ae6aefaf57
Major changes: * Finally tracked down the flow control setting that seems to have been causing TX stalls and watchdog timeouts * RX and TX paths now share a lot more code * TX interrupt is no longer used; we instead GC finished tx queue entries at the bottom of the start routine. * TX start now queues fragmented packets directly; it only invokes defrag() for occasional very fragmented packets. * "sysctl dev.cpsw" dumps controller statistics and queue counts * Host Error Interrupt will give extensive debugging information if the controller chokes on the queued data.
2185 lines
59 KiB
C
2185 lines
59 KiB
C
/*-
|
|
* Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* TI Common Platform Ethernet Switch (CPSW) Driver
|
|
* Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
|
|
*
|
|
* This controller is documented in the AM335x Technical Reference
|
|
* Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
|
|
* and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
|
|
*
|
|
* It is basically a single Ethernet port (port 0) wired internally to
|
|
* a 3-port store-and-forward switch connected to two independent
|
|
* "sliver" controllers (port 1 and port 2). You can operate the
|
|
* controller in a variety of different ways by suitably configuring
|
|
* the slivers and the Address Lookup Engine (ALE) that routes packets
|
|
* between the ports.
|
|
*
|
|
* This code was developed and tested on a BeagleBone with
|
|
* an AM335x SoC.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/ethernet.h>
|
|
#include <net/bpf.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/ip.h>
|
|
|
|
#include <sys/sockio.h>
|
|
#include <sys/bus.h>
|
|
#include <machine/bus.h>
|
|
#include <sys/rman.h>
|
|
#include <machine/resource.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/fdt/fdt_common.h>
|
|
#include <dev/ofw/ofw_bus.h>
|
|
#include <dev/ofw/ofw_bus_subr.h>
|
|
|
|
#include "if_cpswreg.h"
|
|
#include "if_cpswvar.h"
|
|
|
|
#include <arm/ti/ti_scm.h>
|
|
|
|
#include "miibus_if.h"
|
|
|
|
/* Device probe/attach/detach. */
|
|
static int cpsw_probe(device_t);
|
|
static void cpsw_init_slots(struct cpsw_softc *);
|
|
static int cpsw_attach(device_t);
|
|
static void cpsw_free_slot(struct cpsw_softc *, struct cpsw_slot *);
|
|
static int cpsw_detach(device_t);
|
|
|
|
/* Device Init/shutdown. */
|
|
static void cpsw_init(void *);
|
|
static void cpsw_init_locked(void *);
|
|
static int cpsw_shutdown(device_t);
|
|
static void cpsw_shutdown_locked(struct cpsw_softc *);
|
|
|
|
/* Device Suspend/Resume. */
|
|
static int cpsw_suspend(device_t);
|
|
static int cpsw_resume(device_t);
|
|
|
|
/* Ioctl. */
|
|
static int cpsw_ioctl(struct ifnet *, u_long command, caddr_t data);
|
|
|
|
static int cpsw_miibus_readreg(device_t, int phy, int reg);
|
|
static int cpsw_miibus_writereg(device_t, int phy, int reg, int value);
|
|
|
|
/* Send/Receive packets. */
|
|
static void cpsw_intr_rx(void *arg);
|
|
static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
|
|
static void cpsw_rx_enqueue(struct cpsw_softc *);
|
|
static void cpsw_start(struct ifnet *);
|
|
static void cpsw_tx_enqueue(struct cpsw_softc *);
|
|
static int cpsw_tx_dequeue(struct cpsw_softc *);
|
|
|
|
/* Misc interrupts and watchdog. */
|
|
static void cpsw_intr_rx_thresh(void *);
|
|
static void cpsw_intr_misc(void *);
|
|
static void cpsw_tick(void *);
|
|
static void cpsw_ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
static int cpsw_ifmedia_upd(struct ifnet *);
|
|
static void cpsw_tx_watchdog(struct cpsw_softc *);
|
|
|
|
/* ALE support */
|
|
static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
|
|
static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
|
|
static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t portmap, uint8_t *mac);
|
|
static int cpsw_ale_update_addresses(struct cpsw_softc *, int purge);
|
|
static void cpsw_ale_dump_table(struct cpsw_softc *);
|
|
|
|
/* Statistics and sysctls. */
|
|
static void cpsw_add_sysctls(struct cpsw_softc *);
|
|
static void cpsw_stats_collect(struct cpsw_softc *);
|
|
static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
|
|
|
|
/*
|
|
* Arbitrary limit on number of segments in an mbuf to be transmitted.
|
|
* Packets with more segments than this will be defragmented before
|
|
* they are queued.
|
|
*/
|
|
#define CPSW_TXFRAGS 8
|
|
|
|
|
|
/*
|
|
* TODO: The CPSW subsystem (CPSW_SS) can drive two independent PHYs
|
|
* as separate Ethernet ports. To properly support this, we should
|
|
* break this into two separate devices: a CPSW_SS device that owns
|
|
* the interrupts and actually talks to the CPSW hardware, and a
|
|
* separate CPSW Ethernet child device for each Ethernet port. The RX
|
|
* interrupt, for example, would be part of CPSW_SS; it would receive
|
|
* a packet, note the input port, and then dispatch it to the child
|
|
* device's interface queue. Similarly for transmit.
|
|
*
|
|
* It's not clear to me whether the device tree should be restructured
|
|
* with a cpsw_ss node and two child nodes. That would allow specifying
|
|
* MAC addresses for each port, for example, but might be overkill.
|
|
*
|
|
* Unfortunately, I don't have hardware right now that supports two
|
|
* Ethernet ports via CPSW.
|
|
*/
|
|
|
|
static device_method_t cpsw_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, cpsw_probe),
|
|
DEVMETHOD(device_attach, cpsw_attach),
|
|
DEVMETHOD(device_detach, cpsw_detach),
|
|
DEVMETHOD(device_shutdown, cpsw_shutdown),
|
|
DEVMETHOD(device_suspend, cpsw_suspend),
|
|
DEVMETHOD(device_resume, cpsw_resume),
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, cpsw_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, cpsw_miibus_writereg),
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t cpsw_driver = {
|
|
"cpsw",
|
|
cpsw_methods,
|
|
sizeof(struct cpsw_softc),
|
|
};
|
|
|
|
static devclass_t cpsw_devclass;
|
|
|
|
DRIVER_MODULE(cpsw, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
|
|
MODULE_DEPEND(cpsw, ether, 1, 1, 1);
|
|
MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
|
|
|
|
static struct resource_spec res_spec[] = {
|
|
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
|
|
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
|
|
{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
|
|
{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
|
|
{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
|
|
{ -1, 0 }
|
|
};
|
|
|
|
/* Number of entries here must match size of stats
|
|
* array in struct cpsw_softc. */
|
|
static struct cpsw_stat {
|
|
int reg;
|
|
char *oid;
|
|
} cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
|
|
{0x00, "GoodRxFrames"},
|
|
{0x04, "BroadcastRxFrames"},
|
|
{0x08, "MulticastRxFrames"},
|
|
{0x0C, "PauseRxFrames"},
|
|
{0x10, "RxCrcErrors"},
|
|
{0x14, "RxAlignErrors"},
|
|
{0x18, "OversizeRxFrames"},
|
|
{0x1c, "RxJabbers"},
|
|
{0x20, "ShortRxFrames"},
|
|
{0x24, "RxFragments"},
|
|
{0x30, "RxOctets"},
|
|
{0x34, "GoodTxFrames"},
|
|
{0x38, "BroadcastTxFrames"},
|
|
{0x3c, "MulticastTxFrames"},
|
|
{0x40, "PauseTxFrames"},
|
|
{0x44, "DeferredTxFrames"},
|
|
{0x48, "CollisionsTxFrames"},
|
|
{0x4c, "SingleCollisionTxFrames"},
|
|
{0x50, "MultipleCollisionTxFrames"},
|
|
{0x54, "ExcessiveCollisions"},
|
|
{0x58, "LateCollisions"},
|
|
{0x5c, "TxUnderrun"},
|
|
{0x60, "CarrierSenseErrors"},
|
|
{0x64, "TxOctets"},
|
|
{0x68, "RxTx64OctetFrames"},
|
|
{0x6c, "RxTx65to127OctetFrames"},
|
|
{0x70, "RxTx128to255OctetFrames"},
|
|
{0x74, "RxTx256to511OctetFrames"},
|
|
{0x78, "RxTx512to1024OctetFrames"},
|
|
{0x7c, "RxTx1024upOctetFrames"},
|
|
{0x80, "NetOctets"},
|
|
{0x84, "RxStartOfFrameOverruns"},
|
|
{0x88, "RxMiddleOfFrameOverruns"},
|
|
{0x8c, "RxDmaOverruns"}
|
|
};
|
|
|
|
/*
|
|
* Basic debug support.
