freebsd-dev/sys/dev/liquidio/base/lio_device.c
Sean Bruno 3de0952fba Enable i386 build of the Cavium LiquidIO driver (lio) module.
Submitted by:	pkanneganti@cavium.com (Prasad V Kanneganti)
MFC after:	1 week
Sponsored by:	Cavium Networks
Differential Revision:	https://reviews.freebsd.org/D12415
2017-10-25 17:49:17 +00:00

1063 lines
27 KiB
C

/*
* BSD LICENSE
*
* Copyright(c) 2017 Cavium, Inc.. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Cavium, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*$FreeBSD$*/
#include "lio_bsd.h"
#include "lio_common.h"
#include "lio_droq.h"
#include "lio_iq.h"
#include "lio_response_manager.h"
#include "lio_device.h"
#include "lio_main.h"
#include "lio_network.h"
#include "cn23xx_pf_device.h"
#include "lio_image.h"
#include "lio_mem_ops.h"
static struct lio_config default_cn23xx_conf = {
.card_type = LIO_23XX,
.card_name = LIO_23XX_NAME,
/* IQ attributes */
.iq = {
.max_iqs = LIO_CN23XX_CFG_IO_QUEUES,
.pending_list_size = (LIO_CN23XX_DEFAULT_IQ_DESCRIPTORS *
LIO_CN23XX_CFG_IO_QUEUES),
.instr_type = LIO_64BYTE_INSTR,
.db_min = LIO_CN23XX_DB_MIN,
.db_timeout = LIO_CN23XX_DB_TIMEOUT,
.iq_intr_pkt = LIO_CN23XX_DEF_IQ_INTR_THRESHOLD,
},
/* OQ attributes */
.oq = {
.max_oqs = LIO_CN23XX_CFG_IO_QUEUES,
.pkts_per_intr = LIO_CN23XX_OQ_PKTS_PER_INTR,
.refill_threshold = LIO_CN23XX_OQ_REFIL_THRESHOLD,
.oq_intr_pkt = LIO_CN23XX_OQ_INTR_PKT,
.oq_intr_time = LIO_CN23XX_OQ_INTR_TIME,
},
.num_nic_ports = LIO_CN23XX_DEFAULT_NUM_PORTS,
.num_def_rx_descs = LIO_CN23XX_DEFAULT_OQ_DESCRIPTORS,
.num_def_tx_descs = LIO_CN23XX_DEFAULT_IQ_DESCRIPTORS,
.def_rx_buf_size = LIO_CN23XX_OQ_BUF_SIZE,
/* For ethernet interface 0: Port cfg Attributes */
.nic_if_cfg[0] = {
/* Max Txqs: Half for each of the two ports :max_iq/2 */
.max_txqs = LIO_MAX_TXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_txqs */
.num_txqs = LIO_DEF_TXQS_PER_INTF,
/* Max Rxqs: Half for each of the two ports :max_oq/2 */
.max_rxqs = LIO_MAX_RXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_rxqs */
.num_rxqs = LIO_DEF_RXQS_PER_INTF,
/* Num of desc for rx rings */
.num_rx_descs = LIO_CN23XX_DEFAULT_OQ_DESCRIPTORS,
/* Num of desc for tx rings */
.num_tx_descs = LIO_CN23XX_DEFAULT_IQ_DESCRIPTORS,
/*
* Mbuf size, We need not change buf size even for Jumbo frames.
* Octeon can send jumbo frames in 4 consecutive descriptors,
*/
.rx_buf_size = LIO_CN23XX_OQ_BUF_SIZE,
.base_queue = LIO_BASE_QUEUE_NOT_REQUESTED,
.gmx_port_id = 0,
},
.nic_if_cfg[1] = {
/* Max Txqs: Half for each of the two ports :max_iq/2 */
.max_txqs = LIO_MAX_TXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_txqs */
.num_txqs = LIO_DEF_TXQS_PER_INTF,
/* Max Rxqs: Half for each of the two ports :max_oq/2 */
.max_rxqs = LIO_MAX_RXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_rxqs */
.num_rxqs = LIO_DEF_RXQS_PER_INTF,
/* Num of desc for rx rings */
.num_rx_descs = LIO_CN23XX_DEFAULT_OQ_DESCRIPTORS,
/* Num of desc for tx rings */
.num_tx_descs = LIO_CN23XX_DEFAULT_IQ_DESCRIPTORS,
/*
* Mbuf size, We need not change buf size even for Jumbo frames.
