_IQ_INSTR_COUNT64(q_no);
reg_val =
lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
reg_val |= LIO_CN23XX_PKT_INPUT_CTL_MASK;
lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
reg_val);
/* Set WMARK level for triggering PI_INT */
/* intr_threshold = LIO_CN23XX_DEF_IQ_INTR_THRESHOLD & */
intr_threshold = LIO_GET_IQ_INTR_PKT_CFG(cn23xx->conf) &
LIO_CN23XX_PKT_IN_DONE_WMARK_MASK;
lio_write_csr64(oct, inst_cnt_reg,
(lio_read_csr64(oct, inst_cnt_reg) &
~(LIO_CN23XX_PKT_IN_DONE_WMARK_MASK <<
LIO_CN23XX_PKT_IN_DONE_WMARK_BIT_POS)) |
(intr_threshold <<
LIO_CN23XX_PKT_IN_DONE_WMARK_BIT_POS));
}
return (0);
}
static void
lio_cn23xx_pf_setup_global_output_regs(struct octeon_device *oct)
{
struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip;
uint64_t time_threshold;
uint32_t ern, q_no, reg_val, srn;
srn = oct->sriov_info.pf_srn;
ern = srn + oct->sriov_info.num_pf_rings;
if (LIO_GET_IS_SLI_BP_ON_CFG(cn23xx->conf)) {
lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_WMARK, 32);
} else {
/* Set Output queue watermark to 0 to disable backpressure */
lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_WMARK, 0);
}
for (q_no = srn; q_no < ern; q_no++) {
reg_val = lio_read_csr32(oct,
LIO_CN23XX_SLI_OQ_PKT_CONTROL(q_no));
/* set IPTR & DPTR */
reg_val |= LIO_CN23XX_PKT_OUTPUT_CTL_DPTR;
/* reset BMODE */
reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_BMODE);
/*
* No Relaxed Ordering, No Snoop, 64-bit Byte swap for
* Output Queue ScatterList reset ROR_P, NSR_P
*/
reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_ROR_P);
reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_NSR_P);
#if BYTE_ORDER == LITTLE_ENDIAN
reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_ES_P);
#else /* BYTE_ORDER != LITTLE_ENDIAN */
reg_val |= (LIO_CN23XX_PKT_OUTPUT_CTL_ES_P);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
/*
* No Relaxed Ordering, No Snoop, 64-bit Byte swap for
* Output Queue Data reset ROR, NSR
*/
reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_ROR);
reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_NSR);
/* set the ES bit */
reg_val |= (LIO_CN23XX_PKT_OUTPUT_CTL_ES);
/* write all the selected settings */
lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(q_no),
reg_val);
/*
* Enabling these interrupt in oct->fn_list.enable_interrupt()
* routine which called after IOQ init.
* Set up interrupt packet and time thresholds
* for all the OQs
*/
time_threshold =lio_cn23xx_pf_get_oq_ticks(
oct, (uint32_t)LIO_GET_OQ_INTR_TIME_CFG(cn23xx->conf));
lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_PKT_INT_LEVELS(q_no),
(LIO_GET_OQ_INTR_PKT_CFG(cn23xx->conf) |
(time_threshold << 32)));
}
/* Setting the water mark level for pko back pressure * */
lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_WMARK, 0x40);
/* Enable channel-level backpressure */
if (oct->pf_num)
lio_write_csr64(oct, LIO_CN23XX_SLI_OUT_BP_EN2_W1S,
0xffffffffffffffffULL);
else
lio_write_csr64(oct, LIO_CN23XX_SLI_OUT_BP_EN_W1S,
0xffffffffffffffffULL);
}
static int
lio_cn23xx_pf_setup_device_regs(struct octeon_device *oct)
{
lio_cn23xx_pf_enable_error_reporting(oct);
/* program the MAC(0..3)_RINFO before setting up input/output regs */
lio_cn23xx_pf_setup_global_mac_regs(oct);
if (lio_cn23xx_pf_setup_global_input_regs(oct))
return (-1);
lio_cn23xx_pf_setup_global_output_regs(oct);
/*
* Default error timeout value should be 0x200000 to avoid host hang
* when reads invalid register
*/
lio_write_csr64(oct, LIO_CN23XX_SLI_WINDOW_CTL,
LIO_CN23XX_SLI_WINDOW_CTL_DEFAULT);
/* set SLI_PKT_IN_JABBER to handle large VXLAN packets */
lio_write_csr64(oct, LIO_CN23XX_SLI_PKT_IN_JABBER,
LIO_CN23XX_MAX_INPUT_JABBER);
return (0);
}
static void
lio_cn23xx_pf_setup_iq_regs(struct octeon_device *oct, uint32_t iq_no)
