304a4c6fb1
re_defrag() and use m_collapse() instead. - Replace a reference to ath_defrag() in a comment in if_wpi.c with m_collapse().
2172 lines
58 KiB
C
2172 lines
58 KiB
C
/*-
|
|
* Copyright (C) 2001 Eduardo Horvath.
|
|
* Copyright (c) 2001-2003 Thomas Moestl
|
|
* Copyright (c) 2007 Marius Strobl <marius@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
|
|
*/
|
|
|
|
#if 0
|
|
#define GEM_DEBUG
|
|
#endif
|
|
|
|
#if 0 /* XXX: In case of emergency, re-enable this. */
|
|
#define GEM_RINT_TIMEOUT
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/udp.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/gem/if_gemreg.h>
|
|
#include <dev/gem/if_gemvar.h>
|
|
|
|
CTASSERT(powerof2(GEM_NRXDESC) && GEM_NRXDESC >= 32 && GEM_NRXDESC <= 8192);
|
|
CTASSERT(powerof2(GEM_NTXDESC) && GEM_NTXDESC >= 32 && GEM_NTXDESC <= 8192);
|
|
|
|
#define TRIES 10000
|
|
|
|
/*
|
|
* The GEM hardware support basic TCP/UDP checksum offloading. However,
|
|
* the hardware doesn't compensate the checksum for UDP datagram which
|
|
* can yield to 0x0. As a safe guard, UDP checksum offload is disabled
|
|
* by default. It can be reactivated by setting special link option
|
|
* link0 with ifconfig(8).
|
|
*/
|
|
#define GEM_CSUM_FEATURES (CSUM_TCP)
|
|
|
|
static int gem_add_rxbuf(struct gem_softc *sc, int idx);
|
|
static int gem_bitwait(struct gem_softc *sc, bus_addr_t r, uint32_t clr,
|
|
uint32_t set);
|
|
static void gem_cddma_callback(void *xsc, bus_dma_segment_t *segs,
|
|
int nsegs, int error);
|
|
static int gem_disable_rx(struct gem_softc *sc);
|
|
static int gem_disable_tx(struct gem_softc *sc);
|
|
static void gem_eint(struct gem_softc *sc, u_int status);
|
|
static void gem_init(void *xsc);
|
|
static void gem_init_locked(struct gem_softc *sc);
|
|
static void gem_init_regs(struct gem_softc *sc);
|
|
static int gem_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
|
|
static int gem_load_txmbuf(struct gem_softc *sc, struct mbuf **m_head);
|
|
static int gem_meminit(struct gem_softc *sc);
|
|
static void gem_mifinit(struct gem_softc *sc);
|
|
static void gem_reset(struct gem_softc *sc);
|
|
static int gem_reset_rx(struct gem_softc *sc);
|
|
static void gem_reset_rxdma(struct gem_softc *sc);
|
|
static int gem_reset_tx(struct gem_softc *sc);
|
|
static u_int gem_ringsize(u_int sz);
|
|
static void gem_rint(struct gem_softc *sc);
|
|
#ifdef GEM_RINT_TIMEOUT
|
|
static void gem_rint_timeout(void *arg);
|
|
#endif
|
|
static __inline void gem_rxcksum(struct mbuf *m, uint64_t flags);
|
|
static void gem_rxdrain(struct gem_softc *sc);
|
|
static void gem_setladrf(struct gem_softc *sc);
|
|
static void gem_start(struct ifnet *ifp);
|
|
static void gem_start_locked(struct ifnet *ifp);
|
|
static void gem_stop(struct ifnet *ifp, int disable);
|
|
static void gem_tick(void *arg);
|
|
static void gem_tint(struct gem_softc *sc);
|
|
static __inline void gem_txcksum(struct gem_softc *sc, struct mbuf *m,
|
|
uint64_t *cflags);
|
|
static int gem_watchdog(struct gem_softc *sc);
|
|
|
|
devclass_t gem_devclass;
|
|
DRIVER_MODULE(miibus, gem, miibus_driver, miibus_devclass, 0, 0);
|
|
MODULE_DEPEND(gem, miibus, 1, 1, 1);
|
|
|
|
#ifdef GEM_DEBUG
|
|
#include <sys/ktr.h>
|
|
#define KTR_GEM KTR_CT2
|
|
#endif
|
|
|
|
int
|
|
gem_attach(struct gem_softc *sc)
|
|
{
|
|
struct gem_txsoft *txs;
|
|
struct ifnet *ifp;
|
|
int error, i;
|
|
uint32_t v;
|
|
|
|
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL)
|
|
return (ENOSPC);
|
|
|
|
callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
|
|
#ifdef GEM_RINT_TIMEOUT
|
|
callout_init_mtx(&sc->sc_rx_ch, &sc->sc_mtx, 0);
|
|
#endif
|
|
|
|
/* Make sure the chip is stopped. */
|
|
ifp->if_softc = sc;
|
|
gem_reset(sc);
|
|
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
|
|
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL,
|
|
NULL, &sc->sc_pdmatag);
|
|
if (error)
|
|
goto fail_ifnet;
|
|
|
|
error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
|
|
1, MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_rdmatag);
|
|
if (error)
|
|
goto fail_ptag;
|
|
|
|
error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
MCLBYTES * GEM_NTXSEGS, GEM_NTXSEGS, MCLBYTES,
|
|
BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag);
|
|
if (error)
|
|
goto fail_rtag;
|
|
|
|
error = bus_dma_tag_create(sc->sc_pdmatag, PAGE_SIZE, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
sizeof(struct gem_control_data), 1,
|
|
sizeof(struct gem_control_data), 0,
|
|
NULL, NULL, &sc->sc_cdmatag);
|
|
if (error)
|
|
goto fail_ttag;
|
|
|
|
/*
|
|
* Allocate the control data structures, create and load the
|
|
* DMA map for it.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
|
|
(void **)&sc->sc_control_data,
|
|
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
|
|
&sc->sc_cddmamap))) {
|
|
device_printf(sc->sc_dev,
|
|
"unable to allocate control data, error = %d\n", error);
|
|
goto fail_ctag;
|
|
}
|
|
|
|
sc->sc_cddma = 0;
|
|
if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
|
|
sc->sc_control_data, sizeof(struct gem_control_data),
|
|
gem_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
|
|
device_printf(sc->sc_dev,
|
|
"unable to load control data DMA map, error = %d\n",
|
|
error);
|
|
goto fail_cmem;
|
|
}
|
|
|
|
/*
|
|
* Initialize the transmit job descriptors.
|
|
*/
|
|
STAILQ_INIT(&sc->sc_txfreeq);
|
|
STAILQ_INIT(&sc->sc_txdirtyq);
|
|
|
|
/*
|
|
* Create the transmit buffer DMA maps.