* Octeon can send jumbo frames in 4 consecutive descriptors,
*/
.rx_buf_size = LIO_CN23XX_OQ_BUF_SIZE,
.base_queue = LIO_BASE_QUEUE_NOT_REQUESTED,
.gmx_port_id = 1,
},
.misc = {
/* Host driver link query interval */
.oct_link_query_interval = 100,
/* Octeon link query interval */
.host_link_query_interval = 500,
.enable_sli_oq_bp = 0,
/* Control queue group */
.ctrlq_grp = 1,
}
};
static struct lio_config_ptr {
uint32_t conf_type;
} oct_conf_info[LIO_MAX_DEVICES] = {
{
LIO_CFG_TYPE_DEFAULT,
}, {
LIO_CFG_TYPE_DEFAULT,
}, {
LIO_CFG_TYPE_DEFAULT,
}, {
LIO_CFG_TYPE_DEFAULT,
},
};
static char lio_state_str[LIO_DEV_STATES + 1][32] = {
"BEGIN", "PCI-ENABLE-DONE", "PCI-MAP-DONE", "DISPATCH-INIT-DONE",
"IQ-INIT-DONE", "SCBUFF-POOL-INIT-DONE", "RESPLIST-INIT-DONE",
"DROQ-INIT-DONE", "MBOX-SETUP-DONE", "MSIX-ALLOC-VECTOR-DONE",
"INTR-SET-DONE", "IO-QUEUES-INIT-DONE", "CONSOLE-INIT-DONE",
"HOST-READY", "CORE-READY", "RUNNING", "IN-RESET",
"INVALID"
};
static char lio_app_str[LIO_DRV_APP_COUNT + 1][32] = {"BASE", "NIC", "UNKNOWN"};
static struct octeon_device *octeon_device[LIO_MAX_DEVICES];
static volatile int lio_adapter_refcounts[LIO_MAX_DEVICES];
static uint32_t octeon_device_count;
/* locks device array (i.e. octeon_device[]) */
struct mtx octeon_devices_lock;
static struct lio_core_setup core_setup[LIO_MAX_DEVICES];
static void
oct_set_config_info(int oct_id, int conf_type)
{
if (conf_type < 0 || conf_type > (LIO_NUM_CFGS - 1))
conf_type = LIO_CFG_TYPE_DEFAULT;
oct_conf_info[oct_id].conf_type = conf_type;
}
void
lio_init_device_list(int conf_type)
{
int i;
bzero(octeon_device, (sizeof(void *) * LIO_MAX_DEVICES));
for (i = 0; i < LIO_MAX_DEVICES; i++)
oct_set_config_info(i, conf_type);
mtx_init(&octeon_devices_lock, "octeon_devices_lock", NULL, MTX_DEF);
}
static void *
__lio_retrieve_config_info(struct octeon_device *oct, uint16_t card_type)
{
void *ret = NULL;
uint32_t oct_id = oct->octeon_id;
switch (oct_conf_info[oct_id].conf_type) {
case LIO_CFG_TYPE_DEFAULT:
if (oct->chip_id == LIO_CN23XX_PF_VID) {
ret = &default_cn23xx_conf;
}
break;
default:
break;
}
return (ret);
}
void *
lio_get_config_info(struct octeon_device *oct, uint16_t card_type)
{
void *conf = NULL;
conf = __lio_retrieve_config_info(oct, card_type);
if (conf == NULL)
return (NULL);
return (conf);
}
char *
lio_get_state_string(volatile int *state_ptr)
{
int32_t istate = (int32_t)atomic_load_acq_int(state_ptr);
if (istate > LIO_DEV_STATES || istate < 0)
return (lio_state_str[LIO_DEV_STATE_INVALID]);
return (lio_state_str[istate]);
}
static char *
lio_get_app_string(uint32_t app_mode)
{
if (app_mode <= LIO_DRV_APP_END)
return (lio_app_str[app_mode - LIO_DRV_APP_START]);
return (lio_app_str[LIO_DRV_INVALID_APP - LIO_DRV_APP_START]);
}
void
lio_free_device_mem(struct octeon_device *oct)
{
int i;
for (i = 0; i < LIO_MAX_OUTPUT_QUEUES(oct); i++) {
if ((oct->io_qmask.oq & BIT_ULL(i)) && (oct->droq[i]))
free(oct->droq[i], M_DEVBUF);
}
for (i = 0; i < LIO_MAX_INSTR_QUEUES(oct); i++) {
if ((oct->io_qmask.iq & BIT_ULL(i)) && (oct->instr_queue[i]))
free(oct->instr_queue[i], M_DEVBUF);
}
