freebsd-dev/sys/arm/ti/cpsw/if_cpsw.c
Tim Kientzle ae6aefaf57 Another overhaul of the CPSW driver for BeagleBone
Major changes:
  * Finally tracked down the flow control setting that
    seems to have been causing TX stalls and watchdog timeouts
  * RX and TX paths now share a lot more code
  * TX interrupt is no longer used; we instead GC finished
    tx queue entries at the bottom of the start routine.
  * TX start now queues fragmented packets directly; it only
    invokes defrag() for occasional very fragmented packets.
  * "sysctl dev.cpsw" dumps controller statistics and queue counts
  * Host Error Interrupt will give extensive debugging information
    if the controller chokes on the queued data.
2013-02-03 01:08:01 +00:00

2185 lines
59 KiB
C

/*-
* Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* TI Common Platform Ethernet Switch (CPSW) Driver
* Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
*
* This controller is documented in the AM335x Technical Reference
* Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
* and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
*
* It is basically a single Ethernet port (port 0) wired internally to
* a 3-port store-and-forward switch connected to two independent
* "sliver" controllers (port 1 and port 2). You can operate the
* controller in a variety of different ways by suitably configuring
* the slivers and the Address Lookup Engine (ALE) that routes packets
* between the ports.
*
* This code was developed and tested on a BeagleBone with
* an AM335x SoC.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <net/ethernet.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <sys/sockio.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include "if_cpswreg.h"
#include "if_cpswvar.h"
#include <arm/ti/ti_scm.h>
#include "miibus_if.h"
/* Device probe/attach/detach. */
static int cpsw_probe(device_t);
static void cpsw_init_slots(struct cpsw_softc *);
static int cpsw_attach(device_t);
static void cpsw_free_slot(struct cpsw_softc *, struct cpsw_slot *);
static int cpsw_detach(device_t);
/* Device Init/shutdown. */
static void cpsw_init(void *);
static void cpsw_init_locked(void *);
static int cpsw_shutdown(device_t);
static void cpsw_shutdown_locked(struct cpsw_softc *);
/* Device Suspend/Resume. */
static int cpsw_suspend(device_t);
static int cpsw_resume(device_t);
/* Ioctl. */
static int cpsw_ioctl(struct ifnet *, u_long command, caddr_t data);
static int cpsw_miibus_readreg(device_t, int phy, int reg);
static int cpsw_miibus_writereg(device_t, int phy, int reg, int value);
/* Send/Receive packets. */
static void cpsw_intr_rx(void *arg);
static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
static void cpsw_rx_enqueue(struct cpsw_softc *);
static void cpsw_start(struct ifnet *);
static void cpsw_tx_enqueue(struct cpsw_softc *);
static int cpsw_tx_dequeue(struct cpsw_softc *);
/* Misc interrupts and watchdog. */
static void cpsw_intr_rx_thresh(void *);
static void cpsw_intr_misc(void *);
static void cpsw_tick(void *);
static void cpsw_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int cpsw_ifmedia_upd(struct ifnet *);
static void cpsw_tx_watchdog(struct cpsw_softc *);
/* ALE support */
static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t portmap, uint8_t *mac);
static int cpsw_ale_update_addresses(struct cpsw_softc *, int purge);
static void cpsw_ale_dump_table(struct cpsw_softc *);
/* Statistics and sysctls. */
static void cpsw_add_sysctls(struct cpsw_softc *);
static void cpsw_stats_collect(struct cpsw_softc *);
static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
/*
* Arbitrary limit on number of segments in an mbuf to be transmitted.
* Packets with more segments than this will be defragmented before
* they are queued.
*/
#define CPSW_TXFRAGS 8
/*
* TODO: The CPSW subsystem (CPSW_SS) can drive two independent PHYs
* as separate Ethernet ports. To properly support this, we should
* break this into two separate devices: a CPSW_SS device that owns
* the interrupts and actually talks to the CPSW hardware, and a
* separate CPSW Ethernet child device for each Ethernet port. The RX
* interrupt, for example, would be part of CPSW_SS; it would receive
* a packet, note the input port, and then dispatch it to the child
* device's interface queue. Similarly for transmit.
*
* It's not clear to me whether the device tree should be restructured
* with a cpsw_ss node and two child nodes. That would allow specifying
* MAC addresses for each port, for example, but might be overkill.
*
* Unfortunately, I don't have hardware right now that supports two
* Ethernet ports via CPSW.
*/
static device_method_t cpsw_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, cpsw_probe),
DEVMETHOD(device_attach, cpsw_attach),
DEVMETHOD(device_detach, cpsw_detach),
DEVMETHOD(device_shutdown, cpsw_shutdown),
DEVMETHOD(device_suspend, cpsw_suspend),
DEVMETHOD(device_resume, cpsw_resume),
/* MII interface */
DEVMETHOD(miibus_readreg, cpsw_miibus_readreg),
DEVMETHOD(miibus_writereg, cpsw_miibus_writereg),
{ 0, 0 }
};
static driver_t cpsw_driver = {
"cpsw",
cpsw_methods,
sizeof(struct cpsw_softc),
};
static devclass_t cpsw_devclass;
DRIVER_MODULE(cpsw, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(cpsw, ether, 1, 1, 1);
MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
static struct resource_spec res_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0 }
};
/* Number of entries here must match size of stats
* array in struct cpsw_softc. */
static struct cpsw_stat {
int reg;
char *oid;
} cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
{0x00, "GoodRxFrames"},
{0x04, "BroadcastRxFrames"},
{0x08, "MulticastRxFrames"},
{0x0C, "PauseRxFrames"},
{0x10, "RxCrcErrors"},
{0x14, "RxAlignErrors"},
{0x18, "OversizeRxFrames"},
{0x1c, "RxJabbers"},
{0x20, "ShortRxFrames"},
{0x24, "RxFragments"},
{0x30, "RxOctets"},
{0x34, "GoodTxFrames"},
{0x38, "BroadcastTxFrames"},
{0x3c, "MulticastTxFrames"},
{0x40, "PauseTxFrames"},
{0x44, "DeferredTxFrames"},
{0x48, "CollisionsTxFrames"},
{0x4c, "SingleCollisionTxFrames"},
{0x50, "MultipleCollisionTxFrames"},
{0x54, "ExcessiveCollisions"},
{0x58, "LateCollisions"},
{0x5c, "TxUnderrun"},
{0x60, "CarrierSenseErrors"},
{0x64, "TxOctets"},
{0x68, "RxTx64OctetFrames"},
{0x6c, "RxTx65to127OctetFrames"},
{0x70, "RxTx128to255OctetFrames"},
{0x74, "RxTx256to511OctetFrames"},
{0x78, "RxTx512to1024OctetFrames"},
{0x7c, "RxTx1024upOctetFrames"},
{0x80, "NetOctets"},
{0x84, "RxStartOfFrameOverruns"},
{0x88, "RxMiddleOfFrameOverruns"},
{0x8c, "RxDmaOverruns"}
};
/*
* Basic debug support.
