freebsd-dev/sys/arm/ti/ti_pruss.c
Pawel Biernacki 7029da5c36 Mark more nodes as CTLFLAG_MPSAFE or CTLFLAG_NEEDGIANT (17 of many)
r357614 added CTLFLAG_NEEDGIANT to make it easier to find nodes that are
still not MPSAFE (or already are but aren’t properly marked).
Use it in preparation for a general review of all nodes.

This is non-functional change that adds annotations to SYSCTL_NODE and
SYSCTL_PROC nodes using one of the soon-to-be-required flags.

Mark all obvious cases as MPSAFE.  All entries that haven't been marked
as MPSAFE before are by default marked as NEEDGIANT

Approved by:	kib (mentor, blanket)
Commented by:	kib, gallatin, melifaro
Differential Revision:	https://reviews.freebsd.org/D23718
2020-02-26 14:26:36 +00:00

773 lines
19 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2013 Rui Paulo <rpaulo@FreeBSD.org>
* Copyright (c) 2017 Manuel Stuehn
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/poll.h>
#include <sys/time.h>
#include <sys/uio.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/fcntl.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/event.h>
#include <sys/selinfo.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/frame.h>
#include <machine/intr.h>
#include <machine/atomic.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <arm/ti/ti_prcm.h>
#include <arm/ti/ti_pruss.h>
#ifdef DEBUG
#define DPRINTF(fmt, ...) do { \
printf("%s: ", __func__); \
printf(fmt, __VA_ARGS__); \
} while (0)
#else
#define DPRINTF(fmt, ...)
#endif
static d_open_t ti_pruss_irq_open;
static d_read_t ti_pruss_irq_read;
static d_poll_t ti_pruss_irq_poll;
static device_probe_t ti_pruss_probe;
static device_attach_t ti_pruss_attach;
static device_detach_t ti_pruss_detach;
static void ti_pruss_intr(void *);
static d_open_t ti_pruss_open;
static d_mmap_t ti_pruss_mmap;
static void ti_pruss_irq_kqread_detach(struct knote *);
static int ti_pruss_irq_kqevent(struct knote *, long);
static d_kqfilter_t ti_pruss_irq_kqfilter;
static void ti_pruss_privdtor(void *data);
#define TI_PRUSS_PRU_IRQS 2
#define TI_PRUSS_HOST_IRQS 8
#define TI_PRUSS_IRQS (TI_PRUSS_HOST_IRQS+TI_PRUSS_PRU_IRQS)
#define TI_PRUSS_EVENTS 64
#define NOT_SET_STR "NONE"
#define TI_TS_ARRAY 16
struct ctl
{
size_t cnt;
size_t idx;
};
struct ts_ring_buf
{
struct ctl ctl;
uint64_t ts[TI_TS_ARRAY];
};
struct ti_pruss_irqsc
{
struct mtx sc_mtx;
struct cdev *sc_pdev;
struct selinfo sc_selinfo;
int8_t channel;
int8_t last;
int8_t event;
bool enable;
struct ts_ring_buf tstamps;
};
static struct cdevsw ti_pruss_cdevirq = {
.d_version = D_VERSION,
.d_name = "ti_pruss_irq",
.d_open = ti_pruss_irq_open,
.d_read = ti_pruss_irq_read,
.d_poll = ti_pruss_irq_poll,
.d_kqfilter = ti_pruss_irq_kqfilter,
};
struct ti_pruss_softc {
struct mtx sc_mtx;
struct resource *sc_mem_res;
struct resource *sc_irq_res[TI_PRUSS_HOST_IRQS];
void *sc_intr[TI_PRUSS_HOST_IRQS];
struct ti_pruss_irqsc sc_irq_devs[TI_PRUSS_IRQS];
bus_space_tag_t sc_bt;
bus_space_handle_t sc_bh;
struct cdev *sc_pdev;
struct selinfo sc_selinfo;
bool sc_glob_irqen;
};
static struct cdevsw ti_pruss_cdevsw = {
.d_version = D_VERSION,
.d_name = "ti_pruss",
.d_open = ti_pruss_open,