|
|
*/
|
|
|
|
#define IF_DEBUG(sc) if (sc->cpsw_if_flags & IFF_DEBUG)
|
|
|
|
static void
|
|
cpsw_debugf_head(const char *funcname)
|
|
{
|
|
int t = (int)(time_second % (24 * 60 * 60));
|
|
|
|
printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
|
|
}
|
|
|
|
#include <machine/stdarg.h>
|
|
static void
|
|
cpsw_debugf(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
vprintf(fmt, ap);
|
|
va_end(ap);
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
#define CPSW_DEBUGF(a) do { \
|
|
IF_DEBUG(sc) { \
|
|
cpsw_debugf_head(__func__); \
|
|
cpsw_debugf a; \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
/*
|
|
* Locking macros
|
|
*/
|
|
#define CPSW_TX_LOCK(sc) do { \
|
|
mtx_assert(&(sc)->rx.lock, MA_NOTOWNED); \
|
|
mtx_lock(&(sc)->tx.lock); \
|
|
} while (0)
|
|
|
|
#define CPSW_TX_UNLOCK(sc) mtx_unlock(&(sc)->tx.lock)
|
|
#define CPSW_TX_LOCK_ASSERT(sc) mtx_assert(&(sc)->tx.lock, MA_OWNED)
|
|
|
|
#define CPSW_RX_LOCK(sc) do { \
|
|
mtx_assert(&(sc)->tx.lock, MA_NOTOWNED); \
|
|
mtx_lock(&(sc)->rx.lock); \
|
|
} while (0)
|
|
|
|
#define CPSW_RX_UNLOCK(sc) mtx_unlock(&(sc)->rx.lock)
|
|
#define CPSW_RX_LOCK_ASSERT(sc) mtx_assert(&(sc)->rx.lock, MA_OWNED)
|
|
|
|
#define CPSW_GLOBAL_LOCK(sc) do { \
|
|
if ((mtx_owned(&(sc)->tx.lock) ? 1 : 0) != \
|
|
(mtx_owned(&(sc)->rx.lock) ? 1 : 0)) { \
|
|
panic("cpsw deadlock possibility detection!"); \
|
|
} \
|
|
mtx_lock(&(sc)->tx.lock); \
|
|
mtx_lock(&(sc)->rx.lock); \
|
|
} while (0)
|
|
|
|
#define CPSW_GLOBAL_UNLOCK(sc) do { \
|
|
CPSW_RX_UNLOCK(sc); \
|
|
CPSW_TX_UNLOCK(sc); \
|
|
} while (0)
|
|
|
|
#define CPSW_GLOBAL_LOCK_ASSERT(sc) do { \
|
|
CPSW_TX_LOCK_ASSERT(sc); \
|
|
CPSW_RX_LOCK_ASSERT(sc); \
|
|
} while (0)
|
|
|
|
/*
|
|
* Read/Write macros
|
|
*/
|
|
#define cpsw_read_4(sc, reg) bus_read_4(sc->res[0], reg)
|
|
#define cpsw_write_4(sc, reg, val) bus_write_4(sc->res[0], reg, val)
|
|
|
|
#define cpsw_cpdma_bd_offset(i) (CPSW_CPPI_RAM_OFFSET + ((i)*16))
|
|
|
|
#define cpsw_cpdma_bd_paddr(sc, slot) \
|
|
(slot->bd_offset + vtophys(rman_get_start(sc->res[0])))
|
|
#define cpsw_cpdma_read_bd(sc, slot, val) \
|
|
bus_read_region_4(sc->res[0], slot->bd_offset, (uint32_t *) val, 4)
|
|
#define cpsw_cpdma_write_bd(sc, slot, val) \
|
|
bus_write_region_4(sc->res[0], slot->bd_offset, (uint32_t *) val, 4)
|
|
#define cpsw_cpdma_write_bd_next(sc, slot, next_slot) \
|
|
cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
|
|
#define cpsw_cpdma_read_bd_flags(sc, slot) \
|
|
bus_read_2(sc->res[0], slot->bd_offset + 14)
|
|
#define cpsw_write_hdp_slot(sc, queue, slot) \
|
|
cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
|
|
#define CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
|
|
#define cpsw_read_cp(sc, queue) \
|
|
cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
|
|
#define cpsw_write_cp(sc, queue, val) \
|
|
cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
|
|
#define cpsw_write_cp_slot(sc, queue, slot) \
|
|
cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
|
|
|
|
#if 0
|
|
/* XXX temporary function versions for debugging. */
|
|
static void
|
|
cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
|
|
{
|
|
uint32_t reg = queue->hdp_offset;
|
|
uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
|
|
CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
|
|
cpsw_write_4(sc, reg, v);
|
|
}
|
|
|
|
static void
|
|
cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
|
|
{
|
|
uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
|
|
CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
|
|
cpsw_write_cp(sc, queue, v);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Expanded dump routines for verbose debugging.
|
|
*/
|
|
static void
|
|
cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
|
|
{
|
|
static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
|
|
"TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
|
|
"PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
|
|
"Port0"};
|
|
struct cpsw_cpdma_bd bd;
|
|
const char *sep;
|
|
int i;
|
|
|
|
cpsw_cpdma_read_bd(sc, slot, &bd);
|
|
printf("BD Addr: 0x%08x Next: 0x%08x\n", cpsw_cpdma_bd_paddr(sc, slot), bd.next);
|
|
printf(" BufPtr: 0x%08x BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
|
|
printf(" BufOff: 0x%08x PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
|
|
printf(" Flags: ");
|
|
sep = "";
|
|
for (i = 0; i < 16; ++i) {
|
|
if (bd.flags & (1 << (15 - i))) {
|
|
printf("%s%s", sep, flags[i]);
|
|
sep = ",";
|
|
}
|
|
}
|
|
printf("\n");
|
|
if (slot->mbuf) {
|
|
printf(" Ether: %14D\n",
|
|
(char *)(slot->mbuf->m_hdr.mh_data), " ");
|
|
printf(" Packet: %16D\n",
|
|
(char *)(slot->mbuf->m_hdr.mh_data) + 14, " ");
|
|
}
|
|
}
|
|
|
|
#define CPSW_DUMP_SLOT(cs, slot) do { \
|
|
IF_DEBUG(sc) { \
|
|
cpsw_dump_slot(sc, slot); \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
static void
|
|
cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
|
|
{
|
|
struct cpsw_slot *slot;
|
|
int i = 0;
|
|
int others = 0;
|
|
|
|
STAILQ_FOREACH(slot, q, next) {
|
|
if (i > 4)
|
|
++others;
|
|
else
|
|
cpsw_dump_slot(sc, slot);
|
|
++i;
|
|
}
|
|
if (others)
|
|
printf(" ... and %d more.\n", others);
|
|
printf("\n");
|
|
}
|
|
|
|
#define CPSW_DUMP_QUEUE(sc, q) do { \
|
|
IF_DEBUG(sc) { \
|
|
cpsw_dump_queue(sc, q); \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
/*
|
|
*
|
|
* Device Probe, Attach, Detach.
|
|
*
|
|
*/
|
|
|
|
static int
|
|
cpsw_probe(device_t dev)
|
|
{
|
|
|
|
if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
|
|
return (ENXIO);
|
|
|
|
device_set_desc(dev, "3-port Switch Ethernet Subsystem");
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
|
|
|
|
static void
|
|
cpsw_init_slots(struct cpsw_softc *sc)
|
|
{
|
|
struct cpsw_slot *slot;
|
|
int i;
|
|
|
|
STAILQ_INIT(&sc->avail);
|
|
|
|
/* Put the slot descriptors onto the global avail list. */
|
|
for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); i++) {
|
|
slot = &sc->_slots[i];
|
|
slot->bd_offset = cpsw_cpdma_bd_offset(i);
|
|
STAILQ_INSERT_TAIL(&sc->avail, slot, next);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* bind an interrupt, add the relevant info to sc->interrupts
|
|
*/
|
|
static int
|
|
cpsw_attach_interrupt(struct cpsw_softc *sc, struct resource *res, driver_intr_t *handler, const char *description)
|
|
{
|
|
void **pcookie;
|
|
int error;
|
|
|
|
sc->interrupts[sc->interrupt_count].res = res;
|
|
sc->interrupts[sc->interrupt_count].description = description;
|
|
pcookie = &sc->interrupts[sc->interrupt_count].ih_cookie;
|
|
|
|
error = bus_setup_intr(sc->dev, res, INTR_TYPE_NET | INTR_MPSAFE,
|
|
NULL, *handler, sc, pcookie);
|
|
if (error)
|
|
device_printf(sc->dev,
|
|
"could not setup %s\n", description);
|
|
else
|
|
++sc->interrupt_count;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* teardown everything in sc->interrupts.