*/
#define IF_DEBUG(sc) if (sc->cpsw_if_flags & IFF_DEBUG)
static void
cpsw_debugf_head(const char *funcname)
{
int t = (int)(time_second % (24 * 60 * 60));
printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
}
#include <machine/stdarg.h>
static void
cpsw_debugf(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
printf("\n");
}
#define CPSW_DEBUGF(a) do { \
IF_DEBUG(sc) { \
cpsw_debugf_head(__func__); \
cpsw_debugf a; \
} \
} while (0)
/*
* Locking macros
*/
#define CPSW_TX_LOCK(sc) do { \
mtx_assert(&(sc)->rx.lock, MA_NOTOWNED); \
mtx_lock(&(sc)->tx.lock); \
} while (0)
#define CPSW_TX_UNLOCK(sc) mtx_unlock(&(sc)->tx.lock)
#define CPSW_TX_LOCK_ASSERT(sc) mtx_assert(&(sc)->tx.lock, MA_OWNED)
#define CPSW_RX_LOCK(sc) do { \
mtx_assert(&(sc)->tx.lock, MA_NOTOWNED); \
mtx_lock(&(sc)->rx.lock); \
} while (0)
#define CPSW_RX_UNLOCK(sc) mtx_unlock(&(sc)->rx.lock)
#define CPSW_RX_LOCK_ASSERT(sc) mtx_assert(&(sc)->rx.lock, MA_OWNED)
#define CPSW_GLOBAL_LOCK(sc) do { \
if ((mtx_owned(&(sc)->tx.lock) ? 1 : 0) != \
(mtx_owned(&(sc)->rx.lock) ? 1 : 0)) { \
panic("cpsw deadlock possibility detection!"); \
} \
mtx_lock(&(sc)->tx.lock); \
mtx_lock(&(sc)->rx.lock); \
} while (0)
#define CPSW_GLOBAL_UNLOCK(sc) do { \
CPSW_RX_UNLOCK(sc); \
CPSW_TX_UNLOCK(sc); \
} while (0)
#define CPSW_GLOBAL_LOCK_ASSERT(sc) do { \
CPSW_TX_LOCK_ASSERT(sc); \
CPSW_RX_LOCK_ASSERT(sc); \
} while (0)
/*
* Read/Write macros
*/
#define cpsw_read_4(sc, reg) bus_read_4(sc->res[0], reg)
#define cpsw_write_4(sc, reg, val) bus_write_4(sc->res[0], reg, val)
#define cpsw_cpdma_bd_offset(i) (CPSW_CPPI_RAM_OFFSET + ((i)*16))
#define cpsw_cpdma_bd_paddr(sc, slot) \
(slot->bd_offset + vtophys(rman_get_start(sc->res[0])))
#define cpsw_cpdma_read_bd(sc, slot, val) \
bus_read_region_4(sc->res[0], slot->bd_offset, (uint32_t *) val, 4)
#define cpsw_cpdma_write_bd(sc, slot, val) \
bus_write_region_4(sc->res[0], slot->bd_offset, (uint32_t *) val, 4)
#define cpsw_cpdma_write_bd_next(sc, slot, next_slot) \
cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
#define cpsw_cpdma_read_bd_flags(sc, slot) \
bus_read_2(sc->res[0], slot->bd_offset + 14)
#define cpsw_write_hdp_slot(sc, queue, slot) \
cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
#define CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
#define cpsw_read_cp(sc, queue) \
cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
#define cpsw_write_cp(sc, queue, val) \
cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
#define cpsw_write_cp_slot(sc, queue, slot) \
cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
#if 0
/* XXX temporary function versions for debugging. */
static void
cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
{
uint32_t reg = queue->hdp_offset;
uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
cpsw_write_4(sc, reg, v);
}
static void
cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
{
uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
cpsw_write_cp(sc, queue, v);
}
#endif
/*
* Expanded dump routines for verbose debugging.
*/
static void
cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
{
static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
"TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
"PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
"Port0"};
struct cpsw_cpdma_bd bd;
const char *sep;
int i;
cpsw_cpdma_read_bd(sc, slot, &bd);
printf("BD Addr: 0x%08x Next: 0x%08x\n", cpsw_cpdma_bd_paddr(sc, slot), bd.next);
printf(" BufPtr: 0x%08x BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
printf(" BufOff: 0x%08x PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
printf(" Flags: ");
sep = "";
for (i = 0; i < 16; ++i) {
if (bd.flags & (1 << (15 - i))) {
printf("%s%s", sep, flags[i]);
sep = ",";
}
}
printf("\n");
if (slot->mbuf) {
printf(" Ether: %14D\n",
(char *)(slot->mbuf->m_hdr.mh_data), " ");
printf(" Packet: %16D\n",
(char *)(slot->mbuf->m_hdr.mh_data) + 14, " ");
}
}
#define CPSW_DUMP_SLOT(cs, slot) do { \
IF_DEBUG(sc) { \
cpsw_dump_slot(sc, slot); \
} \
} while (0)
static void
cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
{
struct cpsw_slot *slot;
int i = 0;
int others = 0;
STAILQ_FOREACH(slot, q, next) {
if (i > 4)
++others;
else
cpsw_dump_slot(sc, slot);
++i;
}
if (others)
printf(" ... and %d more.\n", others);
printf("\n");
}
#define CPSW_DUMP_QUEUE(sc, q) do { \
IF_DEBUG(sc) { \
cpsw_dump_queue(sc, q); \
} \
} while (0)
/*
*
* Device Probe, Attach, Detach.
*
*/
static int
cpsw_probe(device_t dev)
{
if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
return (ENXIO);
device_set_desc(dev, "3-port Switch Ethernet Subsystem");
return (BUS_PROBE_DEFAULT);
}
static void
cpsw_init_slots(struct cpsw_softc *sc)
{
struct cpsw_slot *slot;
int i;
STAILQ_INIT(&sc->avail);
/* Put the slot descriptors onto the global avail list. */
for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); i++) {
slot = &sc->_slots[i];
slot->bd_offset = cpsw_cpdma_bd_offset(i);
STAILQ_INSERT_TAIL(&sc->avail, slot, next);
}
}
/*
* bind an interrupt, add the relevant info to sc->interrupts
*/
static int
cpsw_attach_interrupt(struct cpsw_softc *sc, struct resource *res, driver_intr_t *handler, const char *description)
{
void **pcookie;
int error;
sc->interrupts[sc->interrupt_count].res = res;
sc->interrupts[sc->interrupt_count].description = description;
pcookie = &sc->interrupts[sc->interrupt_count].ih_cookie;
error = bus_setup_intr(sc->dev, res, INTR_TYPE_NET | INTR_MPSAFE,
NULL, *handler, sc, pcookie);
if (error)
device_printf(sc->dev,
"could not setup %s\n", description);
else
++sc->interrupt_count;
return (error);
}
/*
* teardown everything in sc->interrupts.