.d_mmap = ti_pruss_mmap,
};
static device_method_t ti_pruss_methods[] = {
DEVMETHOD(device_probe, ti_pruss_probe),
DEVMETHOD(device_attach, ti_pruss_attach),
DEVMETHOD(device_detach, ti_pruss_detach),
DEVMETHOD_END
};
static driver_t ti_pruss_driver = {
"ti_pruss",
ti_pruss_methods,
sizeof(struct ti_pruss_softc)
};
static devclass_t ti_pruss_devclass;
DRIVER_MODULE(ti_pruss, simplebus, ti_pruss_driver, ti_pruss_devclass, 0, 0);
MODULE_DEPEND(ti_pruss, ti_prcm, 1, 1, 1);
static struct resource_spec ti_pruss_irq_spec[] = {
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ SYS_RES_IRQ, 2, RF_ACTIVE },
{ SYS_RES_IRQ, 3, RF_ACTIVE },
{ SYS_RES_IRQ, 4, RF_ACTIVE },
{ SYS_RES_IRQ, 5, RF_ACTIVE },
{ SYS_RES_IRQ, 6, RF_ACTIVE },
{ SYS_RES_IRQ, 7, RF_ACTIVE },
{ -1, 0, 0 }
};
CTASSERT(TI_PRUSS_HOST_IRQS == nitems(ti_pruss_irq_spec) - 1);
static int
ti_pruss_irq_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
struct ctl* irqs;
struct ti_pruss_irqsc *sc;
sc = dev->si_drv1;
irqs = malloc(sizeof(struct ctl), M_DEVBUF, M_WAITOK);
if (!irqs)
return (ENOMEM);
irqs->cnt = sc->tstamps.ctl.cnt;
irqs->idx = sc->tstamps.ctl.idx;
return devfs_set_cdevpriv(irqs, ti_pruss_privdtor);
}
static void
ti_pruss_privdtor(void *data)
{
free(data, M_DEVBUF);
}
static int
ti_pruss_irq_poll(struct cdev *dev, int events, struct thread *td)
{
struct ctl* irqs;
struct ti_pruss_irqsc *sc;
sc = dev->si_drv1;
devfs_get_cdevpriv((void**)&irqs);
if (events & (POLLIN | POLLRDNORM)) {
if (sc->tstamps.ctl.cnt != irqs->cnt)
return events & (POLLIN | POLLRDNORM);
else
selrecord(td, &sc->sc_selinfo);
}
return 0;
}
static int
ti_pruss_irq_read(struct cdev *cdev, struct uio *uio, int ioflag)
{
const size_t ts_len = sizeof(uint64_t);
struct ti_pruss_irqsc* irq;
struct ctl* priv;
int error = 0;
size_t idx;
ssize_t level;
irq = cdev->si_drv1;
if (uio->uio_resid < ts_len)
return (EINVAL);
error = devfs_get_cdevpriv((void**)&priv);
if (error)
return (error);
mtx_lock(&irq->sc_mtx);
if (irq->tstamps.ctl.cnt - priv->cnt > TI_TS_ARRAY)
{
priv->cnt = irq->tstamps.ctl.cnt;
priv->idx = irq->tstamps.ctl.idx;
mtx_unlock(&irq->sc_mtx);
return (ENXIO);
}
do {
idx = priv->idx;
level = irq->tstamps.ctl.idx - idx;
if (level < 0)
level += TI_TS_ARRAY;
if (level == 0) {
if (ioflag & O_NONBLOCK) {
mtx_unlock(&irq->sc_mtx);
return (EWOULDBLOCK);
}
error = msleep(irq, &irq->sc_mtx, PCATCH | PDROP,
"pruirq", 0);
if (error)
return error;
mtx_lock(&irq->sc_mtx);
}
}while(level == 0);
mtx_unlock(&irq->sc_mtx);
error = uiomove(&irq->tstamps.ts[idx], ts_len, uio);
if (++idx == TI_TS_ARRAY)
idx = 0;
priv->idx = idx;
atomic_add_32(&priv->cnt, 1);
return (error);
}
static struct ti_pruss_irq_arg {
int irq;
struct ti_pruss_softc *sc;
} ti_pruss_irq_args[TI_PRUSS_IRQS];
static __inline uint32_t
ti_pruss_reg_read(struct ti_pruss_softc *sc, uint32_t reg)
{
return (bus_space_read_4(sc->sc_bt, sc->sc_bh, reg));
}
static __inline void
ti_pruss_reg_write(struct ti_pruss_softc *sc, uint32_t reg, uint32_t val)
{
bus_space_write_4(sc->sc_bt, sc->sc_bh, reg, val);
}
static __inline void
ti_pruss_interrupts_clear(struct ti_pruss_softc *sc)
{