{
struct lio_instr_queue *iq = oct->instr_queue[iq_no];
uint64_t pkt_in_done;
iq_no += oct->sriov_info.pf_srn;
/* Write the start of the input queue's ring and its size */
lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_BASE_ADDR64(iq_no),
iq->base_addr_dma);
lio_write_csr32(oct, LIO_CN23XX_SLI_IQ_SIZE(iq_no), iq->max_count);
/*
* Remember the doorbell & instruction count register addr
* for this queue
*/
iq->doorbell_reg = LIO_CN23XX_SLI_IQ_DOORBELL(iq_no);
iq->inst_cnt_reg = LIO_CN23XX_SLI_IQ_INSTR_COUNT64(iq_no);
lio_dev_dbg(oct, "InstQ[%d]:dbell reg @ 0x%x instcnt_reg @ 0x%x\n",
iq_no, iq->doorbell_reg, iq->inst_cnt_reg);
/*
* Store the current instruction counter (used in flush_iq
* calculation)
*/
pkt_in_done = lio_read_csr64(oct, iq->inst_cnt_reg);
if (oct->msix_on) {
/* Set CINT_ENB to enable IQ interrupt */
lio_write_csr64(oct, iq->inst_cnt_reg,
(pkt_in_done | LIO_CN23XX_INTR_CINT_ENB));
} else {
/*
* Clear the count by writing back what we read, but don't
* enable interrupts
*/
lio_write_csr64(oct, iq->inst_cnt_reg, pkt_in_done);
}
iq->reset_instr_cnt = 0;
}
static void
lio_cn23xx_pf_setup_oq_regs(struct octeon_device *oct, uint32_t oq_no)
{
struct lio_droq *droq = oct->droq[oq_no];
struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip;
uint64_t cnt_threshold;
uint64_t time_threshold;
uint32_t reg_val;
oq_no += oct->sriov_info.pf_srn;
lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_BASE_ADDR64(oq_no),
droq->desc_ring_dma);
lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_SIZE(oq_no), droq->max_count);
lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_BUFF_INFO_SIZE(oq_no),
droq->buffer_size);
/* pkt_sent and pkts_credit regs */
droq->pkts_sent_reg = LIO_CN23XX_SLI_OQ_PKTS_SENT(oq_no);
droq->pkts_credit_reg = LIO_CN23XX_SLI_OQ_PKTS_CREDIT(oq_no);
if (!oct->msix_on) {
/*
* Enable this output queue to generate Packet Timer
* Interrupt
*/
reg_val =
lio_read_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(oq_no));
reg_val |= LIO_CN23XX_PKT_OUTPUT_CTL_TENB;
lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(oq_no),
reg_val);
/*
* Enable this output queue to generate Packet Count
* Interrupt
*/
reg_val =
lio_read_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(oq_no));
reg_val |= LIO_CN23XX_PKT_OUTPUT_CTL_CENB;
lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(oq_no),
reg_val);
} else {
time_threshold = lio_cn23xx_pf_get_oq_ticks(oct,
(uint32_t)LIO_GET_OQ_INTR_TIME_CFG(cn23xx->conf));
cnt_threshold = (uint32_t)LIO_GET_OQ_INTR_PKT_CFG(cn23xx->conf);
lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_PKT_INT_LEVELS(oq_no),
((time_threshold << 32 | cnt_threshold)));
}
}
static int
lio_cn23xx_pf_enable_io_queues(struct octeon_device *oct)
{
uint64_t reg_val;
uint32_t ern, loop = BUSY_READING_REG_PF_LOOP_COUNT;
uint32_t q_no, srn;
srn = oct->sriov_info.pf_srn;
ern = srn + oct->num_iqs;
for (q_no = srn; q_no < ern; q_no++) {
/* set the corresponding IQ IS_64B bit */
if (oct->io_qmask.iq64B & BIT_ULL(q_no - srn)) {
reg_val = lio_read_csr64(oct,
LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
reg_val = reg_val | LIO_CN23XX_PKT_INPUT_CTL_IS_64B;
lio_write_csr64(oct,
LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
reg_val);
}
/* set the corresponding IQ ENB bit */
if (oct->io_qmask.iq & BIT_ULL(q_no - srn)) {
/*
* IOQs are in reset by default in PEM2 mode,
* clearing reset bit
*/
reg_val = lio_read_csr64(oct,
LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
if (reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) {
while ((reg_val &
LIO_CN23XX_PKT_INPUT_CTL_RST) &&
!(reg_val &
LIO_CN23XX_PKT_INPUT_CTL_QUIET) &&
loop) {
reg_val = lio_read_csr64(oct,
LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
loop--;
}
if (!loop) {
lio_dev_err(oct, "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
q_no);
return (-1);
}
reg_val = reg_val &
~LIO_CN23XX_PKT_INPUT_CTL_RST;
lio_write_csr64(oct,
LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
reg_val);
reg_val = lio_read_csr64(oct,
LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
if (reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) {
lio_dev_err(oct, "clearing the reset failed for qno: %u\n",
q_no);
return (-1);
}
}
reg_val = lio_read_csr64(oct,
LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
reg_val = reg_val | LIO_CN23XX_PKT_INPUT_CTL_RING_ENB;
lio_write_csr64(oct,
LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
reg_val);
}
}
for (q_no = srn; q_no < ern; q_no++) {
uint32_t reg_val;
/* set the corresponding OQ ENB bit */
if (oct->io_qmask.oq & BIT_ULL(q_no - srn)) {
reg_val = lio_read_csr32(oct,
LIO_CN23XX_SLI_OQ_PKT_CONTROL(q_no));
reg_val = reg_val | LIO_CN23XX_PKT_OUTPUT_CTL_RING_ENB;
lio_write_csr32(oct,
LIO_CN23XX_SLI_OQ_PKT_CONTROL(q_no),
reg_val);
}
}
return (0);
}
static void
lio_cn23xx_pf_disable_io_queues(struct octeon_device *oct)
{
volatile uint64_t d64;
volatile uint32_t d32;
int loop;
unsigned int q_no;
uint32_t ern, srn;
srn = oct->sriov_info.pf_srn;
ern = srn + oct->num_iqs;
/* Disable Input Queues. */
for (q_no = srn; q_no < ern; q_no++) {
loop = lio_ms_to_ticks(1000);
/* start the Reset for a particular ring */
d64 = lio_read_csr64(oct,
LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
d64 &= ~LIO_CN23XX_PKT_INPUT_CTL_RING_ENB;
d64 |= LIO_CN23XX_PKT_INPUT_CTL_RST;
lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
d64);
/*
* Wait until hardware indicates that the particular IQ
* is out of reset.
*/
d64 = lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_IOQ_RING_RST);
while (!(d64 & BIT_ULL(q_no)) && loop--) {
d64 = lio_read_csr64(oct,
LIO_CN23XX_SLI_PKT_IOQ_RING_RST);
lio_sleep_timeout(1);
loop--;
}
/* Reset the doorbell register for this Input Queue. */
lio_write_csr32(oct, LIO_CN23XX_SLI_IQ_DOORBELL(q_no),
0xFFFFFFFF);
while (((lio_read_csr64(oct,
LIO_CN23XX_SLI_IQ_DOORBELL(q_no))) !=
0ULL) && loop--) {
lio_sleep_timeout(1);
}
}
/* Disable Output Queues. */
for (q_no = srn; q_no < ern; q_no++) {
loop = lio_ms_to_ticks(1000);
/*
* Wait until hardware indicates that the particular IQ
* is out of reset.It given that SLI_PKT_RING_RST is
* common for both IQs and OQs
*/
d64 = lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_IOQ_RING_RST);
while (!(d64 & BIT_ULL(q_no)) && loop--) {
d64 = lio_read_csr64(oct,
LIO_CN23XX_SLI_PKT_IOQ_RING_RST);
lio_sleep_timeout(1);
loop--;
}
/* Reset the doorbell register for this Output Queue. */
lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKTS_CREDIT(q_no),
0xFFFFFFFF);
while ((lio_read_csr64(oct,
LIO_CN23XX_SLI_OQ_PKTS_CREDIT(q_no)) !=
0ULL) && loop--) {
lio_sleep_timeout(1);
}
/* clear the SLI_PKT(0..63)_CNTS[CNT] reg value */
d32 = lio_read_csr32(oct, LIO_CN23XX_SLI_OQ_PKTS_SENT(q_no));
lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKTS_SENT(q_no), d32);
}
}
static uint64_t
lio_cn23xx_pf_msix_interrupt_handler(void *dev)
{
struct lio_ioq_vector *ioq_vector = (struct lio_ioq_vector *)dev;
struct octeon_device *oct = ioq_vector->oct_dev;
struct lio_droq *droq = oct->droq[ioq_vector->droq_index];
uint64_t pkts_sent;
uint64_t ret = 0;
if (droq == NULL) {
lio_dev_err(oct, "23XX bringup FIXME: oct pfnum:%d ioq_vector->ioq_num :%d droq is NULL\n",
oct->pf_num, ioq_vector->ioq_num);
return (0);
}
pkts_sent = lio_read_csr64(oct, droq->pkts_sent_reg);
/*
* If our device has interrupted, then proceed. Also check
* for all f's if interrupt was triggered on an error
* and the PCI read fails.