|
|
*/
|
|
error = ENOMEM;
|
|
for (i = 0; i < GEM_TXQUEUELEN; i++) {
|
|
txs = &sc->sc_txsoft[i];
|
|
txs->txs_mbuf = NULL;
|
|
txs->txs_ndescs = 0;
|
|
if ((error = bus_dmamap_create(sc->sc_tdmatag, 0,
|
|
&txs->txs_dmamap)) != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"unable to create TX DMA map %d, error = %d\n",
|
|
i, error);
|
|
goto fail_txd;
|
|
}
|
|
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
}
|
|
|
|
/*
|
|
* Create the receive buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < GEM_NRXDESC; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_rdmatag, 0,
|
|
&sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"unable to create RX DMA map %d, error = %d\n",
|
|
i, error);
|
|
goto fail_rxd;
|
|
}
|
|
sc->sc_rxsoft[i].rxs_mbuf = NULL;
|
|
}
|
|
|
|
/* Bad things will happen when touching this register on ERI. */
|
|
if (sc->sc_variant != GEM_SUN_ERI)
|
|
bus_write_4(sc->sc_res[0], GEM_MII_DATAPATH_MODE,
|
|
GEM_MII_DATAPATH_MII);
|
|
|
|
gem_mifinit(sc);
|
|
|
|
/*
|
|
* Look for an external PHY.
|
|
*/
|
|
error = ENXIO;
|
|
v = bus_read_4(sc->sc_res[0], GEM_MIF_CONFIG);
|
|
if ((v & GEM_MIF_CONFIG_MDI1) != 0) {
|
|
v |= GEM_MIF_CONFIG_PHY_SEL;
|
|
bus_write_4(sc->sc_res[0], GEM_MIF_CONFIG, v);
|
|
switch (sc->sc_variant) {
|
|
case GEM_SUN_ERI:
|
|
sc->sc_phyad = GEM_PHYAD_EXTERNAL;
|
|
break;
|
|
default:
|
|
sc->sc_phyad = -1;
|
|
break;
|
|
}
|
|
error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus,
|
|
gem_mediachange, gem_mediastatus);
|
|
}
|
|
|
|
/*
|
|
* Fall back on an internal PHY if no external PHY was found.
|
|
*/
|
|
if (error != 0 && (v & GEM_MIF_CONFIG_MDI0) != 0) {
|
|
v &= ~GEM_MIF_CONFIG_PHY_SEL;
|
|
bus_write_4(sc->sc_res[0], GEM_MIF_CONFIG, v);
|
|
switch (sc->sc_variant) {
|
|
case GEM_SUN_ERI:
|
|
case GEM_APPLE_K2_GMAC:
|
|
sc->sc_phyad = GEM_PHYAD_INTERNAL;
|
|
break;
|
|
case GEM_APPLE_GMAC:
|
|
sc->sc_phyad = GEM_PHYAD_EXTERNAL;
|
|
break;
|
|
default:
|
|
sc->sc_phyad = -1;
|
|
break;
|
|
}
|
|
error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus,
|
|
gem_mediachange, gem_mediastatus);
|
|
}
|
|
|
|
/*
|
|
* Try the external PCS SERDES if we didn't find any PHYs.
|
|
*/
|
|
if (error != 0 && sc->sc_variant == GEM_SUN_GEM) {
|
|
bus_write_4(sc->sc_res[0], GEM_MII_DATAPATH_MODE,
|
|
GEM_MII_DATAPATH_SERDES);
|
|
bus_write_4(sc->sc_res[0], GEM_MII_SLINK_CONTROL,
|
|
GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_EN_SYNC_D);
|
|
bus_write_4(sc->sc_res[0], GEM_MII_CONFIG,
|
|
GEM_MII_CONFIG_ENABLE);
|
|
sc->sc_flags |= GEM_SERDES;
|
|
sc->sc_phyad = GEM_PHYAD_EXTERNAL;
|
|
error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus,
|
|
gem_mediachange, gem_mediastatus);
|
|
}
|
|
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev, "PHY probe failed: %d\n", error);
|
|
goto fail_rxd;
|
|
}
|
|
sc->sc_mii = device_get_softc(sc->sc_miibus);
|
|
|
|
/*
|
|
* From this point forward, the attachment cannot fail. A failure
|
|
* before this point releases all resources that may have been
|
|
* allocated.
|
|
*/
|
|
|
|
/* Get RX FIFO size */
|
|
sc->sc_rxfifosize = 64 *
|
|
bus_read_4(sc->sc_res[0], GEM_RX_FIFO_SIZE);
|
|
|
|
/* Get TX FIFO size */
|
|
v = bus_read_4(sc->sc_res[0], GEM_TX_FIFO_SIZE);
|
|
device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n",
|
|
sc->sc_rxfifosize / 1024, v / 16);
|
|
|
|
sc->sc_csum_features = GEM_CSUM_FEATURES;
|
|
/* Initialize ifnet structure. */
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(sc->sc_dev),
|
|
device_get_unit(sc->sc_dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_start = gem_start;
|
|
ifp->if_ioctl = gem_ioctl;
|
|
ifp->if_init = gem_init;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, GEM_TXQUEUELEN);
|
|
ifp->if_snd.ifq_drv_maxlen = GEM_TXQUEUELEN;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/* Attach the interface. */
|
|
ether_ifattach(ifp, sc->sc_enaddr);
|
|
|
|
/*
|
|
* Tell the upper layer(s) we support long frames/checksum offloads.
|
|
*/
|
|
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
|
|
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_HWCSUM;
|
|
ifp->if_hwassist |= sc->sc_csum_features;
|
|
ifp->if_capenable |= IFCAP_VLAN_MTU | IFCAP_HWCSUM;
|
|
|
|
return (0);
|
|
|
|
/*
|
|
* Free any resources we've allocated during the failed attach
|
|
* attempt. Do this in reverse order and fall through.
|
|
*/
|
|
fail_rxd:
|
|
for (i = 0; i < GEM_NRXDESC; i++)
|
|
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_rdmatag,
|
|
sc->sc_rxsoft[i].rxs_dmamap);
|
|
fail_txd:
|
|
for (i = 0; i < GEM_TXQUEUELEN; i++)
|
|
if (sc->sc_txsoft[i].txs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_tdmatag,
|
|
sc->sc_txsoft[i].txs_dmamap);
|
|
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
|
|
fail_cmem:
|
|
bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
|
|
sc->sc_cddmamap);
|
|
fail_ctag:
|
|
bus_dma_tag_destroy(sc->sc_cdmatag);
|
|
fail_ttag:
|
|
bus_dma_tag_destroy(sc->sc_tdmatag);
|
|
fail_rtag:
|
|
bus_dma_tag_destroy(sc->sc_rdmatag);
|
|
fail_ptag:
|
|
bus_dma_tag_destroy(sc->sc_pdmatag);
|
|
fail_ifnet:
|
|
if_free(ifp);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
gem_detach(struct gem_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
int i;
|
|
|
|
GEM_LOCK(sc);
|
|
gem_stop(ifp, 1);
|
|
GEM_UNLOCK(sc);
|
|
callout_drain(&sc->sc_tick_ch);
|
|
#ifdef GEM_RINT_TIMEOUT
|
|
callout_drain(&sc->sc_rx_ch);
|
|
#endif
|
|
ether_ifdetach(ifp);
|
|
if_free(ifp);
|
|
device_delete_child(sc->sc_dev, sc->sc_miibus);
|
|
|
|
for (i = 0; i < GEM_NRXDESC; i++)
|
|
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_rdmatag,
|
|
sc->sc_rxsoft[i].rxs_dmamap);
|
|
for (i = 0; i < GEM_TXQUEUELEN; i++)
|
|
if (sc->sc_txsoft[i].txs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_tdmatag,
|
|
sc->sc_txsoft[i].txs_dmamap);
|
|
GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
|
|
GEM_CDSYNC(sc, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
|
|
bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
|
|
sc->sc_cddmamap);
|
|
bus_dma_tag_destroy(sc->sc_cdmatag);
|
|
bus_dma_tag_destroy(sc->sc_tdmatag);
|
|
bus_dma_tag_destroy(sc->sc_rdmatag);
|
|
bus_dma_tag_destroy(sc->sc_pdmatag);
|
|
}
|
|
|
|
void
|
|
gem_suspend(struct gem_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
GEM_LOCK(sc);
|
|
gem_stop(ifp, 0);
|
|
GEM_UNLOCK(sc);
|
|
}
|
|
|
|
void
|
|
gem_resume(struct gem_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
GEM_LOCK(sc);
|
|
/*
|
|
* On resume all registers have to be initialized again like
|
|
* after power-on.