/* disable global interrupt */
ti_pruss_reg_write(sc, PRUSS_INTC_GER, 0 );
/* clear all events */
ti_pruss_reg_write(sc, PRUSS_INTC_SECR0, 0xFFFFFFFF);
ti_pruss_reg_write(sc, PRUSS_INTC_SECR1, 0xFFFFFFFF);
/* disable all host interrupts */
ti_pruss_reg_write(sc, PRUSS_INTC_HIER, 0);
}
static __inline int
ti_pruss_interrupts_enable(struct ti_pruss_softc *sc, int8_t irq, bool enable)
{
if (enable && ((sc->sc_irq_devs[irq].channel == -1) ||
(sc->sc_irq_devs[irq].event== -1)))
{
device_printf( sc->sc_pdev->si_drv1,
"Interrupt chain not fully configured, not possible to enable\n" );
return (EINVAL);
}
sc->sc_irq_devs[irq].enable = enable;
if (sc->sc_irq_devs[irq].sc_pdev) {
destroy_dev(sc->sc_irq_devs[irq].sc_pdev);
sc->sc_irq_devs[irq].sc_pdev = NULL;
}
if (enable) {
sc->sc_irq_devs[irq].sc_pdev = make_dev(&ti_pruss_cdevirq, 0, UID_ROOT, GID_WHEEL,
0600, "pruss%d.irq%d", device_get_unit(sc->sc_pdev->si_drv1), irq);
sc->sc_irq_devs[irq].sc_pdev->si_drv1 = &sc->sc_irq_devs[irq];
sc->sc_irq_devs[irq].tstamps.ctl.idx = 0;
}
uint32_t reg = enable ? PRUSS_INTC_HIEISR : PRUSS_INTC_HIDISR;
ti_pruss_reg_write(sc, reg, sc->sc_irq_devs[irq].channel);
reg = enable ? PRUSS_INTC_EISR : PRUSS_INTC_EICR;
ti_pruss_reg_write(sc, reg, sc->sc_irq_devs[irq].event );
return (0);
}
static __inline void
ti_pruss_map_write(struct ti_pruss_softc *sc, uint32_t basereg, uint8_t index, uint8_t content)
{
const size_t regadr = basereg + index & ~0x03;
const size_t bitpos = (index & 0x03) * 8;
uint32_t rmw = ti_pruss_reg_read(sc, regadr);
rmw = (rmw & ~( 0xF << bitpos)) | ( (content & 0xF) << bitpos);
ti_pruss_reg_write(sc, regadr, rmw);
}
static int
ti_pruss_event_map( SYSCTL_HANDLER_ARGS )
{
struct ti_pruss_softc *sc;
const int8_t irq = arg2;
int err;
char event[sizeof(NOT_SET_STR)];
sc = arg1;
if(sc->sc_irq_devs[irq].event == -1)
bcopy(NOT_SET_STR, event, sizeof(event));
else
snprintf(event, sizeof(event), "%d", sc->sc_irq_devs[irq].event);
err = sysctl_handle_string(oidp, event, sizeof(event), req);
if(err != 0)
return (err);
if (req->newptr) { // write event
if (strcmp(NOT_SET_STR, event) == 0) {
ti_pruss_interrupts_enable(sc, irq, false);
sc->sc_irq_devs[irq].event = -1;
} else {
if (sc->sc_irq_devs[irq].channel == -1) {
device_printf( sc->sc_pdev->si_drv1,
"corresponding channel not configured\n");
return (ENXIO);
}
const int8_t channelnr = sc->sc_irq_devs[irq].channel;
const int8_t eventnr = strtol( event, NULL, 10 ); // TODO: check if strol is valid
if (eventnr > TI_PRUSS_EVENTS || eventnr < 0) {
device_printf( sc->sc_pdev->si_drv1,
"Event number %d not valid (0 - %d)",
channelnr, TI_PRUSS_EVENTS -1);
return (EINVAL);
}
sc->sc_irq_devs[irq].channel = channelnr;
sc->sc_irq_devs[irq].event = eventnr;
// event[nr] <= channel
ti_pruss_map_write(sc, PRUSS_INTC_CMR_BASE,
eventnr, channelnr);
}
}
return (err);
}
static int
ti_pruss_channel_map(SYSCTL_HANDLER_ARGS)
{
struct ti_pruss_softc *sc;
int err;
char channel[sizeof(NOT_SET_STR)];
const int8_t irq = arg2;
sc = arg1;
if (sc->sc_irq_devs[irq].channel == -1)
bcopy(NOT_SET_STR, channel, sizeof(channel));
else
snprintf(channel, sizeof(channel), "%d", sc->sc_irq_devs[irq].channel);