*/
if (!pkts_sent || (pkts_sent == 0xFFFFFFFFFFFFFFFFULL))
return (ret);
/* Write count reg in sli_pkt_cnts to clear these int. */
if (pkts_sent & LIO_CN23XX_INTR_PO_INT)
ret |= LIO_MSIX_PO_INT;
if (pkts_sent & LIO_CN23XX_INTR_PI_INT)
/* We will clear the count when we update the read_index. */
ret |= LIO_MSIX_PI_INT;
/*
* Never need to handle msix mbox intr for pf. They arrive on the last
* msix
*/
return (ret);
}
static void
lio_cn23xx_pf_interrupt_handler(void *dev)
{
struct octeon_device *oct = (struct octeon_device *)dev;
struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip;
uint64_t intr64;
lio_dev_dbg(oct, "In %s octeon_dev @ %p\n", __func__, oct);
intr64 = lio_read_csr64(oct, cn23xx->intr_sum_reg64);
oct->int_status = 0;
if (intr64 & LIO_CN23XX_INTR_ERR)
lio_dev_err(oct, "Error Intr: 0x%016llx\n",
LIO_CAST64(intr64));
if (oct->msix_on != LIO_FLAG_MSIX_ENABLED) {
if (intr64 & LIO_CN23XX_INTR_PKT_DATA)
oct->int_status |= LIO_DEV_INTR_PKT_DATA;
}
if (intr64 & (LIO_CN23XX_INTR_DMA0_FORCE))
oct->int_status |= LIO_DEV_INTR_DMA0_FORCE;
if (intr64 & (LIO_CN23XX_INTR_DMA1_FORCE))
oct->int_status |= LIO_DEV_INTR_DMA1_FORCE;
/* Clear the current interrupts */
lio_write_csr64(oct, cn23xx->intr_sum_reg64, intr64);
}
static void
lio_cn23xx_pf_bar1_idx_setup(struct octeon_device *oct, uint64_t core_addr,
uint32_t idx, int valid)
{
volatile uint64_t bar1;
uint64_t reg_adr;
if (!valid) {
reg_adr = lio_pci_readq(oct,
LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port,
idx));
bar1 = reg_adr;
lio_pci_writeq(oct, (bar1 & 0xFFFFFFFEULL),
LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port,
idx));
reg_adr = lio_pci_readq(oct,
LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port,
idx));
bar1 = reg_adr;
return;
}
/*
* The PEM(0..3)_BAR1_INDEX(0..15)[ADDR_IDX]<23:4> stores
* bits <41:22> of the Core Addr
*/
lio_pci_writeq(oct, (((core_addr >> 22) << 4) | LIO_PCI_BAR1_MASK),
LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
bar1 = lio_pci_readq(oct, LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port,
idx));
}
static void
lio_cn23xx_pf_bar1_idx_write(struct octeon_device *oct, uint32_t idx,
uint32_t mask)
{
lio_pci_writeq(oct, mask,
LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
}
static uint32_t
lio_cn23xx_pf_bar1_idx_read(struct octeon_device *oct, uint32_t idx)
{
return ((uint32_t)lio_pci_readq(oct,
LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port,
idx)));
}
/* always call with lock held */
static uint32_t
lio_cn23xx_pf_update_read_index(struct lio_instr_queue *iq)
{
struct octeon_device *oct = iq->oct_dev;
uint32_t new_idx;
uint32_t last_done;
uint32_t pkt_in_done = lio_read_csr32(oct, iq->inst_cnt_reg);
last_done = pkt_in_done - iq->pkt_in_done;
iq->pkt_in_done = pkt_in_done;
/*
* Modulo of the new index with the IQ size will give us
* the new index. The iq->reset_instr_cnt is always zero for
* cn23xx, so no extra adjustments are needed.