|
|
*/
|
|
sc->sc_flags &= ~GEM_INITED;
|
|
if (ifp->if_flags & IFF_UP)
|
|
gem_init_locked(sc);
|
|
GEM_UNLOCK(sc);
|
|
}
|
|
|
|
static __inline void
|
|
gem_txcksum(struct gem_softc *sc, struct mbuf *m, uint64_t *cflags)
|
|
{
|
|
char *p;
|
|
struct ip *ip;
|
|
struct mbuf *m0;
|
|
uint64_t offset, offset2;
|
|
|
|
m0 = m;
|
|
offset = sizeof(struct ip) + ETHER_HDR_LEN;
|
|
for(; m && m->m_len == 0; m = m->m_next)
|
|
;
|
|
if (m == NULL || m->m_len < ETHER_HDR_LEN) {
|
|
device_printf(sc->sc_dev, "%s: m_len < ETHER_HDR_LEN\n",
|
|
__func__);
|
|
/* Checksum will be corrupted. */
|
|
m = m0;
|
|
goto sendit;
|
|
}
|
|
if (m->m_len < ETHER_HDR_LEN + sizeof(uint32_t)) {
|
|
if (m->m_len != ETHER_HDR_LEN) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: m_len != ETHER_HDR_LEN\n", __func__);
|
|
/* Checksum will be corrupted. */
|
|
m = m0;
|
|
goto sendit;
|
|
}
|
|
for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
|
|
;
|
|
if (m == NULL) {
|
|
/* Checksum will be corrupted. */
|
|
m = m0;
|
|
goto sendit;
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
} else {
|
|
p = mtod(m, uint8_t *);
|
|
p += ETHER_HDR_LEN;
|
|
ip = (struct ip *)p;
|
|
}
|
|
offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
|
|
|
|
sendit:
|
|
offset2 = m->m_pkthdr.csum_data;
|
|
*cflags = offset << GEM_TD_CXSUM_STARTSHFT;
|
|
*cflags |= ((offset + offset2) << GEM_TD_CXSUM_STUFFSHFT);
|
|
*cflags |= GEM_TD_CXSUM_ENABLE;
|
|
}
|
|
|
|
static __inline void
|
|
gem_rxcksum(struct mbuf *m, uint64_t flags)
|
|
{
|
|
struct ether_header *eh;
|
|
struct ip *ip;
|
|
struct udphdr *uh;
|
|
uint16_t *opts;
|
|
int32_t hlen, len, pktlen;
|
|
uint32_t temp32;
|
|
uint16_t cksum;
|
|
|
|
pktlen = m->m_pkthdr.len;
|
|
if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
|
|
return;
|
|
eh = mtod(m, struct ether_header *);
|
|
if (eh->ether_type != htons(ETHERTYPE_IP))
|
|
return;
|
|
ip = (struct ip *)(eh + 1);
|
|
if (ip->ip_v != IPVERSION)
|
|
return;
|
|
|
|
hlen = ip->ip_hl << 2;
|
|
pktlen -= sizeof(struct ether_header);
|
|
if (hlen < sizeof(struct ip))
|
|
return;
|
|
if (ntohs(ip->ip_len) < hlen)
|
|
return;
|
|
if (ntohs(ip->ip_len) != pktlen)
|
|
return;
|
|
if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
|
|
return; /* Cannot handle fragmented packet. */
|
|
|
|
switch (ip->ip_p) {
|
|
case IPPROTO_TCP:
|
|
if (pktlen < (hlen + sizeof(struct tcphdr)))
|
|
return;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
if (pktlen < (hlen + sizeof(struct udphdr)))
|
|
return;
|
|
uh = (struct udphdr *)((uint8_t *)ip + hlen);
|
|
if (uh->uh_sum == 0)
|
|
return; /* no checksum */
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
cksum = ~(flags & GEM_RD_CHECKSUM);
|
|
/* checksum fixup for IP options */
|
|
len = hlen - sizeof(struct ip);
|
|
if (len > 0) {
|
|
opts = (uint16_t *)(ip + 1);
|
|
for (; len > 0; len -= sizeof(uint16_t), opts++) {
|
|
temp32 = cksum - *opts;
|
|
temp32 = (temp32 >> 16) + (temp32 & 65535);
|
|
cksum = temp32 & 65535;
|
|
}
|
|
}
|
|
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
|
|
m->m_pkthdr.csum_data = cksum;
|
|
}
|
|
|
|
static void
|
|
gem_cddma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
struct gem_softc *sc = xsc;
|
|
|
|
if (error != 0)
|
|
return;
|
|
if (nsegs != 1)
|
|
panic("%s: bad control buffer segment count", __func__);
|
|
sc->sc_cddma = segs[0].ds_addr;
|
|
}
|
|
|
|
static void
|
|
gem_tick(void *arg)
|
|
{
|
|
struct gem_softc *sc = arg;
|
|
struct ifnet *ifp;
|
|
|
|
GEM_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
ifp = sc->sc_ifp;
|
|
/*
|
|
* Unload collision counters.
|
|
*/
|
|
ifp->if_collisions +=
|
|
bus_read_4(sc->sc_res[0], GEM_MAC_NORM_COLL_CNT) +
|
|
bus_read_4(sc->sc_res[0], GEM_MAC_FIRST_COLL_CNT) +
|
|
bus_read_4(sc->sc_res[0], GEM_MAC_EXCESS_COLL_CNT) +
|
|
bus_read_4(sc->sc_res[0], GEM_MAC_LATE_COLL_CNT);
|
|
|
|
/*
|
|
* then clear the hardware counters.