err = sysctl_handle_string(oidp, channel, sizeof(channel), req);
if (err != 0)
return (err);
if (req->newptr) { // write event
if (strcmp(NOT_SET_STR, channel) == 0) {
ti_pruss_interrupts_enable(sc, irq, false);
ti_pruss_reg_write(sc, PRUSS_INTC_HIDISR,
sc->sc_irq_devs[irq].channel);
sc->sc_irq_devs[irq].channel = -1;
} else {
const int8_t channelnr = strtol(channel, NULL, 10); // TODO: check if strol is valid
if (channelnr > TI_PRUSS_IRQS || channelnr < 0)
{
device_printf(sc->sc_pdev->si_drv1,
"Channel number %d not valid (0 - %d)",
channelnr, TI_PRUSS_IRQS-1);
return (EINVAL);
}
sc->sc_irq_devs[irq].channel = channelnr;
sc->sc_irq_devs[irq].last = -1;
// channel[nr] <= irqnr
ti_pruss_map_write(sc, PRUSS_INTC_HMR_BASE,
irq, channelnr);
}
}
return (err);
}
static int
ti_pruss_interrupt_enable(SYSCTL_HANDLER_ARGS)
{
struct ti_pruss_softc *sc;
int err;
bool irqenable;
const int8_t irq = arg2;
sc = arg1;
irqenable = sc->sc_irq_devs[arg2].enable;
err = sysctl_handle_bool(oidp, &irqenable, arg2, req);
if (err != 0)
return (err);
if (req->newptr) // write enable
return ti_pruss_interrupts_enable(sc, irq, irqenable);
return (err);
}
static int
ti_pruss_global_interrupt_enable(SYSCTL_HANDLER_ARGS)
{
struct ti_pruss_softc *sc;
int err;
bool glob_irqen;
sc = arg1;
glob_irqen = sc->sc_glob_irqen;
err = sysctl_handle_bool(oidp, &glob_irqen, arg2, req);
if (err != 0)
return (err);
if (req->newptr) {
sc->sc_glob_irqen = glob_irqen;
ti_pruss_reg_write(sc, PRUSS_INTC_GER, glob_irqen);
}
return (err);
}
static int
ti_pruss_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_is_compatible(dev, "ti,pruss-v1") ||
ofw_bus_is_compatible(dev, "ti,pruss-v2")) {
device_set_desc(dev, "TI Programmable Realtime Unit Subsystem");
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int
ti_pruss_attach(device_t dev)
{
struct ti_pruss_softc *sc;
int rid, i;
if (ti_prcm_clk_enable(PRUSS_CLK) != 0) {
device_printf(dev, "could not enable PRUSS clock\n");
return (ENXIO);
}
sc = device_get_softc(dev);
rid = 0;
mtx_init(&sc->sc_mtx, "TI PRUSS", NULL, MTX_DEF);
sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->sc_mem_res == NULL) {
device_printf(dev, "could not allocate memory resource\n");
return (ENXIO);
}
struct sysctl_ctx_list *clist = device_get_sysctl_ctx(dev);
if (!clist)
return (EINVAL);
struct sysctl_oid *poid;
poid = device_get_sysctl_tree( dev );
if (!poid)
return (EINVAL);
sc->sc_glob_irqen = false;
struct sysctl_oid *irq_root = SYSCTL_ADD_NODE(clist, SYSCTL_CHILDREN(poid),
OID_AUTO, "irq", CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"PRUSS Host Interrupts");
SYSCTL_ADD_PROC(clist, SYSCTL_CHILDREN(poid), OID_AUTO,
"global_interrupt_enable",
CTLFLAG_RW | CTLTYPE_U8 | CTLFLAG_NEEDGIANT,
sc, 0, ti_pruss_global_interrupt_enable,
"CU", "Global interrupt enable");
sc->sc_bt = rman_get_bustag(sc->sc_mem_res);
sc->sc_bh = rman_get_bushandle(sc->sc_mem_res);
if (bus_alloc_resources(dev, ti_pruss_irq_spec, sc->sc_irq_res) != 0) {
device_printf(dev, "could not allocate interrupt resource\n");
ti_pruss_detach(dev);
return (ENXIO);
}
ti_pruss_interrupts_clear(sc);
for (i = 0; i < TI_PRUSS_IRQS; i++) {