i = oct->octeon_id;
free(oct->chip, M_DEVBUF);
octeon_device[i] = NULL;
octeon_device_count--;
}
static struct octeon_device *
lio_allocate_device_mem(device_t device)
{
struct octeon_device *oct;
uint32_t configsize = 0, pci_id = 0, size;
uint8_t *buf = NULL;
pci_id = pci_get_device(device);
switch (pci_id) {
case LIO_CN23XX_PF_VID:
configsize = sizeof(struct lio_cn23xx_pf);
break;
default:
device_printf(device, "Error: Unknown PCI Device: 0x%x\n",
pci_id);
return (NULL);
}
if (configsize & 0x7)
configsize += (8 - (configsize & 0x7));
size = configsize +
(sizeof(struct lio_dispatch) * LIO_DISPATCH_LIST_SIZE);
buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
if (buf == NULL)
return (NULL);
oct = (struct octeon_device *)device_get_softc(device);
oct->chip = (void *)(buf);
oct->dispatch.dlist = (struct lio_dispatch *)(buf + configsize);
return (oct);
}
struct octeon_device *
lio_allocate_device(device_t device)
{
struct octeon_device *oct = NULL;
uint32_t oct_idx = 0;
mtx_lock(&octeon_devices_lock);
for (oct_idx = 0; oct_idx < LIO_MAX_DEVICES; oct_idx++)
if (!octeon_device[oct_idx])
break;
if (oct_idx < LIO_MAX_DEVICES) {
oct = lio_allocate_device_mem(device);
if (oct != NULL) {
octeon_device_count++;
octeon_device[oct_idx] = oct;
}
}
mtx_unlock(&octeon_devices_lock);
if (oct == NULL)
return (NULL);
mtx_init(&oct->pci_win_lock, "pci_win_lock", NULL, MTX_DEF);
mtx_init(&oct->mem_access_lock, "mem_access_lock", NULL, MTX_DEF);
oct->octeon_id = oct_idx;
snprintf(oct->device_name, sizeof(oct->device_name), "%s%d",
LIO_DRV_NAME, oct->octeon_id);
return (oct);
}
/*
* Register a device's bus location at initialization time.
* @param oct - pointer to the octeon device structure.
* @param bus - PCIe bus #
* @param dev - PCIe device #
* @param func - PCIe function #
* @param is_pf - TRUE for PF, FALSE for VF
* @return reference count of device's adapter
*/
int
lio_register_device(struct octeon_device *oct, int bus, int dev, int func,
int is_pf)
{
int idx, refcount;
oct->loc.bus = bus;
oct->loc.dev = dev;
oct->loc.func = func;
oct->adapter_refcount = &lio_adapter_refcounts[oct->octeon_id];
atomic_store_rel_int(oct->adapter_refcount, 0);
mtx_lock(&octeon_devices_lock);
for (idx = (int)oct->octeon_id - 1; idx >= 0; idx--) {
if (octeon_device[idx] == NULL) {
lio_dev_err(oct, "%s: Internal driver error, missing dev\n",
__func__);
mtx_unlock(&octeon_devices_lock);
atomic_add_int(oct->adapter_refcount, 1);
return (1); /* here, refcount is guaranteed to be 1 */
}
/* if another device is at same bus/dev, use its refcounter */
if ((octeon_device[idx]->loc.bus == bus) &&
(octeon_device[idx]->loc.dev == dev)) {
oct->adapter_refcount =
octeon_device[idx]->adapter_refcount;
break;
}
}
mtx_unlock(&octeon_devices_lock);
atomic_add_int(oct->adapter_refcount, 1);
refcount = atomic_load_acq_int(oct->adapter_refcount);
lio_dev_dbg(oct, "%s: %02x:%02x:%d refcount %u\n", __func__,
oct->loc.bus, oct->loc.dev, oct->loc.func, refcount);
return (refcount);
}
/*
* Deregister a device at de-initialization time.
* @param oct - pointer to the octeon device structure.