*/
static void
cpsw_detach_interrupts(struct cpsw_softc *sc)
{
int error;
int i;
for (i = 0; i < sizeof(sc->interrupts) / sizeof(sc->interrupts[0]); ++i) {
if (!sc->interrupts[i].ih_cookie)
continue;
error = bus_teardown_intr(sc->dev,
sc->interrupts[i].res, sc->interrupts[i].ih_cookie);
if (error)
device_printf(sc->dev, "could not release %s\n",
sc->interrupts[i].description);
sc->interrupts[i].ih_cookie = NULL;
}
}
static int
cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
{
const int max_slots = sizeof(sc->_slots) / sizeof(sc->_slots[0]);
struct cpsw_slot *slot;
int i;
if (requested < 0)
requested = max_slots;
for (i = 0; i < requested; ++i) {
slot = STAILQ_FIRST(&sc->avail);
if (slot == NULL)
return (0);
if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
if_printf(sc->ifp, "failed to create dmamap\n");
return (ENOMEM);
}
STAILQ_REMOVE_HEAD(&sc->avail, next);
STAILQ_INSERT_TAIL(&queue->avail, slot, next);
++queue->avail_queue_len;
++queue->queue_slots;
}
return (0);
}
static int
cpsw_attach(device_t dev)
{
bus_dma_segment_t segs[1];
struct cpsw_softc *sc = device_get_softc(dev);
struct mii_softc *miisc;
struct ifnet *ifp;
void *phy_sc;
int error, phy, nsegs;
uint32_t reg;
CPSW_DEBUGF((""));
getbinuptime(&sc->attach_uptime);
sc->dev = dev;
sc->node = ofw_bus_get_node(dev);
/* Get phy address from fdt */
if (fdt_get_phyaddr(sc->node, sc->dev, &phy, &phy_sc) != 0) {
device_printf(dev, "failed to get PHY address from FDT\n");
return (ENXIO);
}
/* Initialize mutexes */
mtx_init(&sc->tx.lock, device_get_nameunit(dev),
"cpsw TX lock", MTX_DEF);
mtx_init(&sc->rx.lock, device_get_nameunit(dev),
"cpsw RX lock", MTX_DEF);
/* Allocate IO and IRQ resources */
error = bus_alloc_resources(dev, res_spec, sc->res);
if (error) {
device_printf(dev, "could not allocate resources\n");
cpsw_detach(dev);
return (ENXIO);
}
reg = cpsw_read_4(sc, CPSW_SS_IDVER);
device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
reg & 0xFF, (reg >> 11) & 0x1F);
cpsw_add_sysctls(sc);
/* Allocate a busdma tag and DMA safe memory for mbufs. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
MCLBYTES, CPSW_TXFRAGS, /* maxsize, nsegments */
MCLBYTES, 0, /* maxsegsz, flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->mbuf_dtag); /* dmatag */
if (error) {
device_printf(dev, "bus_dma_tag_create failed\n");
cpsw_detach(dev);
return (error);
}
/* Allocate network interface */
ifp = sc->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "if_alloc() failed\n");
cpsw_detach(dev);
return (ENOMEM);
}
/* Allocate the null mbuf and pre-sync it. */
sc->null_mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
memset(sc->null_mbuf->m_hdr.mh_data, 0, sc->null_mbuf->m_ext.ext_size);
bus_dmamap_create(sc->mbuf_dtag, 0, &sc->null_mbuf_dmamap);
bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, sc->null_mbuf_dmamap,
sc->null_mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
bus_dmamap_sync(sc->mbuf_dtag, sc->null_mbuf_dmamap,
BUS_DMASYNC_PREWRITE);
sc->null_mbuf_paddr = segs[0].ds_addr;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_softc = sc;
ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
ifp->if_capenable = ifp->if_capabilities;
ifp->if_init = cpsw_init;
ifp->if_start = cpsw_start;
ifp->if_ioctl = cpsw_ioctl;
cpsw_init_slots(sc);
/* Allocate slots to TX and RX queues. */
STAILQ_INIT(&sc->rx.avail);
STAILQ_INIT(&sc->rx.active);
STAILQ_INIT(&sc->tx.avail);
STAILQ_INIT(&sc->tx.active);
// For now: 128 slots to TX, rest to RX.
// XXX TODO: start with 32/64 and grow dynamically based on demand.
if (cpsw_add_slots(sc, &sc->tx, 128) || cpsw_add_slots(sc, &sc->rx, -1)) {
device_printf(dev, "failed to allocate dmamaps\n");
cpsw_detach(dev);
return (ENOMEM);
}
device_printf(dev, "Initial queue size TX=%d RX=%d\n",
sc->tx.queue_slots, sc->rx.queue_slots);
ifp->if_snd.ifq_drv_maxlen = sc->tx.queue_slots;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
/* Get high part of MAC address from control module (mac_id0_hi) */
/* TODO: Get MAC ID1 as well as MAC ID0. */
ti_scm_reg_read_4(0x634, &reg);
sc->mac_addr[0] = reg & 0xFF;
sc->mac_addr[1] = (reg >> 8) & 0xFF;
sc->mac_addr[2] = (reg >> 16) & 0xFF;
sc->mac_addr[3] = (reg >> 24) & 0xFF;
/* Get low part of MAC address from control module (mac_id0_lo) */
ti_scm_reg_read_4(0x630, &reg);
sc->mac_addr[4] = reg & 0xFF;
sc->mac_addr[5] = (reg >> 8) & 0xFF;
ether_ifattach(ifp, sc->mac_addr);
callout_init(&sc->watchdog.callout, 0);
/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
/* Clear ALE */
cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 30);
/* Attach PHY(s) */
error = mii_attach(dev, &sc->miibus, ifp, cpsw_ifmedia_upd,
cpsw_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
if (error) {
device_printf(dev, "attaching PHYs failed\n");
cpsw_detach(dev);
return (error);
}
sc->mii = device_get_softc(sc->miibus);
/* Tell the MAC where to find the PHY so autoneg works */
miisc = LIST_FIRST(&sc->mii->mii_phys);
/* Select PHY and enable interrupts */
cpsw_write_4(sc, MDIOUSERPHYSEL0, 1 << 6 | (miisc->mii_phy & 0x1F));
/* Note: We don't use sc->res[3] (TX interrupt) */
if (cpsw_attach_interrupt(sc, sc->res[1],
cpsw_intr_rx_thresh, "CPSW RX threshold interrupt") ||
cpsw_attach_interrupt(sc, sc->res[2],
cpsw_intr_rx, "CPSW RX interrupt") ||
cpsw_attach_interrupt(sc, sc->res[4],
cpsw_intr_misc, "CPSW misc interrupt")) {
cpsw_detach(dev);
return (ENXIO);
}
return (0);
}
static void
cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
{
int error;
if (slot->dmamap) {
error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
KASSERT(error == 0, ("Mapping still active"));
slot->dmamap = NULL;
}
if (slot->mbuf) {
m_freem(slot->mbuf);
slot->mbuf = NULL;
}
}
static int
cpsw_detach(device_t dev)
{
struct cpsw_softc *sc = device_get_softc(dev);
int error, i;
CPSW_DEBUGF((""));
/* Stop controller and free TX queue */
if (device_is_attached(dev)) {
ether_ifdetach(sc->ifp);
CPSW_GLOBAL_LOCK(sc);
cpsw_shutdown_locked(sc);
CPSW_GLOBAL_UNLOCK(sc);
callout_drain(&sc->watchdog.callout);
}
bus_generic_detach(dev);
device_delete_child(dev, sc->miibus);
/* Stop and release all interrupts */
cpsw_detach_interrupts(sc);
/* Free dmamaps and mbufs */
for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); ++i) {
cpsw_free_slot(sc, &sc->_slots[i]);
}
/* Free DMA tag */
error = bus_dma_tag_destroy(sc->mbuf_dtag);
KASSERT(error == 0, ("Unable to destroy DMA tag"));
/* Free IO memory handler */
bus_release_resources(dev, res_spec, sc->res);
/* Destroy mutexes */
mtx_destroy(&sc->rx.lock);
mtx_destroy(&sc->tx.lock);
return (0);
}
/*
*
* Init/Shutdown.