char name[8];
snprintf(name, sizeof(name), "%d", i);
struct sysctl_oid *irq_nodes = SYSCTL_ADD_NODE(clist, SYSCTL_CHILDREN(irq_root),
OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"PRUSS Interrupts");
SYSCTL_ADD_PROC(clist, SYSCTL_CHILDREN(irq_nodes), OID_AUTO,
"channel", CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_NEEDGIANT,
sc, i, ti_pruss_channel_map,
"A", "Channel attached to this irq");
SYSCTL_ADD_PROC(clist, SYSCTL_CHILDREN(irq_nodes), OID_AUTO,
"event", CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_NEEDGIANT,
sc, i, ti_pruss_event_map,
"A", "Event attached to this irq");
SYSCTL_ADD_PROC(clist, SYSCTL_CHILDREN(irq_nodes), OID_AUTO,
"enable", CTLFLAG_RW | CTLTYPE_U8 | CTLFLAG_NEEDGIANT,
sc, i, ti_pruss_interrupt_enable,
"CU", "Enable/Disable interrupt");
sc->sc_irq_devs[i].event = -1;
sc->sc_irq_devs[i].channel = -1;
sc->sc_irq_devs[i].tstamps.ctl.idx = 0;
if (i < TI_PRUSS_HOST_IRQS) {
ti_pruss_irq_args[i].irq = i;
ti_pruss_irq_args[i].sc = sc;
if (bus_setup_intr(dev, sc->sc_irq_res[i],
INTR_MPSAFE | INTR_TYPE_MISC,
NULL, ti_pruss_intr, &ti_pruss_irq_args[i],
&sc->sc_intr[i]) != 0) {
device_printf(dev,
"unable to setup the interrupt handler\n");
ti_pruss_detach(dev);
return (ENXIO);
}
mtx_init(&sc->sc_irq_devs[i].sc_mtx, "TI PRUSS IRQ", NULL, MTX_DEF);
knlist_init_mtx(&sc->sc_irq_devs[i].sc_selinfo.si_note, &sc->sc_irq_devs[i].sc_mtx);
}
}
if (ti_pruss_reg_read(sc, PRUSS_AM33XX_INTC) == PRUSS_AM33XX_REV)
device_printf(dev, "AM33xx PRU-ICSS\n");
sc->sc_pdev = make_dev(&ti_pruss_cdevsw, 0, UID_ROOT, GID_WHEEL,
0600, "pruss%d", device_get_unit(dev));
sc->sc_pdev->si_drv1 = dev;
/* Acc. to datasheet always write 1 to polarity registers */
ti_pruss_reg_write(sc, PRUSS_INTC_SIPR0, 0xFFFFFFFF);
ti_pruss_reg_write(sc, PRUSS_INTC_SIPR1, 0xFFFFFFFF);
/* Acc. to datasheet always write 0 to event type registers */
ti_pruss_reg_write(sc, PRUSS_INTC_SITR0, 0);
ti_pruss_reg_write(sc, PRUSS_INTC_SITR1, 0);
return (0);
}
static int
ti_pruss_detach(device_t dev)
{
struct ti_pruss_softc *sc = device_get_softc(dev);
ti_pruss_interrupts_clear(sc);
for (int i = 0; i < TI_PRUSS_HOST_IRQS; i++) {
ti_pruss_interrupts_enable( sc, i, false );
if (sc->sc_intr[i])
bus_teardown_intr(dev, sc->sc_irq_res[i], sc->sc_intr[i]);
if (sc->sc_irq_res[i])
bus_release_resource(dev, SYS_RES_IRQ,
rman_get_rid(sc->sc_irq_res[i]),
sc->sc_irq_res[i]);
knlist_clear(&sc->sc_irq_devs[i].sc_selinfo.si_note, 0);
mtx_lock(&sc->sc_irq_devs[i].sc_mtx);
if (!knlist_empty(&sc->sc_irq_devs[i].sc_selinfo.si_note))
printf("IRQ %d KQueue not empty!\n", i );
mtx_unlock(&sc->sc_irq_devs[i].sc_mtx);
knlist_destroy(&sc->sc_irq_devs[i].sc_selinfo.si_note);
mtx_destroy(&sc->sc_irq_devs[i].sc_mtx);
}
mtx_destroy(&sc->sc_mtx);
if (sc->sc_mem_res)
bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->sc_mem_res),
sc->sc_mem_res);
if (sc->sc_pdev)
destroy_dev(sc->sc_pdev);
return (0);
}
static void
ti_pruss_intr(void *arg)
{
int val;
struct ti_pruss_irq_arg *iap = arg;
struct ti_pruss_softc *sc = iap->sc;
/*
* Interrupts pr1_host_intr[0:7] are mapped to
* Host-2 to Host-9 of PRU-ICSS IRQ-controller.