* @return reference count of device's adapter
*/
int
lio_deregister_device(struct octeon_device *oct)
{
int refcount;
atomic_subtract_int(oct->adapter_refcount, 1);
refcount = atomic_load_acq_int(oct->adapter_refcount);
lio_dev_dbg(oct, "%s: %04d:%02d:%d refcount %u\n", __func__,
oct->loc.bus, oct->loc.dev, oct->loc.func, refcount);
return (refcount);
}
int
lio_allocate_ioq_vector(struct octeon_device *oct)
{
struct lio_ioq_vector *ioq_vector;
int i, cpu_num, num_ioqs = 0, size;
if (LIO_CN23XX_PF(oct))
num_ioqs = oct->sriov_info.num_pf_rings;
size = sizeof(struct lio_ioq_vector) * num_ioqs;
oct->ioq_vector = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
if (oct->ioq_vector == NULL)
return (1);
for (i = 0; i < num_ioqs; i++) {
ioq_vector = &oct->ioq_vector[i];
ioq_vector->oct_dev = oct;
ioq_vector->droq_index = i;
cpu_num = i % mp_ncpus;
CPU_SETOF(cpu_num, &ioq_vector->affinity_mask);
if (oct->chip_id == LIO_CN23XX_PF_VID)
ioq_vector->ioq_num = i + oct->sriov_info.pf_srn;
else
ioq_vector->ioq_num = i;
}
return (0);
}
void
lio_free_ioq_vector(struct octeon_device *oct)
{
free(oct->ioq_vector, M_DEVBUF);
oct->ioq_vector = NULL;
}
/* this function is only for setting up the first queue */
int
lio_setup_instr_queue0(struct octeon_device *oct)
{
union octeon_txpciq txpciq;
uint32_t iq_no = 0;
uint32_t num_descs = 0;
if (LIO_CN23XX_PF(oct))
num_descs =
LIO_GET_NUM_DEF_TX_DESCS_CFG(LIO_CHIP_CONF(oct,
cn23xx_pf));
oct->num_iqs = 0;
oct->instr_queue[0]->q_index = 0;
oct->instr_queue[0]->app_ctx = (void *)(size_t)0;
oct->instr_queue[0]->ifidx = 0;
txpciq.txpciq64 = 0;
txpciq.s.q_no = iq_no;
txpciq.s.pkind = oct->pfvf_hsword.pkind;
txpciq.s.use_qpg = 0;
txpciq.s.qpg = 0;
if (lio_init_instr_queue(oct, txpciq, num_descs)) {
/* prevent memory leak */
lio_delete_instr_queue(oct, 0);
return (1);
}
oct->num_iqs++;
return (0);
}
int
lio_setup_output_queue0(struct octeon_device *oct)
{
uint32_t desc_size = 0, num_descs = 0, oq_no = 0;
if (LIO_CN23XX_PF(oct)) {
num_descs =
LIO_GET_NUM_DEF_RX_DESCS_CFG(LIO_CHIP_CONF(oct,
cn23xx_pf));
desc_size =
LIO_GET_DEF_RX_BUF_SIZE_CFG(LIO_CHIP_CONF(oct,
cn23xx_pf));
}
oct->num_oqs = 0;
if (lio_init_droq(oct, oq_no, num_descs, desc_size, NULL)) {
return (1);
}
oct->num_oqs++;
return (0);
}
int
lio_init_dispatch_list(struct octeon_device *oct)
{
uint32_t i;
oct->dispatch.count = 0;
for (i = 0; i < LIO_DISPATCH_LIST_SIZE; i++) {
oct->dispatch.dlist[i].opcode = 0;
STAILQ_INIT(&oct->dispatch.dlist[i].head);
}
mtx_init(&oct->dispatch.lock, "dispatch_lock", NULL, MTX_DEF);
return (0);
}
void
lio_delete_dispatch_list(struct octeon_device *oct)
{
struct lio_stailq_head freelist;
struct lio_stailq_node *temp, *tmp2;
uint32_t i;
STAILQ_INIT(&freelist);
mtx_lock(&oct->dispatch.lock);
for (i = 0; i < LIO_DISPATCH_LIST_SIZE; i++) {
struct lio_stailq_head *dispatch;
dispatch = &oct->dispatch.dlist[i].head;
while (!STAILQ_EMPTY(dispatch)) {
temp = STAILQ_FIRST(dispatch);
STAILQ_REMOVE_HEAD(&oct->dispatch.dlist[i].head,
entries);
STAILQ_INSERT_TAIL(&freelist, temp, entries);
}
oct->dispatch.dlist[i].opcode = 0;
}
oct->dispatch.count = 0;
mtx_unlock(&oct->dispatch.lock);
STAILQ_FOREACH_SAFE(temp, &freelist, entries, tmp2) {
STAILQ_REMOVE_HEAD(&freelist, entries);
free(temp, M_DEVBUF);
}
}
lio_dispatch_fn_t