|
|
*/
|
|
static void
|
|
cpsw_detach_interrupts(struct cpsw_softc *sc)
|
|
{
|
|
int error;
|
|
int i;
|
|
|
|
for (i = 0; i < sizeof(sc->interrupts) / sizeof(sc->interrupts[0]); ++i) {
|
|
if (!sc->interrupts[i].ih_cookie)
|
|
continue;
|
|
error = bus_teardown_intr(sc->dev,
|
|
sc->interrupts[i].res, sc->interrupts[i].ih_cookie);
|
|
if (error)
|
|
device_printf(sc->dev, "could not release %s\n",
|
|
sc->interrupts[i].description);
|
|
sc->interrupts[i].ih_cookie = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
|
|
{
|
|
const int max_slots = sizeof(sc->_slots) / sizeof(sc->_slots[0]);
|
|
struct cpsw_slot *slot;
|
|
int i;
|
|
|
|
if (requested < 0)
|
|
requested = max_slots;
|
|
|
|
for (i = 0; i < requested; ++i) {
|
|
slot = STAILQ_FIRST(&sc->avail);
|
|
if (slot == NULL)
|
|
return (0);
|
|
if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
|
|
if_printf(sc->ifp, "failed to create dmamap\n");
|
|
return (ENOMEM);
|
|
}
|
|
STAILQ_REMOVE_HEAD(&sc->avail, next);
|
|
STAILQ_INSERT_TAIL(&queue->avail, slot, next);
|
|
++queue->avail_queue_len;
|
|
++queue->queue_slots;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cpsw_attach(device_t dev)
|
|
{
|
|
bus_dma_segment_t segs[1];
|
|
struct cpsw_softc *sc = device_get_softc(dev);
|
|
struct mii_softc *miisc;
|
|
struct ifnet *ifp;
|
|
void *phy_sc;
|
|
int error, phy, nsegs;
|
|
uint32_t reg;
|
|
|
|
CPSW_DEBUGF((""));
|
|
|
|
getbinuptime(&sc->attach_uptime);
|
|
sc->dev = dev;
|
|
sc->node = ofw_bus_get_node(dev);
|
|
|
|
/* Get phy address from fdt */
|
|
if (fdt_get_phyaddr(sc->node, sc->dev, &phy, &phy_sc) != 0) {
|
|
device_printf(dev, "failed to get PHY address from FDT\n");
|
|
return (ENXIO);
|
|
}
|
|
/* Initialize mutexes */
|
|
mtx_init(&sc->tx.lock, device_get_nameunit(dev),
|
|
"cpsw TX lock", MTX_DEF);
|
|
mtx_init(&sc->rx.lock, device_get_nameunit(dev),
|
|
"cpsw RX lock", MTX_DEF);
|
|
|
|
/* Allocate IO and IRQ resources */
|
|
error = bus_alloc_resources(dev, res_spec, sc->res);
|
|
if (error) {
|
|
device_printf(dev, "could not allocate resources\n");
|
|
cpsw_detach(dev);
|
|
return (ENXIO);
|
|
}
|
|
|
|
reg = cpsw_read_4(sc, CPSW_SS_IDVER);
|
|
device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
|
|
reg & 0xFF, (reg >> 11) & 0x1F);
|
|
|
|
cpsw_add_sysctls(sc);
|
|
|
|
/* Allocate a busdma tag and DMA safe memory for mbufs. */
|
|
error = bus_dma_tag_create(
|
|
bus_get_dma_tag(sc->dev), /* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filtfunc, filtfuncarg */
|
|
MCLBYTES, CPSW_TXFRAGS, /* maxsize, nsegments */
|
|
MCLBYTES, 0, /* maxsegsz, flags */
|
|
NULL, NULL, /* lockfunc, lockfuncarg */
|
|
&sc->mbuf_dtag); /* dmatag */
|
|
if (error) {
|
|
device_printf(dev, "bus_dma_tag_create failed\n");
|
|
cpsw_detach(dev);
|
|
return (error);
|
|
}
|
|
|
|
/* Allocate network interface */
|
|
ifp = sc->ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "if_alloc() failed\n");
|
|
cpsw_detach(dev);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* Allocate the null mbuf and pre-sync it. */
|
|
sc->null_mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
memset(sc->null_mbuf->m_hdr.mh_data, 0, sc->null_mbuf->m_ext.ext_size);
|
|
bus_dmamap_create(sc->mbuf_dtag, 0, &sc->null_mbuf_dmamap);
|
|
bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, sc->null_mbuf_dmamap,
|
|
sc->null_mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
bus_dmamap_sync(sc->mbuf_dtag, sc->null_mbuf_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
sc->null_mbuf_paddr = segs[0].ds_addr;
|
|
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
|
|
ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
|
|
ifp->if_init = cpsw_init;
|
|
ifp->if_start = cpsw_start;
|
|
ifp->if_ioctl = cpsw_ioctl;
|
|
|
|
cpsw_init_slots(sc);
|
|
|
|
/* Allocate slots to TX and RX queues. */
|
|
STAILQ_INIT(&sc->rx.avail);
|
|
STAILQ_INIT(&sc->rx.active);
|
|
STAILQ_INIT(&sc->tx.avail);
|
|
STAILQ_INIT(&sc->tx.active);
|
|
// For now: 128 slots to TX, rest to RX.
|
|
// XXX TODO: start with 32/64 and grow dynamically based on demand.
|
|
if (cpsw_add_slots(sc, &sc->tx, 128) || cpsw_add_slots(sc, &sc->rx, -1)) {
|
|
device_printf(dev, "failed to allocate dmamaps\n");
|
|
cpsw_detach(dev);
|
|
return (ENOMEM);
|
|
}
|
|
device_printf(dev, "Initial queue size TX=%d RX=%d\n",
|
|
sc->tx.queue_slots, sc->rx.queue_slots);
|
|
|
|
ifp->if_snd.ifq_drv_maxlen = sc->tx.queue_slots;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
|
|
sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
|
|
|
|
/* Get high part of MAC address from control module (mac_id0_hi) */
|
|
/* TODO: Get MAC ID1 as well as MAC ID0. */
|
|
ti_scm_reg_read_4(0x634, ®);
|
|
sc->mac_addr[0] = reg & 0xFF;
|
|
sc->mac_addr[1] = (reg >> 8) & 0xFF;
|
|
sc->mac_addr[2] = (reg >> 16) & 0xFF;
|
|
sc->mac_addr[3] = (reg >> 24) & 0xFF;
|
|
|
|
/* Get low part of MAC address from control module (mac_id0_lo) */
|
|
ti_scm_reg_read_4(0x630, ®);
|
|
sc->mac_addr[4] = reg & 0xFF;
|
|
sc->mac_addr[5] = (reg >> 8) & 0xFF;
|
|
|
|
ether_ifattach(ifp, sc->mac_addr);
|
|
callout_init(&sc->watchdog.callout, 0);
|
|
|
|
/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
|
|
/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
|
|
cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
|
|
|
|
/* Clear ALE */
|
|
cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 30);
|
|
|
|
/* Attach PHY(s) */
|
|
error = mii_attach(dev, &sc->miibus, ifp, cpsw_ifmedia_upd,
|
|
cpsw_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
|
|
if (error) {
|
|
device_printf(dev, "attaching PHYs failed\n");
|
|
cpsw_detach(dev);
|
|
return (error);
|
|
}
|
|
sc->mii = device_get_softc(sc->miibus);
|
|
|
|
/* Tell the MAC where to find the PHY so autoneg works */
|
|
miisc = LIST_FIRST(&sc->mii->mii_phys);
|
|
|
|
/* Select PHY and enable interrupts */
|
|
cpsw_write_4(sc, MDIOUSERPHYSEL0, 1 << 6 | (miisc->mii_phy & 0x1F));
|
|
|
|
/* Note: We don't use sc->res[3] (TX interrupt) */
|
|
if (cpsw_attach_interrupt(sc, sc->res[1],
|
|
cpsw_intr_rx_thresh, "CPSW RX threshold interrupt") ||
|
|
cpsw_attach_interrupt(sc, sc->res[2],
|
|
cpsw_intr_rx, "CPSW RX interrupt") ||
|
|
cpsw_attach_interrupt(sc, sc->res[4],
|
|
cpsw_intr_misc, "CPSW misc interrupt")) {
|
|
cpsw_detach(dev);
|
|
return (ENXIO);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
|
|
{
|
|
int error;
|
|
|
|
if (slot->dmamap) {
|
|
error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
|
|
KASSERT(error == 0, ("Mapping still active"));
|
|
slot->dmamap = NULL;
|
|
}
|
|
if (slot->mbuf) {
|
|
m_freem(slot->mbuf);
|
|
slot->mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
cpsw_detach(device_t dev)
|
|
{
|
|
struct cpsw_softc *sc = device_get_softc(dev);
|
|
int error, i;
|
|
|
|
CPSW_DEBUGF((""));
|
|
|
|
/* Stop controller and free TX queue */
|
|
if (device_is_attached(dev)) {
|
|
ether_ifdetach(sc->ifp);
|
|
CPSW_GLOBAL_LOCK(sc);
|
|
cpsw_shutdown_locked(sc);
|
|
CPSW_GLOBAL_UNLOCK(sc);
|
|
callout_drain(&sc->watchdog.callout);
|
|
}
|
|
|
|
bus_generic_detach(dev);
|
|
device_delete_child(dev, sc->miibus);
|
|
|
|
/* Stop and release all interrupts */
|
|
cpsw_detach_interrupts(sc);
|
|
|
|
/* Free dmamaps and mbufs */
|
|
for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); ++i) {
|
|
cpsw_free_slot(sc, &sc->_slots[i]);
|
|
}
|
|
|
|
/* Free DMA tag */
|
|
error = bus_dma_tag_destroy(sc->mbuf_dtag);
|
|
KASSERT(error == 0, ("Unable to destroy DMA tag"));
|
|
|
|
/* Free IO memory handler */
|
|
bus_release_resources(dev, res_spec, sc->res);
|
|
|
|
/* Destroy mutexes */
|
|
mtx_destroy(&sc->rx.lock);
|
|
mtx_destroy(&sc->tx.lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Init/Shutdown.