*
*/
static void
cpsw_reset(struct cpsw_softc *sc)
{
int i;
/* Reset RMII/RGMII wrapper. */
cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
;
/* Disable TX and RX interrupts for all cores. */
for (i = 0; i < 3; ++i) {
cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
}
/* Reset CPSW subsystem. */
cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
;
/* Reset Sliver port 1 and 2 */
for (i = 0; i < 2; i++) {
/* Reset */
cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
;
}
/* Reset DMA controller. */
cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
;
/* Disable TX & RX DMA */
cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
/* Clear all queues. */
for (i = 0; i < 8; i++) {
cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
}
/* Clear all interrupt Masks */
cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
}
static void
cpsw_init(void *arg)
{
struct cpsw_softc *sc = arg;
CPSW_DEBUGF((""));
CPSW_GLOBAL_LOCK(sc);
cpsw_init_locked(arg);
CPSW_GLOBAL_UNLOCK(sc);
}
static void
cpsw_init_locked(void *arg)
{
struct ifnet *ifp;
struct cpsw_softc *sc = arg;
struct cpsw_slot *slot;
uint32_t i;
CPSW_DEBUGF((""));
ifp = sc->ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
getbinuptime(&sc->init_uptime);
/* Reset the controller. */
cpsw_reset(sc);
/* Enable ALE */
cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 31 | 1 << 4);
/* Init Sliver port 1 and 2 */
for (i = 0; i < 2; i++) {
/* Set Slave Mapping */
cpsw_write_4(sc, CPSW_SL_RX_PRI_MAP(i), 0x76543210);
cpsw_write_4(sc, CPSW_PORT_P_TX_PRI_MAP(i + 1), 0x33221100);
cpsw_write_4(sc, CPSW_SL_RX_MAXLEN(i), 0x5f2);
/* Set MACCONTROL for ports 0,1: IFCTL_B(16), IFCTL_A(15),
GMII_EN(5), FULLDUPLEX(1) */
/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
/* Huh? Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
cpsw_write_4(sc, CPSW_SL_MACCONTROL(i), 1 << 15 | 1 << 5 | 1);
}
/* Set Host Port Mapping */
cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
/* Initialize ALE: all ports set to forwarding(3), initialize addrs */
for (i = 0; i < 3; i++)
cpsw_write_4(sc, CPSW_ALE_PORTCTL(i), 3);
cpsw_ale_update_addresses(sc, 1);
cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
/* Enable statistics for ports 0, 1 and 2 */
cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
/* Experiment: Turn off flow control */
/* This seems to fix the watchdog resets that have plagued
earlier versions of this driver; I'm not yet sure if there
are negative effects yet. */
cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
/* Make IP hdr aligned with 4 */
cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
/* Initialize RX Buffer Descriptors */
cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
/* Enable TX & RX DMA */
cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
/* Enable Interrupts for core 0 */
cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x3F);
/* Enable host Error Interrupt */
cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
/* Enable interrupts for RX Channel 0 */
cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET, 1);
/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
/* Select MII in GMII_SEL, Internal Delay mode */
//ti_scm_reg_write_4(0x650, 0);
/* Initialize active queues. */
slot = STAILQ_FIRST(&sc->tx.active);
if (slot != NULL)
cpsw_write_hdp_slot(sc, &sc->tx, slot);
slot = STAILQ_FIRST(&sc->rx.active);
if (slot != NULL)
cpsw_write_hdp_slot(sc, &sc->rx, slot);
cpsw_rx_enqueue(sc);
/* Activate network interface */
sc->rx.running = 1;
sc->tx.running = 1;
sc->watchdog.timer = 0;
callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
static int
cpsw_shutdown(device_t dev)
{
struct cpsw_softc *sc = device_get_softc(dev);
CPSW_DEBUGF((""));
CPSW_GLOBAL_LOCK(sc);
cpsw_shutdown_locked(sc);
CPSW_GLOBAL_UNLOCK(sc);
return (0);
}
static void
cpsw_rx_teardown_locked(struct cpsw_softc *sc)
{
struct mbuf *received, *next;
int i = 0;
CPSW_DEBUGF(("starting RX teardown"));
cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
for (;;) {
received = cpsw_rx_dequeue(sc);
CPSW_GLOBAL_UNLOCK(sc);
while (received != NULL) {
next = received->m_nextpkt;
received->m_nextpkt = NULL;
(*sc->ifp->if_input)(sc->ifp, received);
received = next;
}
CPSW_GLOBAL_LOCK(sc);
if (!sc->rx.running) {
CPSW_DEBUGF(("finished RX teardown (%d retries)", i));
return;
}
if (++i > 10) {
if_printf(sc->ifp, "Unable to cleanly shutdown receiver\n");
return;
}
DELAY(10);
}
}
static void
cpsw_tx_teardown_locked(struct cpsw_softc *sc)
{
int i = 0;
CPSW_DEBUGF(("starting TX teardown"));
cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
cpsw_tx_dequeue(sc);
while (sc->tx.running && ++i < 10) {
DELAY(10);
cpsw_tx_dequeue(sc);
}
if (sc->tx.running)
if_printf(sc->ifp, "Unable to cleanly shutdown transmitter\n");
CPSW_DEBUGF(("finished TX teardown (%d retries, %d idle buffers)",
i, sc->tx.active_queue_len));
}
static void
cpsw_shutdown_locked(struct cpsw_softc *sc)
{
struct ifnet *ifp;
CPSW_DEBUGF((""));
CPSW_GLOBAL_LOCK_ASSERT(sc);
ifp = sc->ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
/* Disable interface */
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
/* Stop ticker */
callout_stop(&sc->watchdog.callout);
/* Tear down the RX/TX queues. */
cpsw_rx_teardown_locked(sc);
cpsw_tx_teardown_locked(sc);
/* Capture stats before we reset controller. */
cpsw_stats_collect(sc);
cpsw_reset(sc);
}
/*
* Suspend/Resume.
*/
static int
cpsw_suspend(device_t dev)
{
struct cpsw_softc *sc = device_get_softc(dev);
CPSW_DEBUGF((""));
CPSW_GLOBAL_LOCK(sc);
cpsw_shutdown_locked(sc);
CPSW_GLOBAL_UNLOCK(sc);
return (0);
}
static int
cpsw_resume(device_t dev)
{
struct cpsw_softc *sc = device_get_softc(dev);
CPSW_DEBUGF(("UNIMPLEMENTED"));
return (0);
}
/*
*
* IOCTL
*
*/
static void
cpsw_set_promisc(struct cpsw_softc *sc, int set)
{
/*
* Enabling promiscuous mode requires two bits of work: First,
* ALE_BYPASS needs to be enabled. That disables the ALE
* forwarding logic and causes every packet to be sent to the
* host port. That makes us promiscuous wrt received packets.
*
* With ALE forwarding disabled, the transmitter needs to set
* an explicit output port on every packet to route it to the
* correct egress. This should be doable for systems such as
* BeagleBone where only one egress port is actually wired to
* a PHY. If you have both egress ports wired up, life gets a
* lot more interesting.
*
* Hmmm.... NetBSD driver uses ALE_BYPASS always and doesn't
* seem to set explicit egress ports. Does that mean they
* are always promiscuous?