lio_get_dispatch(struct octeon_device *octeon_dev, uint16_t opcode,
uint16_t subcode)
{
struct lio_stailq_node *dispatch;
lio_dispatch_fn_t fn = NULL;
uint32_t idx;
uint16_t combined_opcode = LIO_OPCODE_SUBCODE(opcode, subcode);
idx = combined_opcode & LIO_OPCODE_MASK;
mtx_lock(&octeon_dev->dispatch.lock);
if (octeon_dev->dispatch.count == 0) {
mtx_unlock(&octeon_dev->dispatch.lock);
return (NULL);
}
if (!(octeon_dev->dispatch.dlist[idx].opcode)) {
mtx_unlock(&octeon_dev->dispatch.lock);
return (NULL);
}
if (octeon_dev->dispatch.dlist[idx].opcode == combined_opcode) {
fn = octeon_dev->dispatch.dlist[idx].dispatch_fn;
} else {
STAILQ_FOREACH(dispatch, &octeon_dev->dispatch.dlist[idx].head,
entries) {
if (((struct lio_dispatch *)dispatch)->opcode ==
combined_opcode) {
fn = ((struct lio_dispatch *)
dispatch)->dispatch_fn;
break;
}
}
}
mtx_unlock(&octeon_dev->dispatch.lock);
return (fn);
}
/*
* lio_register_dispatch_fn
* Parameters:
* octeon_id - id of the octeon device.
* opcode - opcode for which driver should call the registered function
* subcode - subcode for which driver should call the registered function
* fn - The function to call when a packet with "opcode" arrives in
* octeon output queues.
* fn_arg - The argument to be passed when calling function "fn".
* Description:
* Registers a function and its argument to be called when a packet
* arrives in Octeon output queues with "opcode".
* Returns:
* Success: 0
* Failure: 1
* Locks:
* No locks are held.
*/
int
lio_register_dispatch_fn(struct octeon_device *oct, uint16_t opcode,
uint16_t subcode, lio_dispatch_fn_t fn, void *fn_arg)
{
lio_dispatch_fn_t pfn;
uint32_t idx;
uint16_t combined_opcode = LIO_OPCODE_SUBCODE(opcode, subcode);
idx = combined_opcode & LIO_OPCODE_MASK;
mtx_lock(&oct->dispatch.lock);
/* Add dispatch function to first level of lookup table */
if (oct->dispatch.dlist[idx].opcode == 0) {
oct->dispatch.dlist[idx].opcode = combined_opcode;
oct->dispatch.dlist[idx].dispatch_fn = fn;
oct->dispatch.dlist[idx].arg = fn_arg;
oct->dispatch.count++;
mtx_unlock(&oct->dispatch.lock);
return (0);
}
mtx_unlock(&oct->dispatch.lock);
/*
* Check if there was a function already registered for this
* opcode/subcode.
*/
pfn = lio_get_dispatch(oct, opcode, subcode);
if (!pfn) {
struct lio_dispatch *dispatch;
lio_dev_dbg(oct,
"Adding opcode to dispatch list linked list\n");
dispatch = (struct lio_dispatch *)
malloc(sizeof(struct lio_dispatch),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (dispatch == NULL) {
lio_dev_err(oct,
"No memory to add dispatch function\n");
return (1);
}
dispatch->opcode = combined_opcode;
dispatch->dispatch_fn = fn;
dispatch->arg = fn_arg;
/*
* Add dispatch function to linked list of fn ptrs
* at the hashed index.
*/
mtx_lock(&oct->dispatch.lock);
STAILQ_INSERT_HEAD(&oct->dispatch.dlist[idx].head,
&dispatch->node, entries);
oct->dispatch.count++;
mtx_unlock(&oct->dispatch.lock);
} else {
lio_dev_err(oct, "Found previously registered dispatch fn for opcode/subcode: %x/%x\n",
opcode, subcode);
return (1);
}
return (0);
}
/*
* lio_unregister_dispatch_fn
* Parameters:
* oct - octeon device
* opcode - driver should unregister the function for this opcode
* subcode - driver should unregister the function for this subcode
* Description:
* Unregister the function set for this opcode+subcode.