|
|
*/
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_NORM_COLL_CNT, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_FIRST_COLL_CNT, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_EXCESS_COLL_CNT, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_LATE_COLL_CNT, 0);
|
|
|
|
mii_tick(sc->sc_mii);
|
|
|
|
if (gem_watchdog(sc) == EJUSTRETURN)
|
|
return;
|
|
|
|
callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
|
|
}
|
|
|
|
static int
|
|
gem_bitwait(struct gem_softc *sc, bus_addr_t r, uint32_t clr, uint32_t set)
|
|
{
|
|
int i;
|
|
uint32_t reg;
|
|
|
|
for (i = TRIES; i--; DELAY(100)) {
|
|
reg = bus_read_4(sc->sc_res[0], r);
|
|
if ((reg & clr) == 0 && (reg & set) == set)
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
gem_reset(sc)
|
|
struct gem_softc *sc;
|
|
{
|
|
|
|
#ifdef GEM_DEBUG
|
|
CTR2(KTR_GEM, "%s: %s", device_get_name(sc->sc_dev), __func__);
|
|
#endif
|
|
gem_reset_rx(sc);
|
|
gem_reset_tx(sc);
|
|
|
|
/* Do a full reset. */
|
|
bus_write_4(sc->sc_res[0], GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
|
|
bus_barrier(sc->sc_res[0], GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
|
|
if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
|
|
device_printf(sc->sc_dev, "cannot reset device\n");
|
|
}
|
|
|
|
static void
|
|
gem_rxdrain(struct gem_softc *sc)
|
|
{
|
|
struct gem_rxsoft *rxs;
|
|
int i;
|
|
|
|
for (i = 0; i < GEM_NRXDESC; i++) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
if (rxs->rxs_mbuf != NULL) {
|
|
bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_rdmatag, rxs->rxs_dmamap);
|
|
m_freem(rxs->rxs_mbuf);
|
|
rxs->rxs_mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
gem_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct gem_softc *sc = ifp->if_softc;
|
|
struct gem_txsoft *txs;
|
|
|
|
#ifdef GEM_DEBUG
|
|
CTR2(KTR_GEM, "%s: %s", device_get_name(sc->sc_dev), __func__);
|
|
#endif
|
|
|
|
callout_stop(&sc->sc_tick_ch);
|
|
#ifdef GEM_RINT_TIMEOUT
|
|
callout_stop(&sc->sc_rx_ch);
|
|
#endif
|
|
|
|
/* XXX should we reset these instead? */
|
|
gem_disable_tx(sc);
|
|
gem_disable_rx(sc);
|
|
|
|
/*
|
|
* Release any queued transmit buffers.
|
|
*/
|
|
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
|
|
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
|
|
if (txs->txs_ndescs != 0) {
|
|
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
|
|
if (txs->txs_mbuf != NULL) {
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
}
|
|
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
}
|
|
|
|
if (disable)
|
|
gem_rxdrain(sc);
|
|
|
|
/*
|
|
* Mark the interface down and cancel the watchdog timer.
|
|
*/
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
sc->sc_flags &= ~GEM_LINK;
|
|
sc->sc_wdog_timer = 0;
|
|
}
|
|
|
|
static int
|
|
gem_reset_rx(struct gem_softc *sc)
|
|
{
|
|
|
|
/*
|
|
* Resetting while DMA is in progress can cause a bus hang, so we
|
|
* disable DMA first.
|
|
*/
|
|
gem_disable_rx(sc);
|
|
bus_write_4(sc->sc_res[0], GEM_RX_CONFIG, 0);
|
|
bus_barrier(sc->sc_res[0], GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
|
|
if (!gem_bitwait(sc, GEM_RX_CONFIG, GEM_RX_CONFIG_RXDMA_EN, 0))
|
|
device_printf(sc->sc_dev, "cannot disable RX DMA\n");
|
|
|
|
/* Finally, reset the ERX */
|
|
bus_write_4(sc->sc_res[0], GEM_RESET, GEM_RESET_RX);
|
|
bus_barrier(sc->sc_res[0], GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
|
|
if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0)) {
|
|
device_printf(sc->sc_dev, "cannot reset receiver\n");
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Reset the receiver DMA engine.
|
|
*
|
|
* Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
|
|
* etc in order to reset the receiver DMA engine only and not do a full
|
|
* reset which amongst others also downs the link and clears the FIFOs.
|
|
*/
|
|
static void
|
|
gem_reset_rxdma(struct gem_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
if (gem_reset_rx(sc) != 0)
|
|
return (gem_init_locked(sc));
|
|
for (i = 0; i < GEM_NRXDESC; i++)
|
|
if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
|
|
GEM_UPDATE_RXDESC(sc, i);
|
|
sc->sc_rxptr = 0;
|
|
GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
|
|
GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
|
|
|
|
/* NOTE: we use only 32-bit DMA addresses here. */
|
|
bus_write_4(sc->sc_res[0], GEM_RX_RING_PTR_HI, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
|
|
bus_write_4(sc->sc_res[0], GEM_RX_KICK, GEM_NRXDESC - 4);
|
|
bus_write_4(sc->sc_res[0], GEM_RX_CONFIG,
|
|
gem_ringsize(GEM_NRXDESC /* XXX */) |
|
|
((ETHER_HDR_LEN + sizeof(struct ip)) <<
|
|
GEM_RX_CONFIG_CXM_START_SHFT) |
|
|
(GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
|
|
(2 << GEM_RX_CONFIG_FBOFF_SHFT));
|
|
bus_write_4(sc->sc_res[0], GEM_RX_BLANKING,
|
|
(6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
|
|
bus_write_4(sc->sc_res[0], GEM_RX_PAUSE_THRESH,
|
|
(3 * sc->sc_rxfifosize / 256) |
|
|
((sc->sc_rxfifosize / 256) << 12));
|
|
bus_write_4(sc->sc_res[0], GEM_RX_CONFIG,
|
|
bus_read_4(sc->sc_res[0], GEM_RX_CONFIG) |
|
|
GEM_RX_CONFIG_RXDMA_EN);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_RX_MASK,
|
|
GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG,
|
|
bus_read_4(sc->sc_res[0], GEM_MAC_RX_CONFIG) |
|
|
GEM_MAC_RX_ENABLE);
|
|
}
|
|
|
|
static int
|
|
gem_reset_tx(struct gem_softc *sc)
|
|
{
|
|
|
|
/*
|
|
* Resetting while DMA is in progress can cause a bus hang, so we
|
|
* disable DMA first.
|
|
*/
|
|
gem_disable_tx(sc);
|
|
bus_write_4(sc->sc_res[0], GEM_TX_CONFIG, 0);
|
|
bus_barrier(sc->sc_res[0], GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
|
|
if (!gem_bitwait(sc, GEM_TX_CONFIG, GEM_TX_CONFIG_TXDMA_EN, 0))
|
|
device_printf(sc->sc_dev, "cannot disable TX DMA\n");
|
|
|
|
/* Finally, reset the ETX */
|
|
bus_write_4(sc->sc_res[0], GEM_RESET, GEM_RESET_TX);
|
|
bus_barrier(sc->sc_res[0], GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
|
|
if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0)) {
|
|
device_printf(sc->sc_dev, "cannot reset transmitter\n");
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
gem_disable_rx(struct gem_softc *sc)
|
|
{
|
|
uint32_t cfg;
|
|
|
|
cfg = bus_read_4(sc->sc_res[0], GEM_MAC_RX_CONFIG);
|
|
cfg &= ~GEM_MAC_RX_ENABLE;
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, cfg);
|
|
bus_barrier(sc->sc_res[0], GEM_MAC_RX_CONFIG, 4,
|
|
BUS_SPACE_BARRIER_WRITE);
|
|
return (gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
|
|
}
|
|
|
|
/*
|
|
* disable transmitter.