*/
if (set) {
printf("Promiscuous mode unimplemented\n");
}
}
static void
cpsw_set_allmulti(struct cpsw_softc *sc, int set)
{
if (set) {
printf("All-multicast mode unimplemented\n");
}
}
static int
cpsw_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct cpsw_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int error;
uint32_t changed;
error = 0;
switch (command) {
case SIOCSIFFLAGS:
CPSW_GLOBAL_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
changed = ifp->if_flags ^ sc->cpsw_if_flags;
CPSW_DEBUGF(("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)", changed));
if (changed & IFF_PROMISC)
cpsw_set_promisc(sc,
ifp->if_flags & IFF_PROMISC);
if (changed & IFF_ALLMULTI)
cpsw_set_allmulti(sc,
ifp->if_flags & IFF_ALLMULTI);
} else {
CPSW_DEBUGF(("SIOCSIFFLAGS: UP but not RUNNING; starting up"));
cpsw_init_locked(sc);
}
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
CPSW_DEBUGF(("SIOCSIFFLAGS: not UP but RUNNING; shutting down"));
cpsw_shutdown_locked(sc);
}
sc->cpsw_if_flags = ifp->if_flags;
CPSW_GLOBAL_UNLOCK(sc);
break;
case SIOCADDMULTI:
cpsw_ale_update_addresses(sc, 0);
break;
case SIOCDELMULTI:
/* Ugh. DELMULTI doesn't provide the specific address
being removed, so the best we can do is remove
everything and rebuild it all. */
cpsw_ale_update_addresses(sc, 1);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
}
return (error);
}
/*
*
* MIIBUS
*
*/
static int
cpsw_miibus_ready(struct cpsw_softc *sc)
{
uint32_t r, retries = CPSW_MIIBUS_RETRIES;
while (--retries) {
r = cpsw_read_4(sc, MDIOUSERACCESS0);
if ((r & 1 << 31) == 0)
return 1;
DELAY(CPSW_MIIBUS_DELAY);
}
return 0;
}
static int
cpsw_miibus_readreg(device_t dev, int phy, int reg)
{
struct cpsw_softc *sc = device_get_softc(dev);
uint32_t cmd, r;
if (!cpsw_miibus_ready(sc)) {
device_printf(dev, "MDIO not ready to read\n");
return 0;
}
/* Set GO, reg, phy */
cmd = 1 << 31 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
if (!cpsw_miibus_ready(sc)) {
device_printf(dev, "MDIO timed out during read\n");
return 0;
}
r = cpsw_read_4(sc, MDIOUSERACCESS0);
if((r & 1 << 29) == 0) {
device_printf(dev, "Failed to read from PHY.\n");
r = 0;
}
return (r & 0xFFFF);
}
static int
cpsw_miibus_writereg(device_t dev, int phy, int reg, int value)
{
struct cpsw_softc *sc = device_get_softc(dev);
uint32_t cmd;
if (!cpsw_miibus_ready(sc)) {
device_printf(dev, "MDIO not ready to write\n");
return 0;
}
/* Set GO, WRITE, reg, phy, and value */
cmd = 3 << 30 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16
| (value & 0xFFFF);
cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
if (!cpsw_miibus_ready(sc)) {
device_printf(dev, "MDIO timed out during write\n");
return 0;
}
if((cpsw_read_4(sc, MDIOUSERACCESS0) & (1 << 29)) == 0)
device_printf(dev, "Failed to write to PHY.\n");
return 0;
}
/*
*
* Transmit/Receive Packets.
*
*/
static void
cpsw_intr_rx(void *arg)
{
struct cpsw_softc *sc = arg;
struct mbuf *received, *next;
CPSW_RX_LOCK(sc);
received = cpsw_rx_dequeue(sc);
cpsw_rx_enqueue(sc);
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
CPSW_RX_UNLOCK(sc);
while (received != NULL) {
next = received->m_nextpkt;
received->m_nextpkt = NULL;
(*sc->ifp->if_input)(sc->ifp, received);
received = next;
}
}
static struct mbuf *
cpsw_rx_dequeue(struct cpsw_softc *sc)
{
struct cpsw_cpdma_bd bd;
struct cpsw_slot *slot;
struct ifnet *ifp;
struct mbuf *mb_head, *mb_tail;
int removed = 0;
ifp = sc->ifp;
mb_head = mb_tail = NULL;
/* Pull completed packets off hardware RX queue. */
while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
cpsw_cpdma_read_bd(sc, slot, &bd);
if (bd.flags & CPDMA_BD_OWNER)
break; /* Still in use by hardware */
CPSW_DEBUGF(("Removing received packet from RX queue"));
++removed;
STAILQ_REMOVE_HEAD(&sc->rx.active, next);
STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
CPSW_DEBUGF(("RX teardown in progress"));
m_freem(slot->mbuf);
slot->mbuf = NULL;
cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
sc->rx.running = 0;
break;
}
cpsw_write_cp_slot(sc, &sc->rx, slot);
/* Set up mbuf */
/* TODO: track SOP/EOP bits to assemble a full mbuf
out of received fragments. */
slot->mbuf->m_hdr.mh_data += bd.bufoff;
slot->mbuf->m_hdr.mh_len = bd.pktlen - 4;
slot->mbuf->m_pkthdr.len = bd.pktlen - 4;
slot->mbuf->m_flags |= M_PKTHDR;
slot->mbuf->m_pkthdr.rcvif = ifp;
slot->mbuf->m_nextpkt = NULL;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
/* check for valid CRC by looking into pkt_err[5:4] */
if ((bd.flags & CPDMA_BD_PKT_ERR_MASK) == 0) {
slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
slot->mbuf->m_pkthdr.csum_data = 0xffff;
}
}
/* Add mbuf to packet list to be returned. */
if (mb_tail) {
mb_tail->m_nextpkt = slot->mbuf;
} else {
mb_head = slot->mbuf;
}
mb_tail = slot->mbuf;
slot->mbuf = NULL;
}
if (removed != 0) {
sc->rx.queue_removes += removed;
sc->rx.active_queue_len -= removed;
sc->rx.avail_queue_len += removed;
if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
}
return (mb_head);
}
static void
cpsw_rx_enqueue(struct cpsw_softc *sc)
{
bus_dma_segment_t seg[1];
struct cpsw_cpdma_bd bd;
struct ifnet *ifp = sc->ifp;
struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
struct cpsw_slot *slot, *prev_slot = NULL;
struct cpsw_slot *last_old_slot, *first_new_slot;
int error, nsegs, added = 0;
/* Register new mbufs with hardware. */
while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
if (slot->mbuf == NULL) {
slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (slot->mbuf == NULL) {
if_printf(sc->ifp, "Unable to fill RX queue\n");
break;
}
slot->mbuf->m_len =
slot->mbuf->m_pkthdr.len =
slot->mbuf->m_ext.ext_size;
}
error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
KASSERT(error == 0, ("DMA error (error=%d)", error));
if (error != 0 || nsegs != 1) {
if_printf(ifp,
"%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
__func__, nsegs, error);
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
m_freem(slot->mbuf);
slot->mbuf = NULL;
break;
}
bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
/* Create and submit new rx descriptor*/
bd.next = 0;
bd.bufptr = seg->ds_addr;
bd.bufoff = 0;
bd.buflen = MCLBYTES - 1;
bd.pktlen = bd.buflen;
bd.flags = CPDMA_BD_OWNER;
cpsw_cpdma_write_bd(sc, slot, &bd);
++added;
if (prev_slot != NULL)
cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
prev_slot = slot;
STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
sc->rx.avail_queue_len--;
STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
}
if (added == 0)
return;
CPSW_DEBUGF(("Adding %d buffers to RX queue", added));
/* Link new entries to hardware RX queue. */
last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
first_new_slot = STAILQ_FIRST(&tmpqueue);