* Returns:
* Success: 0
* Failure: 1
* Locks:
* No locks are held.
*/
int
lio_unregister_dispatch_fn(struct octeon_device *oct, uint16_t opcode,
uint16_t subcode)
{
struct lio_stailq_head *dispatch_head;
struct lio_stailq_node *dispatch, *dfree = NULL, *tmp2;
int retval = 0;
uint32_t idx;
uint16_t combined_opcode = LIO_OPCODE_SUBCODE(opcode, subcode);
idx = combined_opcode & LIO_OPCODE_MASK;
mtx_lock(&oct->dispatch.lock);
if (oct->dispatch.count == 0) {
mtx_unlock(&oct->dispatch.lock);
lio_dev_err(oct, "No dispatch functions registered for this device\n");
return (1);
}
if (oct->dispatch.dlist[idx].opcode == combined_opcode) {
dispatch_head = &oct->dispatch.dlist[idx].head;
if (!STAILQ_EMPTY(dispatch_head)) {
dispatch = STAILQ_FIRST(dispatch_head);
oct->dispatch.dlist[idx].opcode =
((struct lio_dispatch *)dispatch)->opcode;
oct->dispatch.dlist[idx].dispatch_fn =
((struct lio_dispatch *)dispatch)->dispatch_fn;
oct->dispatch.dlist[idx].arg =
((struct lio_dispatch *)dispatch)->arg;
STAILQ_REMOVE_HEAD(dispatch_head, entries);
dfree = dispatch;
} else {
oct->dispatch.dlist[idx].opcode = 0;
oct->dispatch.dlist[idx].dispatch_fn = NULL;
oct->dispatch.dlist[idx].arg = NULL;
}
} else {
retval = 1;
STAILQ_FOREACH_SAFE(dispatch,
&oct->dispatch.dlist[idx].head,
entries, tmp2) {
if (((struct lio_dispatch *)dispatch)->opcode ==
combined_opcode) {
STAILQ_REMOVE(&oct->dispatch.dlist[idx].head,
dispatch,
lio_stailq_node, entries);
dfree = dispatch;
retval = 0;
}
}
}
if (!retval)
oct->dispatch.count--;
mtx_unlock(&oct->dispatch.lock);
free(dfree, M_DEVBUF);
return (retval);
}
int
lio_core_drv_init(struct lio_recv_info *recv_info, void *buf)
{
struct octeon_device *oct = (struct octeon_device *)buf;
struct lio_recv_pkt *recv_pkt = recv_info->recv_pkt;
struct lio_core_setup *cs = NULL;
uint32_t i;
uint32_t num_nic_ports = 0;
char app_name[16];
if (LIO_CN23XX_PF(oct))
num_nic_ports = LIO_GET_NUM_NIC_PORTS_CFG(
LIO_CHIP_CONF(oct, cn23xx_pf));
if (atomic_load_acq_int(&oct->status) >= LIO_DEV_RUNNING) {
lio_dev_err(oct, "Received CORE OK when device state is 0x%x\n",
atomic_load_acq_int(&oct->status));
goto core_drv_init_err;
}
strncpy(app_name,
lio_get_app_string((uint32_t)
recv_pkt->rh.r_core_drv_init.app_mode),
sizeof(app_name) - 1);
oct->app_mode = (uint32_t)recv_pkt->rh.r_core_drv_init.app_mode;
if (recv_pkt->rh.r_core_drv_init.app_mode == LIO_DRV_NIC_APP) {
oct->fw_info.max_nic_ports =
(uint32_t)recv_pkt->rh.r_core_drv_init.max_nic_ports;
oct->fw_info.num_gmx_ports =
(uint32_t)recv_pkt->rh.r_core_drv_init.num_gmx_ports;
}
if (oct->fw_info.max_nic_ports < num_nic_ports) {
lio_dev_err(oct, "Config has more ports than firmware allows (%d > %d).\n",
num_nic_ports, oct->fw_info.max_nic_ports);