|
|
*
|
|
*/
|
|
|
|
static void
|
|
cpsw_reset(struct cpsw_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
/* Reset RMII/RGMII wrapper. */
|
|
cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
|
|
while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
|
|
;
|
|
|
|
/* Disable TX and RX interrupts for all cores. */
|
|
for (i = 0; i < 3; ++i) {
|
|
cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
|
|
cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
|
|
cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
|
|
cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
|
|
}
|
|
|
|
/* Reset CPSW subsystem. */
|
|
cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
|
|
while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
|
|
;
|
|
|
|
/* Reset Sliver port 1 and 2 */
|
|
for (i = 0; i < 2; i++) {
|
|
/* Reset */
|
|
cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
|
|
while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
|
|
;
|
|
}
|
|
|
|
/* Reset DMA controller. */
|
|
cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
|
|
while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
|
|
;
|
|
|
|
/* Disable TX & RX DMA */
|
|
cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
|
|
|
|
/* Clear all queues. */
|
|
for (i = 0; i < 8; i++) {
|
|
cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
|
|
cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
|
|
}
|
|
|
|
/* Clear all interrupt Masks */
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
|
|
cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
|
|
}
|
|
|
|
static void
|
|
cpsw_init(void *arg)
|
|
{
|
|
struct cpsw_softc *sc = arg;
|
|
|
|
CPSW_DEBUGF((""));
|
|
CPSW_GLOBAL_LOCK(sc);
|
|
cpsw_init_locked(arg);
|
|
CPSW_GLOBAL_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
cpsw_init_locked(void *arg)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct cpsw_softc *sc = arg;
|
|
struct cpsw_slot *slot;
|
|
uint32_t i;
|
|
|
|
CPSW_DEBUGF((""));
|
|
ifp = sc->ifp;
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
return;
|
|
|
|
getbinuptime(&sc->init_uptime);
|
|
|
|
/* Reset the controller. */
|
|
cpsw_reset(sc);
|
|
|
|
/* Enable ALE */
|
|
cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 31 | 1 << 4);
|
|
|
|
/* Init Sliver port 1 and 2 */
|
|
for (i = 0; i < 2; i++) {
|
|
/* Set Slave Mapping */
|
|
cpsw_write_4(sc, CPSW_SL_RX_PRI_MAP(i), 0x76543210);
|
|
cpsw_write_4(sc, CPSW_PORT_P_TX_PRI_MAP(i + 1), 0x33221100);
|
|
cpsw_write_4(sc, CPSW_SL_RX_MAXLEN(i), 0x5f2);
|
|
/* Set MACCONTROL for ports 0,1: IFCTL_B(16), IFCTL_A(15),
|
|
GMII_EN(5), FULLDUPLEX(1) */
|
|
/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
|
|
/* Huh? Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
|
|
cpsw_write_4(sc, CPSW_SL_MACCONTROL(i), 1 << 15 | 1 << 5 | 1);
|
|
}
|
|
|
|
/* Set Host Port Mapping */
|
|
cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
|
|
cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
|
|
|
|
/* Initialize ALE: all ports set to forwarding(3), initialize addrs */
|
|
for (i = 0; i < 3; i++)
|
|
cpsw_write_4(sc, CPSW_ALE_PORTCTL(i), 3);
|
|
cpsw_ale_update_addresses(sc, 1);
|
|
|
|
cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
|
|
|
|
/* Enable statistics for ports 0, 1 and 2 */
|
|
cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
|
|
|
|
/* Experiment: Turn off flow control */
|
|
/* This seems to fix the watchdog resets that have plagued
|
|
earlier versions of this driver; I'm not yet sure if there
|
|
are negative effects yet. */
|
|
cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
|
|
|
|
/* Make IP hdr aligned with 4 */
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
|
|
|
|
/* Initialize RX Buffer Descriptors */
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
|
|
|
|
/* Enable TX & RX DMA */
|
|
cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
|
|
|
|
/* Enable Interrupts for core 0 */
|
|
cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
|
|
cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
|
|
cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x3F);
|
|
|
|
/* Enable host Error Interrupt */
|
|
cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
|
|
|
|
/* Enable interrupts for RX Channel 0 */
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET, 1);
|
|
|
|
/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
|
|
/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
|
|
cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
|
|
|
|
/* Select MII in GMII_SEL, Internal Delay mode */
|
|
//ti_scm_reg_write_4(0x650, 0);
|
|
|
|
/* Initialize active queues. */
|
|
slot = STAILQ_FIRST(&sc->tx.active);
|
|
if (slot != NULL)
|
|
cpsw_write_hdp_slot(sc, &sc->tx, slot);
|
|
slot = STAILQ_FIRST(&sc->rx.active);
|
|
if (slot != NULL)
|
|
cpsw_write_hdp_slot(sc, &sc->rx, slot);
|
|
cpsw_rx_enqueue(sc);
|
|
|
|
/* Activate network interface */
|
|
sc->rx.running = 1;
|
|
sc->tx.running = 1;
|
|
sc->watchdog.timer = 0;
|
|
callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
|
|
sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
}
|
|
|
|
static int
|
|
cpsw_shutdown(device_t dev)
|
|
{
|
|
struct cpsw_softc *sc = device_get_softc(dev);
|
|
|
|
CPSW_DEBUGF((""));
|
|
CPSW_GLOBAL_LOCK(sc);
|
|
cpsw_shutdown_locked(sc);
|
|
CPSW_GLOBAL_UNLOCK(sc);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
cpsw_rx_teardown_locked(struct cpsw_softc *sc)
|
|
{
|
|
struct mbuf *received, *next;
|
|
int i = 0;
|
|
|
|
CPSW_DEBUGF(("starting RX teardown"));
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
|
|
for (;;) {
|
|
received = cpsw_rx_dequeue(sc);
|
|
CPSW_GLOBAL_UNLOCK(sc);
|
|
while (received != NULL) {
|
|
next = received->m_nextpkt;
|
|
received->m_nextpkt = NULL;
|
|
(*sc->ifp->if_input)(sc->ifp, received);
|
|
received = next;
|
|
}
|
|
CPSW_GLOBAL_LOCK(sc);
|
|
if (!sc->rx.running) {
|
|
CPSW_DEBUGF(("finished RX teardown (%d retries)", i));
|
|
return;
|
|
}
|
|
if (++i > 10) {
|
|
if_printf(sc->ifp, "Unable to cleanly shutdown receiver\n");
|
|
return;
|
|
}
|
|
DELAY(10);
|
|
}
|
|
}
|
|
|
|
static void
|
|
cpsw_tx_teardown_locked(struct cpsw_softc *sc)
|
|
{
|
|
int i = 0;
|
|
|
|
CPSW_DEBUGF(("starting TX teardown"));
|
|
cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
|
|
cpsw_tx_dequeue(sc);
|
|
while (sc->tx.running && ++i < 10) {
|
|
DELAY(10);
|
|
cpsw_tx_dequeue(sc);
|
|
}
|
|
if (sc->tx.running)
|
|
if_printf(sc->ifp, "Unable to cleanly shutdown transmitter\n");
|
|
CPSW_DEBUGF(("finished TX teardown (%d retries, %d idle buffers)",
|
|
i, sc->tx.active_queue_len));
|
|
}
|
|
|
|
static void
|
|
cpsw_shutdown_locked(struct cpsw_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
CPSW_DEBUGF((""));
|
|
CPSW_GLOBAL_LOCK_ASSERT(sc);
|
|
ifp = sc->ifp;
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
return;
|
|
|
|
/* Disable interface */
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
|
|
/* Stop ticker */
|
|
callout_stop(&sc->watchdog.callout);
|
|
|
|
/* Tear down the RX/TX queues. */
|
|
cpsw_rx_teardown_locked(sc);
|
|
cpsw_tx_teardown_locked(sc);
|
|
|
|
/* Capture stats before we reset controller. */
|
|
cpsw_stats_collect(sc);
|
|
|
|
cpsw_reset(sc);
|
|
}
|
|
|
|
/*
|
|
* Suspend/Resume.
|
|
*/
|
|
|
|
static int
|
|
cpsw_suspend(device_t dev)
|
|
{
|
|
struct cpsw_softc *sc = device_get_softc(dev);
|
|
|
|
CPSW_DEBUGF((""));
|
|
CPSW_GLOBAL_LOCK(sc);
|
|
cpsw_shutdown_locked(sc);
|
|
CPSW_GLOBAL_UNLOCK(sc);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cpsw_resume(device_t dev)
|
|
{
|
|
struct cpsw_softc *sc = device_get_softc(dev);
|
|
|
|
CPSW_DEBUGF(("UNIMPLEMENTED"));
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* IOCTL
|
|
*
|
|
*/
|
|
|
|
static void
|
|
cpsw_set_promisc(struct cpsw_softc *sc, int set)
|
|
{
|
|
/*
|
|
* Enabling promiscuous mode requires two bits of work: First,
|
|
* ALE_BYPASS needs to be enabled. That disables the ALE
|
|
* forwarding logic and causes every packet to be sent to the
|
|
* host port. That makes us promiscuous wrt received packets.
|
|
*
|
|
* With ALE forwarding disabled, the transmitter needs to set
|
|
* an explicit output port on every packet to route it to the
|
|
* correct egress. This should be doable for systems such as
|
|
* BeagleBone where only one egress port is actually wired to
|
|
* a PHY. If you have both egress ports wired up, life gets a
|
|
* lot more interesting.
|
|
*
|
|
* Hmmm.... NetBSD driver uses ALE_BYPASS always and doesn't
|
|
* seem to set explicit egress ports. Does that mean they
|
|
* are always promiscuous?