*/
new_idx = (iq->octeon_read_index +
((uint32_t)(last_done & LIO_CN23XX_PKT_IN_DONE_CNT_MASK))) %
iq->max_count;
return (new_idx);
}
static void
lio_cn23xx_pf_enable_interrupt(struct octeon_device *oct, uint8_t intr_flag)
{
struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip;
uint64_t intr_val = 0;
/* Divide the single write to multiple writes based on the flag. */
/* Enable Interrupt */
if (intr_flag == OCTEON_ALL_INTR) {
lio_write_csr64(oct, cn23xx->intr_enb_reg64,
cn23xx->intr_mask64);
} else if (intr_flag & OCTEON_OUTPUT_INTR) {
intr_val = lio_read_csr64(oct, cn23xx->intr_enb_reg64);
intr_val |= LIO_CN23XX_INTR_PKT_DATA;
lio_write_csr64(oct, cn23xx->intr_enb_reg64, intr_val);
}
}
static void
lio_cn23xx_pf_disable_interrupt(struct octeon_device *oct, uint8_t intr_flag)
{
struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip;
uint64_t intr_val = 0;
/* Disable Interrupts */
if (intr_flag == OCTEON_ALL_INTR) {
lio_write_csr64(oct, cn23xx->intr_enb_reg64, 0);
} else if (intr_flag & OCTEON_OUTPUT_INTR) {
intr_val = lio_read_csr64(oct, cn23xx->intr_enb_reg64);
intr_val &= ~LIO_CN23XX_INTR_PKT_DATA;
lio_write_csr64(oct, cn23xx->intr_enb_reg64, intr_val);
}
}
static void
lio_cn23xx_pf_get_pcie_qlmport(struct octeon_device *oct)
{
oct->pcie_port = (lio_read_csr32(oct,
LIO_CN23XX_SLI_MAC_NUMBER)) & 0xff;
lio_dev_dbg(oct, "CN23xx uses PCIE Port %d\n",
oct->pcie_port);
}
static void
lio_cn23xx_pf_get_pf_num(struct octeon_device *oct)
{
uint32_t fdl_bit;
/* Read Function Dependency Link reg to get the function number */
fdl_bit = lio_read_pci_cfg(oct, LIO_CN23XX_PCIE_SRIOV_FDL);
oct->pf_num = ((fdl_bit >> LIO_CN23XX_PCIE_SRIOV_FDL_BIT_POS) &
LIO_CN23XX_PCIE_SRIOV_FDL_MASK);
}
static void
lio_cn23xx_pf_setup_reg_address(struct octeon_device *oct)
{
struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip;
oct->reg_list.pci_win_wr_addr = LIO_CN23XX_SLI_WIN_WR_ADDR64;
oct->reg_list.pci_win_rd_addr_hi = LIO_CN23XX_SLI_WIN_RD_ADDR_HI;
oct->reg_list.pci_win_rd_addr_lo = LIO_CN23XX_SLI_WIN_RD_ADDR64;
oct->reg_list.pci_win_rd_addr = LIO_CN23XX_SLI_WIN_RD_ADDR64;
oct->reg_list.pci_win_wr_data_hi = LIO_CN23XX_SLI_WIN_WR_DATA_HI;
oct->reg_list.pci_win_wr_data_lo = LIO_CN23XX_SLI_WIN_WR_DATA_LO;
oct->reg_list.pci_win_wr_data = LIO_CN23XX_SLI_WIN_WR_DATA64;
oct->reg_list.pci_win_rd_data = LIO_CN23XX_SLI_WIN_RD_DATA64;
lio_cn23xx_pf_get_pcie_qlmport(oct);
cn23xx->intr_mask64 = LIO_CN23XX_INTR_MASK;
if (!oct->msix_on)
cn23xx->intr_mask64 |= LIO_CN23XX_INTR_PKT_TIME;
cn23xx->intr_sum_reg64 =
LIO_CN23XX_SLI_MAC_PF_INT_SUM64(oct->pcie_port, oct->pf_num);
cn23xx->intr_enb_reg64 =
LIO_CN23XX_SLI_MAC_PF_INT_ENB64(oct->pcie_port, oct->pf_num);
}
static int
lio_cn23xx_pf_sriov_config(struct octeon_device *oct)
{
struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip;
uint32_t num_pf_rings, total_rings, max_rings;
cn23xx->conf = (struct lio_config *)lio_get_config_info(oct, LIO_23XX);