|
|
*/
|
|
static int
|
|
gem_disable_tx(struct gem_softc *sc)
|
|
{
|
|
uint32_t cfg;
|
|
|
|
cfg = bus_read_4(sc->sc_res[0], GEM_MAC_TX_CONFIG);
|
|
cfg &= ~GEM_MAC_TX_ENABLE;
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_TX_CONFIG, cfg);
|
|
bus_barrier(sc->sc_res[0], GEM_MAC_TX_CONFIG, 4,
|
|
BUS_SPACE_BARRIER_WRITE);
|
|
return (gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
|
|
}
|
|
|
|
static int
|
|
gem_meminit(sc)
|
|
struct gem_softc *sc;
|
|
{
|
|
struct gem_rxsoft *rxs;
|
|
int error, i;
|
|
|
|
/*
|
|
* Initialize the transmit descriptor ring.
|
|
*/
|
|
for (i = 0; i < GEM_NTXDESC; i++) {
|
|
sc->sc_txdescs[i].gd_flags = 0;
|
|
sc->sc_txdescs[i].gd_addr = 0;
|
|
}
|
|
sc->sc_txfree = GEM_MAXTXFREE;
|
|
sc->sc_txnext = 0;
|
|
sc->sc_txwin = 0;
|
|
|
|
/*
|
|
* Initialize the receive descriptor and receive job
|
|
* descriptor rings.
|
|
*/
|
|
for (i = 0; i < GEM_NRXDESC; i++) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
if (rxs->rxs_mbuf == NULL) {
|
|
if ((error = gem_add_rxbuf(sc, i)) != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"unable to allocate or map RX buffer %d, "
|
|
"error = %d\n", i, error);
|
|
/*
|
|
* XXX we should attempt to run with fewer
|
|
* receive buffers instead of just failing.
|
|
*/
|
|
gem_rxdrain(sc);
|
|
return (1);
|
|
}
|
|
} else
|
|
GEM_INIT_RXDESC(sc, i);
|
|
}
|
|
sc->sc_rxptr = 0;
|
|
GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
|
|
GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static u_int
|
|
gem_ringsize(u_int sz)
|
|
{
|
|
|
|
switch (sz) {
|
|
case 32:
|
|
return (GEM_RING_SZ_32);
|
|
case 64:
|
|
return (GEM_RING_SZ_64);
|
|
case 128:
|
|
return (GEM_RING_SZ_128);
|
|
case 256:
|
|
return (GEM_RING_SZ_256);
|
|
case 512:
|
|
return (GEM_RING_SZ_512);
|
|
case 1024:
|
|
return (GEM_RING_SZ_1024);
|
|
case 2048:
|
|
return (GEM_RING_SZ_2048);
|
|
case 4096:
|
|
return (GEM_RING_SZ_4096);
|
|
case 8192:
|
|
return (GEM_RING_SZ_8192);
|
|
default:
|
|
printf("%s: invalid ring size %d\n", __func__, sz);
|
|
return (GEM_RING_SZ_32);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gem_init(void *xsc)
|
|
{
|
|
struct gem_softc *sc = xsc;
|
|
|
|
GEM_LOCK(sc);
|
|
gem_init_locked(sc);
|
|
GEM_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Initialization of interface; set up initialization block
|
|
* and transmit/receive descriptor rings.
|
|
*/
|
|
static void
|
|
gem_init_locked(struct gem_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
uint32_t v;
|
|
|
|
GEM_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
#ifdef GEM_DEBUG
|
|
CTR2(KTR_GEM, "%s: %s: calling stop", device_get_name(sc->sc_dev),
|
|
__func__);
|
|
#endif
|
|
/*
|
|
* Initialization sequence. The numbered steps below correspond
|
|
* to the sequence outlined in section 6.3.5.1 in the Ethernet
|
|
* Channel Engine manual (part of the PCIO manual).
|
|
* See also the STP2002-STQ document from Sun Microsystems.
|
|
*/
|
|
|
|
/* step 1 & 2. Reset the Ethernet Channel. */
|
|
gem_stop(sc->sc_ifp, 0);
|
|
gem_reset(sc);
|
|
#ifdef GEM_DEBUG
|
|
CTR2(KTR_GEM, "%s: %s: restarting", device_get_name(sc->sc_dev),
|
|
__func__);
|
|
#endif
|
|
|
|
/* Re-initialize the MIF. */
|
|
gem_mifinit(sc);
|
|
|
|
/* step 3. Setup data structures in host memory. */
|
|
if (gem_meminit(sc) != 0)
|
|
return;
|
|
|
|
/* step 4. TX MAC registers & counters */
|
|
gem_init_regs(sc);
|
|
|
|
/* step 5. RX MAC registers & counters */
|
|
gem_setladrf(sc);
|
|
|
|
/* step 6 & 7. Program Descriptor Ring Base Addresses. */
|
|
/* NOTE: we use only 32-bit DMA addresses here. */
|
|
bus_write_4(sc->sc_res[0], GEM_TX_RING_PTR_HI, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
|
|
|
|
bus_write_4(sc->sc_res[0], GEM_RX_RING_PTR_HI, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
|
|
#ifdef GEM_DEBUG
|
|
CTR3(KTR_GEM, "loading RX ring %lx, TX ring %lx, cddma %lx",
|
|
GEM_CDRXADDR(sc, 0), GEM_CDTXADDR(sc, 0), sc->sc_cddma);
|
|
#endif
|
|
|
|
/* step 8. Global Configuration & Interrupt Mask */
|
|
bus_write_4(sc->sc_res[0], GEM_INTMASK,
|
|
~(GEM_INTR_TX_INTME | GEM_INTR_TX_EMPTY | GEM_INTR_RX_DONE |
|
|
GEM_INTR_RX_NOBUF | GEM_INTR_RX_TAG_ERR | GEM_INTR_PERR |
|
|
GEM_INTR_BERR
|
|
#ifdef GEM_DEBUG
|
|
| GEM_INTR_PCS | GEM_INTR_MIF
|
|
#endif
|
|
));
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_RX_MASK,
|
|
GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_TX_MASK,
|
|
GEM_MAC_TX_XMIT_DONE | GEM_MAC_TX_DEFER_EXP);
|
|
#ifdef GEM_DEBUG
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_CONTROL_MASK,
|
|
~(GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME));
|
|
#else
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_CONTROL_MASK,
|
|
GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
|
|
#endif
|
|
|
|
/* step 9. ETX Configuration: use mostly default values. */
|
|
|
|
/* Enable DMA. */
|
|
v = gem_ringsize(GEM_NTXDESC /* XXX */);
|
|
bus_write_4(sc->sc_res[0], GEM_TX_CONFIG,
|
|
v | GEM_TX_CONFIG_TXDMA_EN |
|
|
((0x400 << 10) & GEM_TX_CONFIG_TXFIFO_TH));
|
|
|
|
/* step 10. ERX Configuration */
|
|
|
|
/* Encode Receive Descriptor ring size. */
|
|
v = gem_ringsize(GEM_NRXDESC /* XXX */);
|
|
/* RX TCP/UDP checksum offset */
|
|
v |= ((ETHER_HDR_LEN + sizeof(struct ip)) <<
|
|
GEM_RX_CONFIG_CXM_START_SHFT);
|
|
|
|
/* Enable DMA. */
|
|
bus_write_4(sc->sc_res[0], GEM_RX_CONFIG,
|
|
v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
|
|
(2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
|
|
|
|
bus_write_4(sc->sc_res[0], GEM_RX_BLANKING,
|
|
(6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
|
|
|
|
/*
|
|
* The following value is for an OFF Threshold of about 3/4 full
|
|
* and an ON Threshold of 1/4 full.