|
|
*/
|
|
if (set) {
|
|
printf("Promiscuous mode unimplemented\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
cpsw_set_allmulti(struct cpsw_softc *sc, int set)
|
|
{
|
|
if (set) {
|
|
printf("All-multicast mode unimplemented\n");
|
|
}
|
|
}
|
|
|
|
static int
|
|
cpsw_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct cpsw_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int error;
|
|
uint32_t changed;
|
|
|
|
error = 0;
|
|
|
|
switch (command) {
|
|
case SIOCSIFFLAGS:
|
|
CPSW_GLOBAL_LOCK(sc);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
changed = ifp->if_flags ^ sc->cpsw_if_flags;
|
|
CPSW_DEBUGF(("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)", changed));
|
|
if (changed & IFF_PROMISC)
|
|
cpsw_set_promisc(sc,
|
|
ifp->if_flags & IFF_PROMISC);
|
|
if (changed & IFF_ALLMULTI)
|
|
cpsw_set_allmulti(sc,
|
|
ifp->if_flags & IFF_ALLMULTI);
|
|
} else {
|
|
CPSW_DEBUGF(("SIOCSIFFLAGS: UP but not RUNNING; starting up"));
|
|
cpsw_init_locked(sc);
|
|
}
|
|
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
CPSW_DEBUGF(("SIOCSIFFLAGS: not UP but RUNNING; shutting down"));
|
|
cpsw_shutdown_locked(sc);
|
|
}
|
|
|
|
sc->cpsw_if_flags = ifp->if_flags;
|
|
CPSW_GLOBAL_UNLOCK(sc);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
cpsw_ale_update_addresses(sc, 0);
|
|
break;
|
|
case SIOCDELMULTI:
|
|
/* Ugh. DELMULTI doesn't provide the specific address
|
|
being removed, so the best we can do is remove
|
|
everything and rebuild it all. */
|
|
cpsw_ale_update_addresses(sc, 1);
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* MIIBUS
|
|
*
|
|
*/
|
|
static int
|
|
cpsw_miibus_ready(struct cpsw_softc *sc)
|
|
{
|
|
uint32_t r, retries = CPSW_MIIBUS_RETRIES;
|
|
|
|
while (--retries) {
|
|
r = cpsw_read_4(sc, MDIOUSERACCESS0);
|
|
if ((r & 1 << 31) == 0)
|
|
return 1;
|
|
DELAY(CPSW_MIIBUS_DELAY);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cpsw_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct cpsw_softc *sc = device_get_softc(dev);
|
|
uint32_t cmd, r;
|
|
|
|
if (!cpsw_miibus_ready(sc)) {
|
|
device_printf(dev, "MDIO not ready to read\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Set GO, reg, phy */
|
|
cmd = 1 << 31 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
|
|
cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
|
|
|
|
if (!cpsw_miibus_ready(sc)) {
|
|
device_printf(dev, "MDIO timed out during read\n");
|
|
return 0;
|
|
}
|
|
|
|
r = cpsw_read_4(sc, MDIOUSERACCESS0);
|
|
if((r & 1 << 29) == 0) {
|
|
device_printf(dev, "Failed to read from PHY.\n");
|
|
r = 0;
|
|
}
|
|
return (r & 0xFFFF);
|
|
}
|
|
|
|
static int
|
|
cpsw_miibus_writereg(device_t dev, int phy, int reg, int value)
|
|
{
|
|
struct cpsw_softc *sc = device_get_softc(dev);
|
|
uint32_t cmd;
|
|
|
|
if (!cpsw_miibus_ready(sc)) {
|
|
device_printf(dev, "MDIO not ready to write\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Set GO, WRITE, reg, phy, and value */
|
|
cmd = 3 << 30 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16
|
|
| (value & 0xFFFF);
|
|
cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
|
|
|
|
if (!cpsw_miibus_ready(sc)) {
|
|
device_printf(dev, "MDIO timed out during write\n");
|
|
return 0;
|
|
}
|
|
|
|
if((cpsw_read_4(sc, MDIOUSERACCESS0) & (1 << 29)) == 0)
|
|
device_printf(dev, "Failed to write to PHY.\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Transmit/Receive Packets.
|
|
*
|
|
*/
|
|
|
|
|
|
static void
|
|
cpsw_intr_rx(void *arg)
|
|
{
|
|
struct cpsw_softc *sc = arg;
|
|
struct mbuf *received, *next;
|
|
|
|
CPSW_RX_LOCK(sc);
|
|
received = cpsw_rx_dequeue(sc);
|
|
cpsw_rx_enqueue(sc);
|
|
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
|
|
CPSW_RX_UNLOCK(sc);
|
|
|
|
while (received != NULL) {
|
|
next = received->m_nextpkt;
|
|
received->m_nextpkt = NULL;
|
|
(*sc->ifp->if_input)(sc->ifp, received);
|
|
received = next;
|
|
}
|
|
}
|
|
|
|
static struct mbuf *
|
|
cpsw_rx_dequeue(struct cpsw_softc *sc)
|
|
{
|
|
struct cpsw_cpdma_bd bd;
|
|
struct cpsw_slot *slot;
|
|
struct ifnet *ifp;
|
|
struct mbuf *mb_head, *mb_tail;
|
|
int removed = 0;
|
|
|
|
ifp = sc->ifp;
|
|
mb_head = mb_tail = NULL;
|
|
|
|
/* Pull completed packets off hardware RX queue. */
|
|
while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
|
|
cpsw_cpdma_read_bd(sc, slot, &bd);
|
|
if (bd.flags & CPDMA_BD_OWNER)
|
|
break; /* Still in use by hardware */
|
|
|
|
CPSW_DEBUGF(("Removing received packet from RX queue"));
|
|
++removed;
|
|
STAILQ_REMOVE_HEAD(&sc->rx.active, next);
|
|
STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
|
|
|
|
bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
|
|
|
|
if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
|
|
CPSW_DEBUGF(("RX teardown in progress"));
|
|
m_freem(slot->mbuf);
|
|
slot->mbuf = NULL;
|
|
cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
|
|
sc->rx.running = 0;
|
|
break;
|
|
}
|
|
|
|
cpsw_write_cp_slot(sc, &sc->rx, slot);
|
|
|
|
/* Set up mbuf */
|
|
/* TODO: track SOP/EOP bits to assemble a full mbuf
|
|
out of received fragments. */
|
|
slot->mbuf->m_hdr.mh_data += bd.bufoff;
|
|
slot->mbuf->m_hdr.mh_len = bd.pktlen - 4;
|
|
slot->mbuf->m_pkthdr.len = bd.pktlen - 4;
|
|
slot->mbuf->m_flags |= M_PKTHDR;
|
|
slot->mbuf->m_pkthdr.rcvif = ifp;
|
|
slot->mbuf->m_nextpkt = NULL;
|
|
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
|
|
/* check for valid CRC by looking into pkt_err[5:4] */
|
|
if ((bd.flags & CPDMA_BD_PKT_ERR_MASK) == 0) {
|
|
slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
|
|
slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
slot->mbuf->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
}
|
|
|
|
/* Add mbuf to packet list to be returned. */
|
|
if (mb_tail) {
|
|
mb_tail->m_nextpkt = slot->mbuf;
|
|
} else {
|
|
mb_head = slot->mbuf;
|
|
}
|
|
mb_tail = slot->mbuf;
|
|
slot->mbuf = NULL;
|
|
}
|
|
|
|
if (removed != 0) {
|
|
sc->rx.queue_removes += removed;
|
|
sc->rx.active_queue_len -= removed;
|
|
sc->rx.avail_queue_len += removed;
|
|
if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
|
|
sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
|
|
}
|
|
return (mb_head);
|
|
}
|
|
|
|
static void
|
|
cpsw_rx_enqueue(struct cpsw_softc *sc)
|
|
{
|
|
bus_dma_segment_t seg[1];
|
|
struct cpsw_cpdma_bd bd;
|
|
struct ifnet *ifp = sc->ifp;
|
|
struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
|
|
struct cpsw_slot *slot, *prev_slot = NULL;
|
|
struct cpsw_slot *last_old_slot, *first_new_slot;
|
|
int error, nsegs, added = 0;
|
|
|
|
/* Register new mbufs with hardware. */
|
|
while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
|
|
if (slot->mbuf == NULL) {
|
|
slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
if (slot->mbuf == NULL) {
|
|
if_printf(sc->ifp, "Unable to fill RX queue\n");
|
|
break;
|
|
}
|
|
slot->mbuf->m_len =
|
|
slot->mbuf->m_pkthdr.len =
|
|
slot->mbuf->m_ext.ext_size;
|
|
}
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
|
|
slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
|
|
|
|
KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
|
|
KASSERT(error == 0, ("DMA error (error=%d)", error));
|
|
if (error != 0 || nsegs != 1) {
|
|
if_printf(ifp,
|
|
"%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
|
|
__func__, nsegs, error);
|
|
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
|
|
m_freem(slot->mbuf);
|
|
slot->mbuf = NULL;
|
|
break;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
|
|
|
|
/* Create and submit new rx descriptor*/
|
|
bd.next = 0;
|
|
bd.bufptr = seg->ds_addr;
|
|
bd.bufoff = 0;
|
|
bd.buflen = MCLBYTES - 1;
|
|
bd.pktlen = bd.buflen;
|
|
bd.flags = CPDMA_BD_OWNER;
|
|
cpsw_cpdma_write_bd(sc, slot, &bd);
|
|
++added;
|
|
|
|
if (prev_slot != NULL)
|
|
cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
|
|
prev_slot = slot;
|
|
STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
|
|
sc->rx.avail_queue_len--;
|
|
STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
|
|
}
|
|
|
|
if (added == 0)
|
|
return;
|
|
|
|
CPSW_DEBUGF(("Adding %d buffers to RX queue", added));