max_rings = LIO_CN23XX_PF_MAX_RINGS;
if (oct->sriov_info.num_pf_rings) {
num_pf_rings = oct->sriov_info.num_pf_rings;
if (num_pf_rings > max_rings) {
num_pf_rings = min(mp_ncpus, max_rings);
lio_dev_warn(oct, "num_queues_per_pf requested %u is more than available rings (%u). Reducing to %u\n",
oct->sriov_info.num_pf_rings,
max_rings, num_pf_rings);
}
} else {
#ifdef RSS
num_pf_rings = min(rss_getnumbuckets(), mp_ncpus);
#else
num_pf_rings = min(mp_ncpus, max_rings);
#endif
}
total_rings = num_pf_rings;
oct->sriov_info.trs = total_rings;
oct->sriov_info.pf_srn = total_rings - num_pf_rings;
oct->sriov_info.num_pf_rings = num_pf_rings;
lio_dev_dbg(oct, "trs:%d pf_srn:%d num_pf_rings:%d\n",
oct->sriov_info.trs, oct->sriov_info.pf_srn,
oct->sriov_info.num_pf_rings);
return (0);
}
int
lio_cn23xx_pf_setup_device(struct octeon_device *oct)
{
uint64_t BAR0, BAR1;
uint32_t data32;
data32 = lio_read_pci_cfg(oct, 0x10);
BAR0 = (uint64_t)(data32 & ~0xf);
data32 = lio_read_pci_cfg(oct, 0x14);
BAR0 |= ((uint64_t)data32 << 32);
data32 = lio_read_pci_cfg(oct, 0x18);
BAR1 = (uint64_t)(data32 & ~0xf);
data32 = lio_read_pci_cfg(oct, 0x1c);
BAR1 |= ((uint64_t)data32 << 32);
if (!BAR0 || !BAR1) {
if (!BAR0)
lio_dev_err(oct, "Device BAR0 unassigned\n");
if (!BAR1)
lio_dev_err(oct, "Device BAR1 unassigned\n");
return (1);
}
if (lio_map_pci_barx(oct, 0))
return (1);
if (lio_map_pci_barx(oct, 1)) {
lio_dev_err(oct, "%s CN23XX BAR1 map failed\n", __func__);
lio_unmap_pci_barx(oct, 0);
return (1);
}
lio_cn23xx_pf_get_pf_num(oct);
if (lio_cn23xx_pf_sriov_config(oct)) {
lio_unmap_pci_barx(oct, 0);
lio_unmap_pci_barx(oct, 1);
return (1);
}
lio_write_csr64(oct, LIO_CN23XX_SLI_MAC_CREDIT_CNT,
0x3F802080802080ULL);
oct->fn_list.setup_iq_regs = lio_cn23xx_pf_setup_iq_regs;
oct->fn_list.setup_oq_regs = lio_cn23xx_pf_setup_oq_regs;
oct->fn_list.process_interrupt_regs = lio_cn23xx_pf_interrupt_handler;
oct->fn_list.msix_interrupt_handler =
lio_cn23xx_pf_msix_interrupt_handler;
oct->fn_list.soft_reset = lio_cn23xx_pf_soft_reset;
oct->fn_list.setup_device_regs = lio_cn23xx_pf_setup_device_regs;
oct->fn_list.update_iq_read_idx = lio_cn23xx_pf_update_read_index;
oct->fn_list.bar1_idx_setup = lio_cn23xx_pf_bar1_idx_setup;
oct->fn_list.bar1_idx_write = lio_cn23xx_pf_bar1_idx_write;
oct->fn_list.bar1_idx_read = lio_cn23xx_pf_bar1_idx_read;
oct->fn_list.enable_interrupt = lio_cn23xx_pf_enable_interrupt;
oct->fn_list.disable_interrupt = lio_cn23xx_pf_disable_interrupt;
oct->fn_list.enable_io_queues = lio_cn23xx_pf_enable_io_queues;
oct->fn_list.disable_io_queues = lio_cn23xx_pf_disable_io_queues;
lio_cn23xx_pf_setup_reg_address(oct);
oct->coproc_clock_rate = 1000000ULL *
lio_cn23xx_pf_coprocessor_clock(oct);
return (0);
}
int
lio_cn23xx_pf_fw_loaded(struct octeon_device *oct)
{
uint64_t val;
val = lio_read_csr64(oct, LIO_CN23XX_SLI_SCRATCH2);
return ((val >> SCR2_BIT_FW_LOADED) & 1ULL);
}