|
|
*/
|
|
bus_write_4(sc->sc_res[0], GEM_RX_PAUSE_THRESH,
|
|
(3 * sc->sc_rxfifosize / 256) |
|
|
((sc->sc_rxfifosize / 256) << 12));
|
|
|
|
/* step 11. Configure Media. */
|
|
|
|
/* step 12. RX_MAC Configuration Register */
|
|
v = bus_read_4(sc->sc_res[0], GEM_MAC_RX_CONFIG);
|
|
v |= GEM_MAC_RX_STRIP_CRC;
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, 0);
|
|
bus_barrier(sc->sc_res[0], GEM_MAC_RX_CONFIG, 4,
|
|
BUS_SPACE_BARRIER_WRITE);
|
|
if (!gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
|
|
device_printf(sc->sc_dev, "cannot disable RX MAC\n");
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, v);
|
|
|
|
/* step 14. Issue Transmit Pending command. */
|
|
|
|
/* step 15. Give the reciever a swift kick. */
|
|
bus_write_4(sc->sc_res[0], GEM_RX_KICK, GEM_NRXDESC - 4);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
sc->sc_ifflags = ifp->if_flags;
|
|
|
|
sc->sc_flags &= ~GEM_LINK;
|
|
mii_mediachg(sc->sc_mii);
|
|
|
|
/* Start the one second timer. */
|
|
sc->sc_wdog_timer = 0;
|
|
callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
|
|
}
|
|
|
|
static int
|
|
gem_load_txmbuf(struct gem_softc *sc, struct mbuf **m_head)
|
|
{
|
|
bus_dma_segment_t txsegs[GEM_NTXSEGS];
|
|
struct gem_txsoft *txs;
|
|
struct mbuf *m;
|
|
uint64_t cflags, flags;
|
|
int error, nexttx, nsegs, seg;
|
|
|
|
/* Get a work queue entry. */
|
|
if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
|
|
/* Ran out of descriptors. */
|
|
return (ENOBUFS);
|
|
}
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, txs->txs_dmamap,
|
|
*m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
m = m_collapse(*m_head, M_DONTWAIT, GEM_NTXSEGS);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_head = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag,
|
|
txs->txs_dmamap, *m_head, txsegs, &nsegs,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error != 0)
|
|
return (error);
|
|
if (nsegs == 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (EIO);
|
|
}
|
|
|
|
/*
|
|
* Ensure we have enough descriptors free to describe
|
|
* the packet. Note, we always reserve one descriptor
|
|
* at the end of the ring as a termination point, in
|
|
* order to prevent wrap-around.
|
|
*/
|
|
if (nsegs > sc->sc_txfree - 1) {
|
|
txs->txs_ndescs = 0;
|
|
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
flags = cflags = 0;
|
|
if (((*m_head)->m_pkthdr.csum_flags & sc->sc_csum_features) != 0)
|
|
gem_txcksum(sc, *m_head, &cflags);
|
|
|
|
txs->txs_ndescs = nsegs;
|
|
txs->txs_firstdesc = sc->sc_txnext;
|
|
nexttx = txs->txs_firstdesc;
|
|
for (seg = 0; seg < nsegs; seg++, nexttx = GEM_NEXTTX(nexttx)) {
|
|
#ifdef GEM_DEBUG
|
|
CTR6(KTR_GEM,
|
|
"%s: mapping seg %d (txd %d), len %lx, addr %#lx (%#lx)",
|
|
__func__, seg, nexttx, txsegs[seg].ds_len,
|
|
txsegs[seg].ds_addr,
|
|
GEM_DMA_WRITE(sc, txsegs[seg].ds_addr));
|
|
#endif
|
|
sc->sc_txdescs[nexttx].gd_addr =
|
|
GEM_DMA_WRITE(sc, txsegs[seg].ds_addr);
|
|
KASSERT(txsegs[seg].ds_len < GEM_TD_BUFSIZE,
|
|
("%s: segment size too large!", __func__));
|
|
flags = txsegs[seg].ds_len & GEM_TD_BUFSIZE;
|
|
sc->sc_txdescs[nexttx].gd_flags =
|
|
GEM_DMA_WRITE(sc, flags | cflags);
|
|
txs->txs_lastdesc = nexttx;
|
|
}
|
|
|
|
/* Set EOP on the last descriptor. */
|
|
#ifdef GEM_DEBUG
|
|
CTR3(KTR_GEM, "%s: end of packet at segment %d, TX %d",
|
|
__func__, seg, nexttx);
|
|
#endif
|
|
sc->sc_txdescs[txs->txs_lastdesc].gd_flags |=
|
|
GEM_DMA_WRITE(sc, GEM_TD_END_OF_PACKET);
|
|
|
|
/* Lastly set SOP on the first descriptor. */
|
|
#ifdef GEM_DEBUG
|
|
CTR3(KTR_GEM, "%s: start of packet at segment %d, TX %d",
|
|
__func__, seg, nexttx);
|
|
#endif
|
|
if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
|
|
sc->sc_txwin = 0;
|
|
flags |= GEM_TD_INTERRUPT_ME;
|
|
sc->sc_txdescs[txs->txs_firstdesc].gd_flags |=
|
|
GEM_DMA_WRITE(sc, GEM_TD_INTERRUPT_ME |
|
|
GEM_TD_START_OF_PACKET);
|
|
} else
|
|
sc->sc_txdescs[txs->txs_firstdesc].gd_flags |=
|
|
GEM_DMA_WRITE(sc, GEM_TD_START_OF_PACKET);
|
|
|
|
/* Sync the DMA map. */
|
|
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
#ifdef GEM_DEBUG
|
|
CTR4(KTR_GEM, "%s: setting firstdesc=%d, lastdesc=%d, ndescs=%d",
|
|
__func__, txs->txs_firstdesc, txs->txs_lastdesc,
|
|
txs->txs_ndescs);
|
|
#endif
|
|
STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
|
|
STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
|
|
txs->txs_mbuf = *m_head;
|
|
|
|
sc->sc_txnext = GEM_NEXTTX(txs->txs_lastdesc);
|
|
sc->sc_txfree -= txs->txs_ndescs;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
gem_init_regs(struct gem_softc *sc)
|
|
{
|
|
const u_char *laddr = IF_LLADDR(sc->sc_ifp);
|
|
|
|
/* These registers are not cleared on reset. */
|
|
if ((sc->sc_flags & GEM_INITED) == 0) {
|
|
/* magic values */
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_IPG0, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_IPG1, 8);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_IPG2, 4);
|
|
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_MAC_MIN_FRAME,
|
|
ETHER_MIN_LEN);
|
|
/* max frame and max burst size */
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_MAC_MAX_FRAME,
|
|
(ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) | (0x2000 << 16));
|
|
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_PREAMBLE_LEN, 0x7);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_JAM_SIZE, 0x4);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_ATTEMPT_LIMIT, 0x10);
|
|
/* dunno... */
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_CONTROL_TYPE, 0x8088);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_RANDOM_SEED,
|
|
((laddr[5] << 8) | laddr[4]) & 0x3ff);
|
|
|
|
/* secondary MAC address: 0:0:0:0:0:0 */
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_ADDR3, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_ADDR4, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_ADDR5, 0);
|
|
|
|
/* MAC control address: 01:80:c2:00:00:01 */
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_ADDR6, 0x0001);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_ADDR7, 0xc200);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_ADDR8, 0x0180);
|
|
|
|
/* MAC filter address: 0:0:0:0:0:0 */
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_ADDR_FILTER0, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_ADDR_FILTER1, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_ADDR_FILTER2, 0);
|
|
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_ADR_FLT_MASK1_2, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_ADR_FLT_MASK0, 0);
|
|
|
|
sc->sc_flags |= GEM_INITED;
|
|
}
|
|
|
|
/* Counters need to be zeroed. */
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_NORM_COLL_CNT, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_FIRST_COLL_CNT, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_EXCESS_COLL_CNT, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_LATE_COLL_CNT, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_DEFER_TMR_CNT, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_PEAK_ATTEMPTS, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_RX_FRAME_COUNT, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_RX_LEN_ERR_CNT, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_RX_ALIGN_ERR, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_RX_CRC_ERR_CNT, 0);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_RX_CODE_VIOL, 0);
|
|
|
|
/* Set XOFF PAUSE time. */
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
|
|
|
|
/*
|
|
* Set the internal arbitration to "infinite" bursts of the
|
|
* maximum length of 31 * 64 bytes so DMA transfers aren't
|
|
* split up in cache line size chunks. This greatly improves
|
|
* especially RX performance.