|
|
|
|
/* Link new entries to hardware RX queue. */
|
|
last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
|
|
first_new_slot = STAILQ_FIRST(&tmpqueue);
|
|
STAILQ_CONCAT(&sc->rx.active, &tmpqueue);
|
|
if (first_new_slot == NULL) {
|
|
return;
|
|
} else if (last_old_slot == NULL) {
|
|
/* Start a fresh queue. */
|
|
cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
|
|
} else {
|
|
/* Add buffers to end of current queue. */
|
|
cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
|
|
/* If underrun, restart queue. */
|
|
if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
|
|
cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
|
|
}
|
|
}
|
|
sc->rx.queue_adds += added;
|
|
sc->rx.active_queue_len += added;
|
|
if (sc->rx.active_queue_len > sc->rx.max_active_queue_len) {
|
|
sc->rx.max_active_queue_len = sc->rx.active_queue_len;
|
|
}
|
|
}
|
|
|
|
static void
|
|
cpsw_start(struct ifnet *ifp)
|
|
{
|
|
struct cpsw_softc *sc = ifp->if_softc;
|
|
|
|
CPSW_TX_LOCK(sc);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && sc->tx.running) {
|
|
cpsw_tx_enqueue(sc);
|
|
cpsw_tx_dequeue(sc);
|
|
}
|
|
CPSW_TX_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
cpsw_tx_enqueue(struct cpsw_softc *sc)
|
|
{
|
|
bus_dma_segment_t segs[CPSW_TXFRAGS];
|
|
struct cpsw_cpdma_bd bd;
|
|
struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
|
|
struct cpsw_slot *slot, *prev_slot = NULL;
|
|
struct cpsw_slot *last_old_slot, *first_new_slot;
|
|
struct mbuf *m0;
|
|
int error, nsegs, seg, added = 0, padlen;
|
|
|
|
/* Pull pending packets from IF queue and prep them for DMA. */
|
|
while ((slot = STAILQ_FIRST(&sc->tx.avail)) != NULL) {
|
|
IF_DEQUEUE(&sc->ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
|
|
slot->mbuf = m0;
|
|
padlen = ETHER_MIN_LEN - slot->mbuf->m_pkthdr.len;
|
|
if (padlen < 0)
|
|
padlen = 0;
|
|
|
|
/* Create mapping in DMA memory */
|
|
error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
|
|
slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
/* If the packet is too fragmented, try to simplify. */
|
|
if (error == EFBIG ||
|
|
(error == 0 &&
|
|
nsegs + (padlen > 0 ? 1 : 0) > sc->tx.avail_queue_len)) {
|
|
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
|
|
if (padlen > 0) /* May as well add padding. */
|
|
m_append(slot->mbuf, padlen,
|
|
sc->null_mbuf->m_hdr.mh_data);
|
|
m0 = m_defrag(slot->mbuf, M_NOWAIT);
|
|
if (m0 == NULL) {
|
|
if_printf(sc->ifp,
|
|
"Can't defragment packet; dropping\n");
|
|
m_freem(slot->mbuf);
|
|
} else {
|
|
CPSW_DEBUGF(("Requeueing defragmented packet"));
|
|
IF_PREPEND(&sc->ifp->if_snd, m0);
|
|
}
|
|
slot->mbuf = NULL;
|
|
continue;
|
|
}
|
|
if (error != 0) {
|
|
if_printf(sc->ifp,
|
|
"%s: Can't setup DMA (error=%d), dropping packet\n",
|
|
__func__, error);
|
|
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
|
|
m_freem(slot->mbuf);
|
|
slot->mbuf = NULL;
|
|
break;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
|
|
CPSW_DEBUGF(("Queueing TX packet: %d segments + %d pad bytes",
|
|
nsegs, padlen));
|
|
|
|
/* If there is only one segment, the for() loop
|
|
* gets skipped and the single buffer gets set up
|
|
* as both SOP and EOP. */
|
|
/* Start by setting up the first buffer */
|
|
bd.next = 0;
|
|
bd.bufptr = segs[0].ds_addr;
|
|
bd.bufoff = 0;
|
|
bd.buflen = segs[0].ds_len;
|
|
bd.pktlen = m_length(slot->mbuf, NULL) + padlen;
|
|
bd.flags = CPDMA_BD_SOP | CPDMA_BD_OWNER;
|
|
for (seg = 1; seg < nsegs; ++seg) {
|
|
/* Save the previous buffer (which isn't EOP) */
|
|
cpsw_cpdma_write_bd(sc, slot, &bd);
|
|
if (prev_slot != NULL)
|
|
cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
|
|
prev_slot = slot;
|
|
STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
|
|
sc->tx.avail_queue_len--;
|
|
STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
|
|
++added;
|
|
slot = STAILQ_FIRST(&sc->tx.avail);
|
|
|
|
/* Setup next buffer (which isn't SOP) */
|
|
bd.next = 0;
|
|
bd.bufptr = segs[seg].ds_addr;
|
|
bd.bufoff = 0;
|
|
bd.buflen = segs[seg].ds_len;
|
|
bd.pktlen = 0;
|
|
bd.flags = CPDMA_BD_OWNER;
|
|
}
|
|
/* Save the final buffer. */
|
|
if (padlen <= 0)
|
|
bd.flags |= CPDMA_BD_EOP;
|
|
cpsw_cpdma_write_bd(sc, slot, &bd);
|
|
if (prev_slot != NULL)
|
|
cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
|
|
prev_slot = slot;
|
|
STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
|
|
sc->tx.avail_queue_len--;
|
|
STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
|
|
++added;
|
|
|
|
if (padlen > 0) {
|
|
slot = STAILQ_FIRST(&sc->tx.avail);
|
|
STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
|
|
sc->tx.avail_queue_len--;
|
|
STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
|
|
++added;
|
|
|
|
/* Setup buffer of null pad bytes (definitely EOP) */
|
|
cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
|
|
prev_slot = slot;
|
|
bd.next = 0;
|
|
bd.bufptr = sc->null_mbuf_paddr;
|
|
bd.bufoff = 0;
|
|
bd.buflen = padlen;
|
|
bd.pktlen = 0;
|
|
bd.flags = CPDMA_BD_EOP | CPDMA_BD_OWNER;
|
|
cpsw_cpdma_write_bd(sc, slot, &bd);
|
|
++nsegs;
|
|
}
|
|
|
|
if (nsegs > sc->tx.longest_chain)
|
|
sc->tx.longest_chain = nsegs;
|
|
|
|
// TODO: Should we defer the BPF tap until
|
|
// after all packets are queued?
|
|
BPF_MTAP(sc->ifp, m0);
|
|
}
|
|
|
|
/* Attach the list of new buffers to the hardware TX queue. */
|
|
last_old_slot = STAILQ_LAST(&sc->tx.active, cpsw_slot, next);
|
|
first_new_slot = STAILQ_FIRST(&tmpqueue);
|
|
STAILQ_CONCAT(&sc->tx.active, &tmpqueue);
|
|
if (first_new_slot == NULL) {
|
|
return;
|
|
} else if (last_old_slot == NULL) {
|
|
/* Start a fresh queue. */
|
|
cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
|
|
} else {
|
|
/* Add buffers to end of current queue. */
|
|
cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
|
|
/* If underrun, restart queue. */
|
|
if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
|
|
cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
|
|
}
|
|
}
|
|
sc->tx.queue_adds += added;
|
|
sc->tx.active_queue_len += added;
|
|
if (sc->tx.active_queue_len > sc->tx.max_active_queue_len) {
|
|
sc->tx.max_active_queue_len = sc->tx.active_queue_len;
|
|
}
|
|
}
|
|
|
|
static int
|
|
cpsw_tx_dequeue(struct cpsw_softc *sc)
|
|
{
|
|
struct cpsw_slot *slot, *last_removed_slot = NULL;
|
|
uint32_t flags, removed = 0;
|
|
|
|
slot = STAILQ_FIRST(&sc->tx.active);
|
|
if (slot == NULL && cpsw_read_cp(sc, &sc->tx) == 0xfffffffc) {
|
|
CPSW_DEBUGF(("TX teardown of an empty queue"));
|
|
cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
|
|
sc->tx.running = 0;
|
|
return (0);
|
|
}
|
|
|
|
/* Pull completed buffers off the hardware TX queue. */
|
|
while (slot != NULL) {
|
|
flags = cpsw_cpdma_read_bd_flags(sc, slot);
|
|
if (flags & CPDMA_BD_OWNER)
|
|
break; /* Hardware is still using this packet. */
|
|
|
|
CPSW_DEBUGF(("TX removing completed packet"));
|
|
bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
|
|
m_freem(slot->mbuf);
|
|
slot->mbuf = NULL;
|
|
|
|
/* Dequeue any additional buffers used by this packet. */
|
|
while (slot != NULL && slot->mbuf == NULL) {
|
|
STAILQ_REMOVE_HEAD(&sc->tx.active, next);
|
|
STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
|
|
++removed;
|
|
last_removed_slot = slot;
|
|
slot = STAILQ_FIRST(&sc->tx.active);
|
|
}
|
|
|
|
/* TearDown complete is only marked on the SOP for the packet. */
|
|
if (flags & CPDMA_BD_TDOWNCMPLT) {
|
|
CPSW_DEBUGF(("TX teardown in progress"));
|
|
cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
|
|
// TODO: Increment a count of dropped TX packets
|
|
sc->tx.running = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (removed != 0) {
|
|
cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
|
|
sc->tx.queue_removes += removed;
|
|
sc->tx.active_queue_len -= removed;
|
|
sc->tx.avail_queue_len += removed;
|
|
if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
|
|
sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
|
|
}
|
|
return (removed);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Miscellaneous interrupts.