STAILQ_CONCAT(&sc->rx.active, &tmpqueue);
if (first_new_slot == NULL) {
return;
} else if (last_old_slot == NULL) {
/* Start a fresh queue. */
cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
} else {
/* Add buffers to end of current queue. */
cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
/* If underrun, restart queue. */
if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
}
}
sc->rx.queue_adds += added;
sc->rx.active_queue_len += added;
if (sc->rx.active_queue_len > sc->rx.max_active_queue_len) {
sc->rx.max_active_queue_len = sc->rx.active_queue_len;
}
}
static void
cpsw_start(struct ifnet *ifp)
{
struct cpsw_softc *sc = ifp->if_softc;
CPSW_TX_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && sc->tx.running) {
cpsw_tx_enqueue(sc);
cpsw_tx_dequeue(sc);
}
CPSW_TX_UNLOCK(sc);
}
static void
cpsw_tx_enqueue(struct cpsw_softc *sc)
{
bus_dma_segment_t segs[CPSW_TXFRAGS];
struct cpsw_cpdma_bd bd;
struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
struct cpsw_slot *slot, *prev_slot = NULL;
struct cpsw_slot *last_old_slot, *first_new_slot;
struct mbuf *m0;
int error, nsegs, seg, added = 0, padlen;
/* Pull pending packets from IF queue and prep them for DMA. */
while ((slot = STAILQ_FIRST(&sc->tx.avail)) != NULL) {
IF_DEQUEUE(&sc->ifp->if_snd, m0);
if (m0 == NULL)
break;
slot->mbuf = m0;
padlen = ETHER_MIN_LEN - slot->mbuf->m_pkthdr.len;
if (padlen < 0)
padlen = 0;
/* Create mapping in DMA memory */
error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
/* If the packet is too fragmented, try to simplify. */
if (error == EFBIG ||
(error == 0 &&
nsegs + (padlen > 0 ? 1 : 0) > sc->tx.avail_queue_len)) {
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
if (padlen > 0) /* May as well add padding. */
m_append(slot->mbuf, padlen,
sc->null_mbuf->m_hdr.mh_data);
m0 = m_defrag(slot->mbuf, M_NOWAIT);
if (m0 == NULL) {
if_printf(sc->ifp,
"Can't defragment packet; dropping\n");
m_freem(slot->mbuf);
} else {
CPSW_DEBUGF(("Requeueing defragmented packet"));
IF_PREPEND(&sc->ifp->if_snd, m0);
}
slot->mbuf = NULL;
continue;
}
if (error != 0) {
if_printf(sc->ifp,
"%s: Can't setup DMA (error=%d), dropping packet\n",
__func__, error);
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
m_freem(slot->mbuf);
slot->mbuf = NULL;
break;
}
bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap,
BUS_DMASYNC_PREWRITE);
CPSW_DEBUGF(("Queueing TX packet: %d segments + %d pad bytes",
nsegs, padlen));
/* If there is only one segment, the for() loop
* gets skipped and the single buffer gets set up
* as both SOP and EOP. */
/* Start by setting up the first buffer */
bd.next = 0;
bd.bufptr = segs[0].ds_addr;
bd.bufoff = 0;
bd.buflen = segs[0].ds_len;
bd.pktlen = m_length(slot->mbuf, NULL) + padlen;
bd.flags = CPDMA_BD_SOP | CPDMA_BD_OWNER;
for (seg = 1; seg < nsegs; ++seg) {
/* Save the previous buffer (which isn't EOP) */
cpsw_cpdma_write_bd(sc, slot, &bd);
if (prev_slot != NULL)
cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
prev_slot = slot;
STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
sc->tx.avail_queue_len--;
STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
++added;
slot = STAILQ_FIRST(&sc->tx.avail);
/* Setup next buffer (which isn't SOP) */
bd.next = 0;
bd.bufptr = segs[seg].ds_addr;
bd.bufoff = 0;
bd.buflen = segs[seg].ds_len;
bd.pktlen = 0;
bd.flags = CPDMA_BD_OWNER;
}
/* Save the final buffer. */
if (padlen <= 0)
bd.flags |= CPDMA_BD_EOP;
cpsw_cpdma_write_bd(sc, slot, &bd);
if (prev_slot != NULL)
cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
prev_slot = slot;
STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
sc->tx.avail_queue_len--;
STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
++added;
if (padlen > 0) {
slot = STAILQ_FIRST(&sc->tx.avail);
STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
sc->tx.avail_queue_len--;
STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
++added;
/* Setup buffer of null pad bytes (definitely EOP) */
cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
prev_slot = slot;
bd.next = 0;
bd.bufptr = sc->null_mbuf_paddr;
bd.bufoff = 0;
bd.buflen = padlen;
bd.pktlen = 0;
bd.flags = CPDMA_BD_EOP | CPDMA_BD_OWNER;
cpsw_cpdma_write_bd(sc, slot, &bd);
++nsegs;
}
if (nsegs > sc->tx.longest_chain)
sc->tx.longest_chain = nsegs;
// TODO: Should we defer the BPF tap until
// after all packets are queued?
BPF_MTAP(sc->ifp, m0);
}
/* Attach the list of new buffers to the hardware TX queue. */
last_old_slot = STAILQ_LAST(&sc->tx.active, cpsw_slot, next);
first_new_slot = STAILQ_FIRST(&tmpqueue);
STAILQ_CONCAT(&sc->tx.active, &tmpqueue);
if (first_new_slot == NULL) {
return;
} else if (last_old_slot == NULL) {
/* Start a fresh queue. */
cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
} else {
/* Add buffers to end of current queue. */
cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
/* If underrun, restart queue. */
if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
}
}
sc->tx.queue_adds += added;
sc->tx.active_queue_len += added;
if (sc->tx.active_queue_len > sc->tx.max_active_queue_len) {
sc->tx.max_active_queue_len = sc->tx.active_queue_len;
}
}
static int
cpsw_tx_dequeue(struct cpsw_softc *sc)
{
struct cpsw_slot *slot, *last_removed_slot = NULL;
uint32_t flags, removed = 0;
slot = STAILQ_FIRST(&sc->tx.active);
if (slot == NULL && cpsw_read_cp(sc, &sc->tx) == 0xfffffffc) {
CPSW_DEBUGF(("TX teardown of an empty queue"));
cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
sc->tx.running = 0;
return (0);
}
/* Pull completed buffers off the hardware TX queue. */
while (slot != NULL) {
flags = cpsw_cpdma_read_bd_flags(sc, slot);
if (flags & CPDMA_BD_OWNER)
break; /* Hardware is still using this packet. */
CPSW_DEBUGF(("TX removing completed packet"));
bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
m_freem(slot->mbuf);
slot->mbuf = NULL;
/* Dequeue any additional buffers used by this packet. */
while (slot != NULL && slot->mbuf == NULL) {
STAILQ_REMOVE_HEAD(&sc->tx.active, next);
STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
++removed;
last_removed_slot = slot;
slot = STAILQ_FIRST(&sc->tx.active);
}
/* TearDown complete is only marked on the SOP for the packet. */
if (flags & CPDMA_BD_TDOWNCMPLT) {
CPSW_DEBUGF(("TX teardown in progress"));
cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
// TODO: Increment a count of dropped TX packets
sc->tx.running = 0;
break;
}
}
if (removed != 0) {
cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
sc->tx.queue_removes += removed;
sc->tx.active_queue_len -= removed;
sc->tx.avail_queue_len += removed;
if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
}
return (removed);
}
/*
*
* Miscellaneous interrupts.