|
|
* Enable silicon bug workarounds for the Apple variants.
|
|
*/
|
|
bus_write_4(sc->sc_res[0], GEM_CONFIG,
|
|
GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
|
|
GEM_CONFIG_BURST_INF | (GEM_IS_APPLE(sc) ?
|
|
GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
|
|
|
|
/* Set the station address. */
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_ADDR0,
|
|
(laddr[4] << 8) | laddr[5]);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_ADDR1,
|
|
(laddr[2] << 8) | laddr[3]);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_ADDR2,
|
|
(laddr[0] << 8) | laddr[1]);
|
|
|
|
/* Enable MII outputs. */
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_XIF_CONFIG,
|
|
GEM_MAC_XIF_TX_MII_ENA);
|
|
}
|
|
|
|
static void
|
|
gem_start(struct ifnet *ifp)
|
|
{
|
|
struct gem_softc *sc = ifp->if_softc;
|
|
|
|
GEM_LOCK(sc);
|
|
gem_start_locked(ifp);
|
|
GEM_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
gem_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct gem_softc *sc = ifp->if_softc;
|
|
struct mbuf *m;
|
|
int ntx;
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING || (sc->sc_flags & GEM_LINK) == 0)
|
|
return;
|
|
|
|
#ifdef GEM_DEBUG
|
|
CTR4(KTR_GEM, "%s: %s: txfree %d, txnext %d",
|
|
device_get_name(sc->sc_dev), __func__, sc->sc_txfree,
|
|
sc->sc_txnext);
|
|
#endif
|
|
ntx = 0;
|
|
for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->sc_txfree > 1;) {
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
|
|
if (m == NULL)
|
|
break;
|
|
if (gem_load_txmbuf(sc, &m) != 0) {
|
|
if (m == NULL)
|
|
break;
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m);
|
|
break;
|
|
}
|
|
ntx++;
|
|
/* Kick the transmitter. */
|
|
#ifdef GEM_DEBUG
|
|
CTR3(KTR_GEM, "%s: %s: kicking TX %d",
|
|
device_get_name(sc->sc_dev), __func__, sc->sc_txnext);
|
|
#endif
|
|
GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
|
|
bus_write_4(sc->sc_res[0], GEM_TX_KICK, sc->sc_txnext);
|
|
|
|
BPF_MTAP(ifp, m);
|
|
}
|
|
|
|
if (ntx > 0) {
|
|
#ifdef GEM_DEBUG
|
|
CTR2(KTR_GEM, "%s: packets enqueued, OWN on %d",
|
|
device_get_name(sc->sc_dev), sc->sc_txnext);
|
|
#endif
|
|
|
|
/* Set a watchdog timer in case the chip flakes out. */
|
|
sc->sc_wdog_timer = 5;
|
|
#ifdef GEM_DEBUG
|
|
CTR3(KTR_GEM, "%s: %s: watchdog %d",
|
|
device_get_name(sc->sc_dev), __func__,
|
|
sc->sc_wdog_timer);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void
|
|
gem_tint(struct gem_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct gem_txsoft *txs;
|
|
int txlast, progress;
|
|
#ifdef GEM_DEBUG
|
|
int i;
|
|
|
|
CTR2(KTR_GEM, "%s: %s", device_get_name(sc->sc_dev), __func__);
|
|
#endif
|
|
|
|
/*
|
|
* Go through our TX list and free mbufs for those
|
|
* frames that have been transmitted.
|
|
*/
|
|
progress = 0;
|
|
GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
|
|
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
|
|
|
|
#ifdef GEM_DEBUG
|
|
if ((ifp->if_flags & IFF_DEBUG) != 0) {
|
|
printf(" txsoft %p transmit chain:\n", txs);
|
|
for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
|
|
printf("descriptor %d: ", i);
|
|
printf("gd_flags: 0x%016llx\t",
|
|
(long long)GEM_DMA_READ(sc,
|
|
sc->sc_txdescs[i].gd_flags));
|
|
printf("gd_addr: 0x%016llx\n",
|
|
(long long)GEM_DMA_READ(sc,
|
|
sc->sc_txdescs[i].gd_addr));
|
|
if (i == txs->txs_lastdesc)
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* In theory, we could harvest some descriptors before
|
|
* the ring is empty, but that's a bit complicated.
|
|
*
|
|
* GEM_TX_COMPLETION points to the last descriptor
|
|
* processed + 1.
|
|
*/
|
|
txlast = bus_read_4(sc->sc_res[0], GEM_TX_COMPLETION);
|
|
#ifdef GEM_DEBUG
|
|
CTR4(KTR_GEM, "%s: txs->txs_firstdesc = %d, "
|
|
"txs->txs_lastdesc = %d, txlast = %d",
|
|
__func__, txs->txs_firstdesc, txs->txs_lastdesc, txlast);
|
|
#endif
|
|
if (txs->txs_firstdesc <= txs->txs_lastdesc) {
|
|
if ((txlast >= txs->txs_firstdesc) &&
|
|
(txlast <= txs->txs_lastdesc))
|
|
break;
|
|
} else {
|
|
/* Ick -- this command wraps. */
|
|
if ((txlast >= txs->txs_firstdesc) ||
|
|
(txlast <= txs->txs_lastdesc))
|
|
break;
|
|
}
|
|
|
|
#ifdef GEM_DEBUG
|
|
CTR1(KTR_GEM, "%s: releasing a descriptor", __func__);
|
|
#endif
|
|
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
|
|
|
|
sc->sc_txfree += txs->txs_ndescs;
|
|
|
|
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
|
|
if (txs->txs_mbuf != NULL) {
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
|
|
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
|
|
ifp->if_opackets++;
|
|
progress = 1;
|
|
}
|
|
|
|
#ifdef GEM_DEBUG
|
|
CTR4(KTR_GEM, "%s: GEM_TX_STATE_MACHINE %x GEM_TX_DATA_PTR %llx "
|
|
"GEM_TX_COMPLETION %x",
|
|
__func__, bus_read_4(sc->sc_res[0], GEM_TX_STATE_MACHINE),
|
|
((long long)bus_read_4(sc->sc_res[0],
|
|
GEM_TX_DATA_PTR_HI) << 32) |
|
|
bus_read_4(sc->sc_res[0], GEM_TX_DATA_PTR_LO),
|
|
bus_read_4(sc->sc_res[0], GEM_TX_COMPLETION));
|
|
#endif
|
|
|
|
if (progress) {
|
|
if (sc->sc_txfree == GEM_NTXDESC - 1)
|
|
sc->sc_txwin = 0;
|
|
|
|
/*
|
|
* We freed some descriptors, so reset IFF_DRV_OACTIVE
|
|
* and restart.