goto core_drv_init_err;
}
oct->fw_info.app_cap_flags = recv_pkt->rh.r_core_drv_init.app_cap_flags;
oct->fw_info.app_mode = (uint32_t)recv_pkt->rh.r_core_drv_init.app_mode;
oct->pfvf_hsword.app_mode =
(uint32_t)recv_pkt->rh.r_core_drv_init.app_mode;
oct->pfvf_hsword.pkind = recv_pkt->rh.r_core_drv_init.pkind;
for (i = 0; i < oct->num_iqs; i++)
oct->instr_queue[i]->txpciq.s.pkind = oct->pfvf_hsword.pkind;
atomic_store_rel_int(&oct->status, LIO_DEV_CORE_OK);
cs = &core_setup[oct->octeon_id];
if (recv_pkt->buffer_size[0] != (sizeof(*cs) + LIO_DROQ_INFO_SIZE)) {
lio_dev_dbg(oct, "Core setup bytes expected %llu found %d\n",
LIO_CAST64(sizeof(*cs) + LIO_DROQ_INFO_SIZE),
recv_pkt->buffer_size[0]);
}
memcpy(cs, recv_pkt->buffer_ptr[0]->m_data + LIO_DROQ_INFO_SIZE,
sizeof(*cs));
strncpy(oct->boardinfo.name, cs->boardname, LIO_BOARD_NAME);
strncpy(oct->boardinfo.serial_number, cs->board_serial_number,
LIO_SERIAL_NUM_LEN);
lio_swap_8B_data((uint64_t *)cs, (sizeof(*cs) >> 3));
oct->boardinfo.major = cs->board_rev_major;
oct->boardinfo.minor = cs->board_rev_minor;
lio_dev_info(oct, "Running %s (%llu Hz)\n", app_name,
LIO_CAST64(cs->corefreq));
core_drv_init_err:
for (i = 0; i < recv_pkt->buffer_count; i++)
lio_recv_buffer_free(recv_pkt->buffer_ptr[i]);
lio_free_recv_info(recv_info);
return (0);
}
int
lio_get_tx_qsize(struct octeon_device *oct, uint32_t q_no)
{
if ((oct != NULL) && (q_no < (uint32_t)LIO_MAX_INSTR_QUEUES(oct)) &&
(oct->io_qmask.iq & BIT_ULL(q_no)))
return (oct->instr_queue[q_no]->max_count);
return (-1);
}
int
lio_get_rx_qsize(struct octeon_device *oct, uint32_t q_no)
{
if ((oct != NULL) && (q_no < (uint32_t)LIO_MAX_OUTPUT_QUEUES(oct)) &&
(oct->io_qmask.oq & BIT_ULL(q_no)))
return (oct->droq[q_no]->max_count);
return (-1);
}
/* Returns the host firmware handshake OCTEON specific configuration */
struct lio_config *
lio_get_conf(struct octeon_device *oct)
{
struct lio_config *default_oct_conf = NULL;
/*
* check the OCTEON Device model & return the corresponding octeon
* configuration
*/
if (LIO_CN23XX_PF(oct)) {
default_oct_conf = (struct lio_config *)(
LIO_CHIP_CONF(oct, cn23xx_pf));
}
return (default_oct_conf);
}
/*
* Get the octeon device pointer.
* @param octeon_id - The id for which the octeon device pointer is required.
* @return Success: Octeon device pointer.
* @return Failure: NULL.
*/
struct octeon_device *
lio_get_device(uint32_t octeon_id)
{
if (octeon_id >= LIO_MAX_DEVICES)
return (NULL);
else
return (octeon_device[octeon_id]);
}
uint64_t
lio_pci_readq(struct octeon_device *oct, uint64_t addr)
{
uint64_t val64;
volatile uint32_t val32, addrhi;
mtx_lock(&oct->pci_win_lock);
/*
* The windowed read happens when the LSB of the addr is written.