|
|
*
|
|
*/
|
|
|
|
static void
|
|
cpsw_intr_rx_thresh(void *arg)
|
|
{
|
|
struct cpsw_softc *sc = arg;
|
|
uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_RX_THRESH_STAT(0));
|
|
|
|
CPSW_DEBUGF(("stat=%x", stat));
|
|
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
|
|
}
|
|
|
|
static void
|
|
cpsw_intr_misc_host_error(struct cpsw_softc *sc)
|
|
{
|
|
uint32_t intstat;
|
|
uint32_t dmastat;
|
|
int txerr, rxerr, txchan, rxchan;
|
|
|
|
printf("\n\n");
|
|
device_printf(sc->dev,
|
|
"HOST ERROR: PROGRAMMING ERROR DETECTED BY HARDWARE\n");
|
|
printf("\n\n");
|
|
intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
|
|
device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
|
|
dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
|
|
device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
|
|
|
|
txerr = (dmastat >> 20) & 15;
|
|
txchan = (dmastat >> 16) & 7;
|
|
rxerr = (dmastat >> 12) & 15;
|
|
rxchan = (dmastat >> 8) & 7;
|
|
|
|
switch (txerr) {
|
|
case 0: break;
|
|
case 1: printf("SOP error on TX channel %d\n", txchan);
|
|
break;
|
|
case 2: printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
|
|
break;
|
|
case 3: printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
|
|
break;
|
|
case 4: printf("Zero Buffer Pointer on TX channel %d\n", txchan);
|
|
break;
|
|
case 5: printf("Zero Buffer Length on TX channel %d\n", txchan);
|
|
break;
|
|
case 6: printf("Packet length error on TX channel %d\n", txchan);
|
|
break;
|
|
default: printf("Unknown error on TX channel %d\n", txchan);
|
|
break;
|
|
}
|
|
|
|
if (txerr != 0) {
|
|
printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
|
|
txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
|
|
printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
|
|
txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
|
|
cpsw_dump_queue(sc, &sc->tx.active);
|
|
}
|
|
|
|
switch (rxerr) {
|
|
case 0: break;
|
|
case 2: printf("Ownership bit not set on RX channel %d\n", rxchan);
|
|
break;
|
|
case 4: printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
|
|
break;
|
|
case 5: printf("Zero Buffer Length on RX channel %d\n", rxchan);
|
|
break;
|
|
case 6: printf("Buffer offset too big on RX channel %d\n", rxchan);
|
|
break;
|
|
default: printf("Unknown RX error on RX channel %d\n", rxchan);
|
|
break;
|
|
}
|
|
|
|
if (rxerr != 0) {
|
|
printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
|
|
rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
|
|
printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
|
|
rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
|
|
cpsw_dump_queue(sc, &sc->rx.active);
|
|
}
|
|
|
|
printf("\nALE Table\n");
|
|
cpsw_ale_dump_table(sc);
|
|
|
|
// XXX do something useful here??
|
|
panic("CPSW HOST ERROR INTERRUPT");
|
|
|
|
// Suppress this interrupt in the future.
|
|
cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
|
|
printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
|
|
// The watchdog will probably reset the controller
|
|
// in a little while. It will probably fail again.
|
|
}
|
|
|
|
static void
|
|
cpsw_intr_misc(void *arg)
|
|
{
|
|
struct cpsw_softc *sc = arg;
|
|
uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
|
|
|
|
if (stat & 16)
|
|
CPSW_DEBUGF(("Time sync event interrupt unimplemented"));
|
|
if (stat & 8)
|
|
cpsw_stats_collect(sc);
|
|
if (stat & 4)
|
|
cpsw_intr_misc_host_error(sc);
|
|
if (stat & 2)
|
|
CPSW_DEBUGF(("MDIO link change interrupt unimplemented"));
|
|
if (stat & 1)
|
|
CPSW_DEBUGF(("MDIO operation completed interrupt unimplemented"));
|
|
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Periodic Checks and Watchdog.
|
|
*
|
|
*/
|
|
|
|
static void
|
|
cpsw_tick(void *msc)
|
|
{
|
|
struct cpsw_softc *sc = msc;
|
|
|
|
/* Check for TX timeout */
|
|
cpsw_tx_watchdog(sc);
|
|
|
|
/* Check for media type change */
|
|
mii_tick(sc->mii);
|
|
if(sc->cpsw_media_status != sc->mii->mii_media.ifm_media) {
|
|
printf("%s: media type changed (ifm_media=%x)\n", __func__,
|
|
sc->mii->mii_media.ifm_media);
|
|
cpsw_ifmedia_upd(sc->ifp);
|
|
}
|
|
|
|
/* Schedule another timeout one second from now */
|
|
callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
|
|
}
|
|
|
|
static void
|
|
cpsw_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct cpsw_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii;
|
|
|
|
CPSW_DEBUGF((""));
|
|
CPSW_TX_LOCK(sc);
|
|
|
|
mii = sc->mii;
|
|
mii_pollstat(mii);
|
|
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
|
|
CPSW_TX_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
cpsw_ifmedia_upd(struct ifnet *ifp)
|
|
{
|
|
struct cpsw_softc *sc = ifp->if_softc;
|
|
|
|
CPSW_DEBUGF((""));
|
|
if (ifp->if_flags & IFF_UP) {
|
|
CPSW_GLOBAL_LOCK(sc);
|
|
sc->cpsw_media_status = sc->mii->mii_media.ifm_media;
|
|
mii_mediachg(sc->mii);
|
|
cpsw_init_locked(sc);
|
|
CPSW_GLOBAL_UNLOCK(sc);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
|
|
{
|
|
cpsw_debugf_head("CPSW watchdog");
|
|
if_printf(sc->ifp, "watchdog timeout\n");
|
|
cpsw_shutdown_locked(sc);
|
|
cpsw_init_locked(sc);
|
|
}
|
|
|
|
static void
|
|
cpsw_tx_watchdog(struct cpsw_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
|
|
CPSW_GLOBAL_LOCK(sc);
|
|
if (sc->tx.active_queue_len == 0 || (ifp->if_flags & IFF_UP) == 0 ||
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || !sc->tx.running) {
|
|
sc->watchdog.timer = 0; /* Nothing to do. */
|
|
} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
|
|
sc->watchdog.timer = 0; /* Stuff done while we weren't looking. */
|
|
} else if (cpsw_tx_dequeue(sc) > 0) {
|
|
sc->watchdog.timer = 0; /* We just did something. */
|
|
} else {
|
|
/* There was something to do but it didn't get done. */
|
|
++sc->watchdog.timer;
|
|
if (sc->watchdog.timer > 2) {
|
|
sc->watchdog.timer = 0;
|
|
++ifp->if_oerrors;
|
|
++sc->watchdog.resets;
|
|
cpsw_tx_watchdog_full_reset(sc);
|
|
}
|
|
}
|
|
sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
|
|
CPSW_GLOBAL_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ALE support routines.