*
*/
static void
cpsw_intr_rx_thresh(void *arg)
{
struct cpsw_softc *sc = arg;
uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_RX_THRESH_STAT(0));
CPSW_DEBUGF(("stat=%x", stat));
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
}
static void
cpsw_intr_misc_host_error(struct cpsw_softc *sc)
{
uint32_t intstat;
uint32_t dmastat;
int txerr, rxerr, txchan, rxchan;
printf("\n\n");
device_printf(sc->dev,
"HOST ERROR: PROGRAMMING ERROR DETECTED BY HARDWARE\n");
printf("\n\n");
intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
txerr = (dmastat >> 20) & 15;
txchan = (dmastat >> 16) & 7;
rxerr = (dmastat >> 12) & 15;
rxchan = (dmastat >> 8) & 7;
switch (txerr) {
case 0: break;
case 1: printf("SOP error on TX channel %d\n", txchan);
break;
case 2: printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
break;
case 3: printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
break;
case 4: printf("Zero Buffer Pointer on TX channel %d\n", txchan);
break;
case 5: printf("Zero Buffer Length on TX channel %d\n", txchan);
break;
case 6: printf("Packet length error on TX channel %d\n", txchan);
break;
default: printf("Unknown error on TX channel %d\n", txchan);
break;
}
if (txerr != 0) {
printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
cpsw_dump_queue(sc, &sc->tx.active);
}
switch (rxerr) {
case 0: break;
case 2: printf("Ownership bit not set on RX channel %d\n", rxchan);
break;
case 4: printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
break;
case 5: printf("Zero Buffer Length on RX channel %d\n", rxchan);
break;
case 6: printf("Buffer offset too big on RX channel %d\n", rxchan);
break;
default: printf("Unknown RX error on RX channel %d\n", rxchan);
break;
}
if (rxerr != 0) {
printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
cpsw_dump_queue(sc, &sc->rx.active);
}
printf("\nALE Table\n");
cpsw_ale_dump_table(sc);
// XXX do something useful here??
panic("CPSW HOST ERROR INTERRUPT");
// Suppress this interrupt in the future.
cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
// The watchdog will probably reset the controller
// in a little while. It will probably fail again.
}
static void
cpsw_intr_misc(void *arg)
{
struct cpsw_softc *sc = arg;
uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
if (stat & 16)
CPSW_DEBUGF(("Time sync event interrupt unimplemented"));
if (stat & 8)
cpsw_stats_collect(sc);
if (stat & 4)
cpsw_intr_misc_host_error(sc);
if (stat & 2)
CPSW_DEBUGF(("MDIO link change interrupt unimplemented"));
if (stat & 1)
CPSW_DEBUGF(("MDIO operation completed interrupt unimplemented"));
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
}
/*
*
* Periodic Checks and Watchdog.
*
*/
static void
cpsw_tick(void *msc)
{
struct cpsw_softc *sc = msc;
/* Check for TX timeout */
cpsw_tx_watchdog(sc);
/* Check for media type change */
mii_tick(sc->mii);
if(sc->cpsw_media_status != sc->mii->mii_media.ifm_media) {
printf("%s: media type changed (ifm_media=%x)\n", __func__,
sc->mii->mii_media.ifm_media);
cpsw_ifmedia_upd(sc->ifp);
}
/* Schedule another timeout one second from now */
callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
}
static void
cpsw_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct cpsw_softc *sc = ifp->if_softc;
struct mii_data *mii;
CPSW_DEBUGF((""));
CPSW_TX_LOCK(sc);
mii = sc->mii;
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
CPSW_TX_UNLOCK(sc);
}
static int
cpsw_ifmedia_upd(struct ifnet *ifp)
{
struct cpsw_softc *sc = ifp->if_softc;
CPSW_DEBUGF((""));
if (ifp->if_flags & IFF_UP) {
CPSW_GLOBAL_LOCK(sc);
sc->cpsw_media_status = sc->mii->mii_media.ifm_media;
mii_mediachg(sc->mii);
cpsw_init_locked(sc);
CPSW_GLOBAL_UNLOCK(sc);
}
return (0);
}
static void
cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
{
cpsw_debugf_head("CPSW watchdog");
if_printf(sc->ifp, "watchdog timeout\n");
cpsw_shutdown_locked(sc);
cpsw_init_locked(sc);
}
static void
cpsw_tx_watchdog(struct cpsw_softc *sc)
{
struct ifnet *ifp = sc->ifp;
CPSW_GLOBAL_LOCK(sc);
if (sc->tx.active_queue_len == 0 || (ifp->if_flags & IFF_UP) == 0 ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || !sc->tx.running) {
sc->watchdog.timer = 0; /* Nothing to do. */
} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
sc->watchdog.timer = 0; /* Stuff done while we weren't looking. */
} else if (cpsw_tx_dequeue(sc) > 0) {
sc->watchdog.timer = 0; /* We just did something. */
} else {
/* There was something to do but it didn't get done. */
++sc->watchdog.timer;
if (sc->watchdog.timer > 2) {
sc->watchdog.timer = 0;
++ifp->if_oerrors;
++sc->watchdog.resets;
cpsw_tx_watchdog_full_reset(sc);
}
}
sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
CPSW_GLOBAL_UNLOCK(sc);
}
/*
*
* ALE support routines.