* So write MSB first
*/
addrhi = (addr >> 32);
if (oct->chip_id == LIO_CN23XX_PF_VID)
addrhi |= 0x00060000;
lio_write_csr32(oct, oct->reg_list.pci_win_rd_addr_hi, addrhi);
/* Read back to preserve ordering of writes */
val32 = lio_read_csr32(oct, oct->reg_list.pci_win_rd_addr_hi);
lio_write_csr32(oct, oct->reg_list.pci_win_rd_addr_lo,
addr & 0xffffffff);
val32 = lio_read_csr32(oct, oct->reg_list.pci_win_rd_addr_lo);
val64 = lio_read_csr64(oct, oct->reg_list.pci_win_rd_data);
mtx_unlock(&oct->pci_win_lock);
return (val64);
}
void
lio_pci_writeq(struct octeon_device *oct, uint64_t val, uint64_t addr)
{
volatile uint32_t val32;
mtx_lock(&oct->pci_win_lock);
lio_write_csr64(oct, oct->reg_list.pci_win_wr_addr, addr);
/* The write happens when the LSB is written. So write MSB first. */
lio_write_csr32(oct, oct->reg_list.pci_win_wr_data_hi, val >> 32);
/* Read the MSB to ensure ordering of writes. */
val32 = lio_read_csr32(oct, oct->reg_list.pci_win_wr_data_hi);
lio_write_csr32(oct, oct->reg_list.pci_win_wr_data_lo,
val & 0xffffffff);
mtx_unlock(&oct->pci_win_lock);
}
int
lio_mem_access_ok(struct octeon_device *oct)
{
uint64_t access_okay = 0;
uint64_t lmc0_reset_ctl;
/* Check to make sure a DDR interface is enabled */
if (LIO_CN23XX_PF(oct)) {
lmc0_reset_ctl = lio_pci_readq(oct, LIO_CN23XX_LMC0_RESET_CTL);
access_okay =
(lmc0_reset_ctl & LIO_CN23XX_LMC0_RESET_CTL_DDR3RST_MASK);
}
return (access_okay ? 0 : 1);
}
int
lio_wait_for_ddr_init(struct octeon_device *oct, unsigned long *timeout)
{
int ret = 1;
uint32_t ms;
if (timeout == NULL)
return (ret);
for (ms = 0; ret && ((*timeout == 0) || (ms <= *timeout)); ms += 100) {
ret = lio_mem_access_ok(oct);
/* wait 100 ms */
if (ret)
lio_sleep_timeout(100);
}
return (ret);
}
/*
* Get the octeon id assigned to the octeon device passed as argument.
* This function is exported to other modules.
* @param dev - octeon device pointer passed as a void *.
* @return octeon device id
*/
int
lio_get_device_id(void *dev)
{
struct octeon_device *octeon_dev = (struct octeon_device *)dev;
uint32_t i;
for (i = 0; i < LIO_MAX_DEVICES; i++)
if (octeon_device[i] == octeon_dev)
return (octeon_dev->octeon_id);
return (-1);
}
void
lio_enable_irq(struct lio_droq *droq, struct lio_instr_queue *iq)
{
struct octeon_device *oct = NULL;
uint64_t instr_cnt;
uint32_t pkts_pend;
/* the whole thing needs to be atomic, ideally */
if (droq != NULL) {
oct = droq->oct_dev;
pkts_pend = atomic_load_acq_int(&droq->pkts_pending);
mtx_lock(&droq->lock);
lio_write_csr32(oct, droq->pkts_sent_reg,
droq->pkt_count - pkts_pend);
droq->pkt_count = pkts_pend;
/* this write needs to be flushed before we release the lock */
__compiler_membar();
mtx_unlock(&droq->lock);
}
if (iq != NULL) {
oct = iq->oct_dev;
mtx_lock(&iq->lock);
lio_write_csr32(oct, iq->inst_cnt_reg, iq->pkt_in_done);
iq->pkt_in_done = 0;
/* this write needs to be flushed before we release the lock */
__compiler_membar();
mtx_unlock(&iq->lock);
}
/*
* Implementation note:
*
* SLI_PKT(x)_CNTS[RESEND] is written separately so that if an interrupt
* DOES occur as a result of RESEND, the DROQ lock will NOT be held.
*
* Write resend. Writing RESEND in SLI_PKTX_CNTS should be enough
* to trigger tx interrupts as well, if they are pending.
*/
if ((oct != NULL) && (LIO_CN23XX_PF(oct))) {
if (droq != NULL)
lio_write_csr64(oct, droq->pkts_sent_reg,
LIO_CN23XX_INTR_RESEND);
/* we race with firmrware here. */
/* read and write the IN_DONE_CNTS */
else if (iq != NULL) {
instr_cnt = lio_read_csr64(oct, iq->inst_cnt_reg);
lio_write_csr64(oct, iq->inst_cnt_reg,
((instr_cnt & 0xFFFFFFFF00000000ULL) |
LIO_CN23XX_INTR_RESEND));
}
}
}