*/
const int pru_int = iap->irq + TI_PRUSS_PRU_IRQS;
const int pru_int_mask = (1 << pru_int);
const int pru_channel = sc->sc_irq_devs[pru_int].channel;
const int pru_event = sc->sc_irq_devs[pru_channel].event;
val = ti_pruss_reg_read(sc, PRUSS_INTC_HIER);
if (!(val & pru_int_mask))
return;
ti_pruss_reg_write(sc, PRUSS_INTC_HIDISR, pru_int);
ti_pruss_reg_write(sc, PRUSS_INTC_SICR, pru_event);
ti_pruss_reg_write(sc, PRUSS_INTC_HIEISR, pru_int);
struct ti_pruss_irqsc* irq = &sc->sc_irq_devs[pru_channel];
size_t wr = irq->tstamps.ctl.idx;
struct timespec ts;
nanouptime(&ts);
irq->tstamps.ts[wr] = ts.tv_sec * 1000000000 + ts.tv_nsec;
if (++wr == TI_TS_ARRAY)
wr = 0;
atomic_add_32(&irq->tstamps.ctl.cnt, 1);
irq->tstamps.ctl.idx = wr;
KNOTE_UNLOCKED(&irq->sc_selinfo.si_note, pru_int);
wakeup(irq);
selwakeup(&irq->sc_selinfo);
}
static int
ti_pruss_open(struct cdev *cdev __unused, int oflags __unused,
int devtype __unused, struct thread *td __unused)
{
return (0);
}
static int
ti_pruss_mmap(struct cdev *cdev, vm_ooffset_t offset, vm_paddr_t *paddr,
int nprot, vm_memattr_t *memattr)
{
device_t dev = cdev->si_drv1;
struct ti_pruss_softc *sc = device_get_softc(dev);
if (offset >= rman_get_size(sc->sc_mem_res))
return (ENOSPC);
*paddr = rman_get_start(sc->sc_mem_res) + offset;
*memattr = VM_MEMATTR_UNCACHEABLE;
return (0);
}
static struct filterops ti_pruss_kq_read = {
.f_isfd = 1,
.f_detach = ti_pruss_irq_kqread_detach,
.f_event = ti_pruss_irq_kqevent,
};
static void
ti_pruss_irq_kqread_detach(struct knote *kn)
{
struct ti_pruss_irqsc *sc = kn->kn_hook;
knlist_remove(&sc->sc_selinfo.si_note, kn, 0);
}
static int
ti_pruss_irq_kqevent(struct knote *kn, long hint)
{
struct ti_pruss_irqsc* irq_sc;
int notify;
irq_sc = kn->kn_hook;
if (hint > 0)
kn->kn_data = hint - 2;
if (hint > 0 || irq_sc->last > 0)
notify = 1;
else
notify = 0;
irq_sc->last = hint;
return (notify);
}
static int
ti_pruss_irq_kqfilter(struct cdev *cdev, struct knote *kn)
{
struct ti_pruss_irqsc *sc = cdev->si_drv1;
switch (kn->kn_filter) {
case EVFILT_READ:
kn->kn_hook = sc;
kn->kn_fop = &ti_pruss_kq_read;
knlist_add(&sc->sc_selinfo.si_note, kn, 0);
break;
default:
return (EINVAL);
}
return (0);
}