|
|
*
|
|
*/
|
|
|
|
static void
|
|
cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
|
|
{
|
|
cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
|
|
ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
|
|
ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
|
|
ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
|
|
}
|
|
|
|
static void
|
|
cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
|
|
{
|
|
cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
|
|
cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
|
|
cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
|
|
cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
|
|
}
|
|
|
|
static int
|
|
cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
|
|
{
|
|
int i;
|
|
uint32_t ale_entry[3];
|
|
|
|
/* First two entries are link address and broadcast. */
|
|
for (i = 2; i < CPSW_MAX_ALE_ENTRIES; i++) {
|
|
cpsw_ale_read_entry(sc, i, ale_entry);
|
|
if (((ale_entry[1] >> 28) & 3) == 1 && /* Address entry */
|
|
((ale_entry[1] >> 8) & 1) == 1) { /* MCast link addr */
|
|
ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
|
|
cpsw_ale_write_entry(sc, i, ale_entry);
|
|
}
|
|
}
|
|
return CPSW_MAX_ALE_ENTRIES;
|
|
}
|
|
|
|
static int
|
|
cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, uint8_t *mac)
|
|
{
|
|
int free_index = -1, matching_index = -1, i;
|
|
uint32_t ale_entry[3];
|
|
|
|
/* Find a matching entry or a free entry. */
|
|
for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
|
|
cpsw_ale_read_entry(sc, i, ale_entry);
|
|
|
|
/* Entry Type[61:60] is 0 for free entry */
|
|
if (free_index < 0 && ((ale_entry[1] >> 28) & 3) == 0) {
|
|
free_index = i;
|
|
}
|
|
|
|
if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
|
|
(((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
|
|
(((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
|
|
(((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
|
|
(((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
|
|
(((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
|
|
matching_index = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (matching_index < 0) {
|
|
if (free_index < 0)
|
|
return (ENOMEM);
|
|
i = free_index;
|
|
}
|
|
|
|
/* Set MAC address */
|
|
ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
|
|
ale_entry[1] = mac[0] << 8 | mac[1];
|
|
|
|
/* Entry type[61:60] is addr entry(1), Mcast fwd state[63:62] is fw(3)*/
|
|
ale_entry[1] |= 0xd0 << 24;
|
|
|
|
/* Set portmask [68:66] */
|
|
ale_entry[2] = (portmap & 7) << 2;
|
|
|
|
cpsw_ale_write_entry(sc, i, ale_entry);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
cpsw_ale_dump_table(struct cpsw_softc *sc) {
|
|
int i;
|
|
uint32_t ale_entry[3];
|
|
for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
|
|
cpsw_ale_read_entry(sc, i, ale_entry);
|
|
if (ale_entry[0] || ale_entry[1] || ale_entry[2]) {
|
|
printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[0],
|
|
ale_entry[1], ale_entry[2]);
|
|
printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
|
|
(ale_entry[1] >> 8) & 0xFF,
|
|
(ale_entry[1] >> 0) & 0xFF,
|
|
(ale_entry[0] >>24) & 0xFF,
|
|
(ale_entry[0] >>16) & 0xFF,
|
|
(ale_entry[0] >> 8) & 0xFF,
|
|
(ale_entry[0] >> 0) & 0xFF);
|
|
printf(((ale_entry[1] >> 8) & 1) ? "mcast " : "ucast ");
|
|
printf("type: %u ", (ale_entry[1] >> 28) & 3);
|
|
printf("port: %u ", (ale_entry[2] >> 2) & 7);
|
|
printf("\n");
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static int
|
|
cpsw_ale_update_addresses(struct cpsw_softc *sc, int purge)
|
|
{
|
|
uint8_t *mac;
|
|
uint32_t ale_entry[3];
|
|
struct ifnet *ifp = sc->ifp;
|
|
struct ifmultiaddr *ifma;
|
|
int i;
|
|
|
|
/* Route incoming packets for our MAC address to Port 0 (host). */
|
|
/* For simplicity, keep this entry at table index 0 in the ALE. */
|
|
if_addr_rlock(ifp);
|
|
mac = LLADDR((struct sockaddr_dl *)ifp->if_addr->ifa_addr);
|
|
ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
|
|
ale_entry[1] = 0x10 << 24 | mac[0] << 8 | mac[1]; /* addr entry + mac */
|
|
ale_entry[2] = 0; /* port = 0 */
|
|
cpsw_ale_write_entry(sc, 0, ale_entry);
|
|
|
|
/* Set outgoing MAC Address for Ports 1 and 2. */
|
|
for (i = 1; i < 3; ++i) {
|
|
cpsw_write_4(sc, CPSW_PORT_P_SA_HI(i),
|
|
mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
|
|
cpsw_write_4(sc, CPSW_PORT_P_SA_LO(i),
|
|
mac[5] << 8 | mac[4]);
|
|
}
|
|
if_addr_runlock(ifp);
|
|
|
|
/* Keep the broadcast address at table entry 1. */
|
|
ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
|
|
ale_entry[1] = 0xd000ffff; /* FW (3 << 30), Addr entry (1 << 24), upper 16 bits of Mac */
|
|
ale_entry[2] = 0x0000001c; /* Forward to all ports */
|
|
cpsw_ale_write_entry(sc, 1, ale_entry);
|
|
|
|
/* SIOCDELMULTI doesn't specify the particular address
|
|
being removed, so we have to remove all and rebuild. */
|
|
if (purge)
|
|
cpsw_ale_remove_all_mc_entries(sc);
|
|
|
|
/* Set other multicast addrs desired. */
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
cpsw_ale_mc_entry_set(sc, 7,
|
|
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Statistics and Sysctls.
|
|
*
|
|
*/
|
|
|
|
#if 0
|
|
static void
|
|
cpsw_stats_dump(struct cpsw_softc *sc)
|
|
{
|
|
int i;
|
|
uint32_t r;
|
|
|
|
for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
|
|
r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
|
|
cpsw_stat_sysctls[i].reg);
|
|
CPSW_DEBUGF(("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
|
|
(intmax_t)sc->shadow_stats[i], r,
|
|
(intmax_t)sc->shadow_stats[i] + r));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
cpsw_stats_collect(struct cpsw_softc *sc)
|
|
{
|
|
int i;
|
|
uint32_t r;
|
|
|
|
CPSW_DEBUGF(("Controller shadow statistics updated."));
|
|
|
|
for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
|
|
r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
|
|
cpsw_stat_sysctls[i].reg);
|
|
sc->shadow_stats[i] += r;
|
|
cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg, r);
|
|
}
|
|
}
|
|
|
|
static int
|
|
cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct cpsw_softc *sc;
|
|
struct cpsw_stat *stat;
|
|
uint64_t result;
|
|
|
|
sc = (struct cpsw_softc *)arg1;
|
|
stat = &cpsw_stat_sysctls[oidp->oid_number];
|
|
result = sc->shadow_stats[oidp->oid_number];
|
|
result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
|
|
return (sysctl_handle_64(oidp, &result, 0, req));
|
|
}
|
|
|
|
static int
|
|
cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct cpsw_softc *sc;
|
|
struct bintime t;
|
|
unsigned result;
|
|
|
|
sc = (struct cpsw_softc *)arg1;
|
|
getbinuptime(&t);
|
|
bintime_sub(&t, &sc->attach_uptime);
|
|
result = t.sec;
|
|
return (sysctl_handle_int(oidp, &result, 0, req));
|
|
}
|
|
|
|
static int
|
|
cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct cpsw_softc *sc;
|
|
struct bintime t;
|
|
unsigned result;
|
|
|
|
sc = (struct cpsw_softc *)arg1;
|
|
if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
getbinuptime(&t);
|
|
bintime_sub(&t, &sc->init_uptime);
|
|
result = t.sec;
|
|
} else
|
|
result = 0;
|
|
return (sysctl_handle_int(oidp, &result, 0, req));
|
|
}
|
|
|
|
static void
|
|
cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_queue *queue)
|
|
{
|
|
struct sysctl_oid_list *parent;
|
|
|
|
parent = SYSCTL_CHILDREN(node);
|
|
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
|
|
CTLFLAG_RD, &queue->queue_slots, 0,
|
|
"Total buffers currently assigned to this queue");
|
|
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
|
|
CTLFLAG_RD, &queue->active_queue_len, 0,
|
|
"Buffers currently registered with hardware controller");
|
|
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
|
|
CTLFLAG_RD, &queue->max_active_queue_len, 0,
|
|
"Max value of activeBuffers since last driver reset");
|
|
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
|
|
CTLFLAG_RD, &queue->avail_queue_len, 0,
|
|
"Buffers allocated to this queue but not currently "
|
|
"registered with hardware controller");
|
|
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
|
|
CTLFLAG_RD, &queue->max_avail_queue_len, 0,
|
|
"Max value of availBuffers since last driver reset");
|
|
SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
|
|
CTLFLAG_RD, &queue->queue_adds, 0,
|
|
"Total buffers added to queue");
|
|
SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
|
|
CTLFLAG_RD, &queue->queue_removes, 0,
|
|
"Total buffers removed from queue");
|
|
SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
|
|
CTLFLAG_RD, &queue->longest_chain, 0,
|
|
"Max buffers used for a single packet");
|
|
}
|
|
|
|
static void
|
|
cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_softc *sc)
|
|
{
|
|
struct sysctl_oid_list *parent;
|
|
|
|
parent = SYSCTL_CHILDREN(node);
|
|
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
|
|
CTLFLAG_RD, &sc->watchdog.resets, 0,
|
|
"Total number of watchdog resets");
|
|
}
|
|
|
|
static void
|
|
cpsw_add_sysctls(struct cpsw_softc *sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx;
|
|
struct sysctl_oid *stats_node, *queue_node, *node;
|
|
struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
|
|
int i;
|
|
|
|
ctx = device_get_sysctl_ctx(sc->dev);
|
|
parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
|
|
|
|
SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
|
|
CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
|
|
"Time since driver attach");
|
|
|
|
SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "uptime",
|
|
CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_uptime, "IU",
|
|
"Seconds since driver init");
|
|
|
|
stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
|
|
CTLFLAG_RD, NULL, "CPSW Statistics");
|
|
stats_parent = SYSCTL_CHILDREN(stats_node);
|
|
for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
|
|
SYSCTL_ADD_PROC(ctx, stats_parent, i,
|
|
cpsw_stat_sysctls[i].oid,
|
|
CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
|
|
cpsw_stats_sysctl, "IU",
|
|
cpsw_stat_sysctls[i].oid);
|
|
}
|
|
|
|
queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
|
|
CTLFLAG_RD, NULL, "CPSW Queue Statistics");
|
|
queue_parent = SYSCTL_CHILDREN(queue_node);
|
|
|
|
node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
|
|
CTLFLAG_RD, NULL, "TX Queue Statistics");
|
|
cpsw_add_queue_sysctls(ctx, node, &sc->tx);
|
|
|
|
node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
|
|
CTLFLAG_RD, NULL, "RX Queue Statistics");
|
|
cpsw_add_queue_sysctls(ctx, node, &sc->rx);
|
|
|
|
node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
|
|
CTLFLAG_RD, NULL, "Watchdog Statistics");
|
|
cpsw_add_watchdog_sysctls(ctx, node, sc);
|
|
}
|
|
|