*
*/
static void
cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
{
cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
}
static void
cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
{
cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
}
static int
cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
{
int i;
uint32_t ale_entry[3];
/* First two entries are link address and broadcast. */
for (i = 2; i < CPSW_MAX_ALE_ENTRIES; i++) {
cpsw_ale_read_entry(sc, i, ale_entry);
if (((ale_entry[1] >> 28) & 3) == 1 && /* Address entry */
((ale_entry[1] >> 8) & 1) == 1) { /* MCast link addr */
ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
cpsw_ale_write_entry(sc, i, ale_entry);
}
}
return CPSW_MAX_ALE_ENTRIES;
}
static int
cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, uint8_t *mac)
{
int free_index = -1, matching_index = -1, i;
uint32_t ale_entry[3];
/* Find a matching entry or a free entry. */
for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
cpsw_ale_read_entry(sc, i, ale_entry);
/* Entry Type[61:60] is 0 for free entry */
if (free_index < 0 && ((ale_entry[1] >> 28) & 3) == 0) {
free_index = i;
}
if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
(((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
(((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
(((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
(((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
(((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
matching_index = i;
break;
}
}
if (matching_index < 0) {
if (free_index < 0)
return (ENOMEM);
i = free_index;
}
/* Set MAC address */
ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
ale_entry[1] = mac[0] << 8 | mac[1];
/* Entry type[61:60] is addr entry(1), Mcast fwd state[63:62] is fw(3)*/
ale_entry[1] |= 0xd0 << 24;
/* Set portmask [68:66] */
ale_entry[2] = (portmap & 7) << 2;
cpsw_ale_write_entry(sc, i, ale_entry);
return 0;
}
static void
cpsw_ale_dump_table(struct cpsw_softc *sc) {
int i;
uint32_t ale_entry[3];
for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
cpsw_ale_read_entry(sc, i, ale_entry);
if (ale_entry[0] || ale_entry[1] || ale_entry[2]) {
printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[0],
ale_entry[1], ale_entry[2]);
printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
(ale_entry[1] >> 8) & 0xFF,
(ale_entry[1] >> 0) & 0xFF,
(ale_entry[0] >>24) & 0xFF,
(ale_entry[0] >>16) & 0xFF,
(ale_entry[0] >> 8) & 0xFF,
(ale_entry[0] >> 0) & 0xFF);
printf(((ale_entry[1] >> 8) & 1) ? "mcast " : "ucast ");
printf("type: %u ", (ale_entry[1] >> 28) & 3);
printf("port: %u ", (ale_entry[2] >> 2) & 7);
printf("\n");
}
}
printf("\n");
}
static int
cpsw_ale_update_addresses(struct cpsw_softc *sc, int purge)
{
uint8_t *mac;
uint32_t ale_entry[3];
struct ifnet *ifp = sc->ifp;
struct ifmultiaddr *ifma;
int i;
/* Route incoming packets for our MAC address to Port 0 (host). */
/* For simplicity, keep this entry at table index 0 in the ALE. */
if_addr_rlock(ifp);
mac = LLADDR((struct sockaddr_dl *)ifp->if_addr->ifa_addr);
ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
ale_entry[1] = 0x10 << 24 | mac[0] << 8 | mac[1]; /* addr entry + mac */
ale_entry[2] = 0; /* port = 0 */
cpsw_ale_write_entry(sc, 0, ale_entry);
/* Set outgoing MAC Address for Ports 1 and 2. */
for (i = 1; i < 3; ++i) {
cpsw_write_4(sc, CPSW_PORT_P_SA_HI(i),
mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
cpsw_write_4(sc, CPSW_PORT_P_SA_LO(i),
mac[5] << 8 | mac[4]);
}
if_addr_runlock(ifp);
/* Keep the broadcast address at table entry 1. */
ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
ale_entry[1] = 0xd000ffff; /* FW (3 << 30), Addr entry (1 << 24), upper 16 bits of Mac */
ale_entry[2] = 0x0000001c; /* Forward to all ports */
cpsw_ale_write_entry(sc, 1, ale_entry);
/* SIOCDELMULTI doesn't specify the particular address
being removed, so we have to remove all and rebuild. */
if (purge)
cpsw_ale_remove_all_mc_entries(sc);
/* Set other multicast addrs desired. */
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
cpsw_ale_mc_entry_set(sc, 7,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
}
if_maddr_runlock(ifp);
return (0);
}
/*
*
* Statistics and Sysctls.
*
*/
#if 0
static void
cpsw_stats_dump(struct cpsw_softc *sc)
{
int i;
uint32_t r;
for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
cpsw_stat_sysctls[i].reg);
CPSW_DEBUGF(("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
(intmax_t)sc->shadow_stats[i], r,
(intmax_t)sc->shadow_stats[i] + r));
}
}
#endif
static void
cpsw_stats_collect(struct cpsw_softc *sc)
{
int i;
uint32_t r;
CPSW_DEBUGF(("Controller shadow statistics updated."));
for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
cpsw_stat_sysctls[i].reg);
sc->shadow_stats[i] += r;
cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg, r);
}
}
static int
cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
{
struct cpsw_softc *sc;
struct cpsw_stat *stat;
uint64_t result;
sc = (struct cpsw_softc *)arg1;
stat = &cpsw_stat_sysctls[oidp->oid_number];
result = sc->shadow_stats[oidp->oid_number];
result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
return (sysctl_handle_64(oidp, &result, 0, req));
}
static int
cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
{
struct cpsw_softc *sc;
struct bintime t;
unsigned result;
sc = (struct cpsw_softc *)arg1;
getbinuptime(&t);
bintime_sub(&t, &sc->attach_uptime);
result = t.sec;
return (sysctl_handle_int(oidp, &result, 0, req));
}
static int
cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
{
struct cpsw_softc *sc;
struct bintime t;
unsigned result;
sc = (struct cpsw_softc *)arg1;
if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
getbinuptime(&t);
bintime_sub(&t, &sc->init_uptime);
result = t.sec;
} else
result = 0;
return (sysctl_handle_int(oidp, &result, 0, req));
}
static void
cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_queue *queue)
{
struct sysctl_oid_list *parent;
parent = SYSCTL_CHILDREN(node);
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
CTLFLAG_RD, &queue->queue_slots, 0,
"Total buffers currently assigned to this queue");
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
CTLFLAG_RD, &queue->active_queue_len, 0,
"Buffers currently registered with hardware controller");
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
CTLFLAG_RD, &queue->max_active_queue_len, 0,
"Max value of activeBuffers since last driver reset");
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
CTLFLAG_RD, &queue->avail_queue_len, 0,
"Buffers allocated to this queue but not currently "
"registered with hardware controller");
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
CTLFLAG_RD, &queue->max_avail_queue_len, 0,
"Max value of availBuffers since last driver reset");
SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
CTLFLAG_RD, &queue->queue_adds, 0,
"Total buffers added to queue");
SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
CTLFLAG_RD, &queue->queue_removes, 0,
"Total buffers removed from queue");
SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
CTLFLAG_RD, &queue->longest_chain, 0,
"Max buffers used for a single packet");
}
static void
cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_softc *sc)
{
struct sysctl_oid_list *parent;
parent = SYSCTL_CHILDREN(node);
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
CTLFLAG_RD, &sc->watchdog.resets, 0,
"Total number of watchdog resets");
}
static void
cpsw_add_sysctls(struct cpsw_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid *stats_node, *queue_node, *node;
struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
int i;
ctx = device_get_sysctl_ctx(sc->dev);
parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
"Time since driver attach");
SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "uptime",
CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_uptime, "IU",
"Seconds since driver init");
stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
CTLFLAG_RD, NULL, "CPSW Statistics");
stats_parent = SYSCTL_CHILDREN(stats_node);
for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
SYSCTL_ADD_PROC(ctx, stats_parent, i,
cpsw_stat_sysctls[i].oid,
CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
cpsw_stats_sysctl, "IU",
cpsw_stat_sysctls[i].oid);
}
queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
CTLFLAG_RD, NULL, "CPSW Queue Statistics");
queue_parent = SYSCTL_CHILDREN(queue_node);
node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
CTLFLAG_RD, NULL, "TX Queue Statistics");
cpsw_add_queue_sysctls(ctx, node, &sc->tx);
node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
CTLFLAG_RD, NULL, "RX Queue Statistics");
cpsw_add_queue_sysctls(ctx, node, &sc->rx);
node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
CTLFLAG_RD, NULL, "Watchdog Statistics");
cpsw_add_watchdog_sysctls(ctx, node, sc);
}