|
|
*/
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
sc->sc_wdog_timer = STAILQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
|
|
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
gem_start_locked(ifp);
|
|
}
|
|
|
|
#ifdef GEM_DEBUG
|
|
CTR3(KTR_GEM, "%s: %s: watchdog %d",
|
|
device_get_name(sc->sc_dev), __func__, sc->sc_wdog_timer);
|
|
#endif
|
|
}
|
|
|
|
#ifdef GEM_RINT_TIMEOUT
|
|
static void
|
|
gem_rint_timeout(void *arg)
|
|
{
|
|
struct gem_softc *sc = arg;
|
|
|
|
GEM_LOCK_ASSERT(sc, MA_OWNED);
|
|
gem_rint(sc);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
gem_rint(struct gem_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct mbuf *m;
|
|
uint64_t rxstat;
|
|
uint32_t rxcomp;
|
|
|
|
#ifdef GEM_RINT_TIMEOUT
|
|
callout_stop(&sc->sc_rx_ch);
|
|
#endif
|
|
#ifdef GEM_DEBUG
|
|
CTR2(KTR_GEM, "%s: %s", device_get_name(sc->sc_dev), __func__);
|
|
#endif
|
|
|
|
/*
|
|
* Read the completion register once. This limits
|
|
* how long the following loop can execute.
|
|
*/
|
|
rxcomp = bus_read_4(sc->sc_res[0], GEM_RX_COMPLETION);
|
|
|
|
#ifdef GEM_DEBUG
|
|
CTR3(KTR_GEM, "%s: sc->rxptr %d, complete %d",
|
|
__func__, sc->sc_rxptr, rxcomp);
|
|
#endif
|
|
GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
|
|
for (; sc->sc_rxptr != rxcomp;) {
|
|
m = sc->sc_rxsoft[sc->sc_rxptr].rxs_mbuf;
|
|
rxstat = GEM_DMA_READ(sc,
|
|
sc->sc_rxdescs[sc->sc_rxptr].gd_flags);
|
|
|
|
if (rxstat & GEM_RD_OWN) {
|
|
#ifdef GEM_RINT_TIMEOUT
|
|
/*
|
|
* The descriptor is still marked as owned, although
|
|
* it is supposed to have completed. This has been
|
|
* observed on some machines. Just exiting here
|
|
* might leave the packet sitting around until another
|
|
* one arrives to trigger a new interrupt, which is
|
|
* generally undesirable, so set up a timeout.
|
|
*/
|
|
callout_reset(&sc->sc_rx_ch, GEM_RXOWN_TICKS,
|
|
gem_rint_timeout, sc);
|
|
#endif
|
|
m = NULL;
|
|
goto kickit;
|
|
}
|
|
|
|
if (rxstat & GEM_RD_BAD_CRC) {
|
|
ifp->if_ierrors++;
|
|
device_printf(sc->sc_dev, "receive error: CRC error\n");
|
|
GEM_INIT_RXDESC(sc, sc->sc_rxptr);
|
|
m = NULL;
|
|
goto kickit;
|
|
}
|
|
|
|
#ifdef GEM_DEBUG
|
|
if ((ifp->if_flags & IFF_DEBUG) != 0) {
|
|
printf(" rxsoft %p descriptor %d: ",
|
|
&sc->sc_rxsoft[sc->sc_rxptr], sc->sc_rxptr);
|
|
printf("gd_flags: 0x%016llx\t",
|
|
(long long)GEM_DMA_READ(sc,
|
|
sc->sc_rxdescs[sc->sc_rxptr].gd_flags));
|
|
printf("gd_addr: 0x%016llx\n",
|
|
(long long)GEM_DMA_READ(sc,
|
|
sc->sc_rxdescs[sc->sc_rxptr].gd_addr));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Allocate a new mbuf cluster. If that fails, we are
|
|
* out of memory, and must drop the packet and recycle
|
|
* the buffer that's already attached to this descriptor.
|
|
*/
|
|
if (gem_add_rxbuf(sc, sc->sc_rxptr) != 0) {
|
|
ifp->if_ierrors++;
|
|
GEM_INIT_RXDESC(sc, sc->sc_rxptr);
|
|
m = NULL;
|
|
}
|
|
|
|
kickit:
|
|
/*
|
|
* Update the RX kick register. This register has to point
|
|
* to the descriptor after the last valid one (before the
|
|
* current batch) and must be incremented in multiples of
|
|
* 4 (because the DMA engine fetches/updates descriptors
|
|
* in batches of 4).
|
|
*/
|
|
sc->sc_rxptr = GEM_NEXTRX(sc->sc_rxptr);
|
|
if ((sc->sc_rxptr % 4) == 0) {
|
|
GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
|
|
bus_write_4(sc->sc_res[0], GEM_RX_KICK,
|
|
(sc->sc_rxptr + GEM_NRXDESC - 4) &
|
|
GEM_NRXDESC_MASK);
|
|
}
|
|
|
|
if (m == NULL) {
|
|
if (rxstat & GEM_RD_OWN)
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
ifp->if_ipackets++;
|
|
m->m_data += 2; /* We're already off by two */
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = GEM_RD_BUFLEN(rxstat);
|
|
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
|
|
gem_rxcksum(m, rxstat);
|
|
|
|
/* Pass it on. */
|
|
GEM_UNLOCK(sc);
|
|
(*ifp->if_input)(ifp, m);
|
|
GEM_LOCK(sc);
|
|
}
|
|
|
|
#ifdef GEM_DEBUG
|
|
CTR3(KTR_GEM, "%s: done sc->rxptr %d, complete %d", __func__,
|
|
sc->sc_rxptr, bus_read_4(sc->sc_res[0], GEM_RX_COMPLETION));
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
gem_add_rxbuf(struct gem_softc *sc, int idx)
|
|
{
|
|
struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
int error, nsegs;
|
|
|
|
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
|
|
|
|
#ifdef GEM_DEBUG
|
|
/* Bzero the packet to check DMA. */
|
|
memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
|
|
#endif
|
|
|
|
if (rxs->rxs_mbuf != NULL) {
|
|
bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_rdmatag, rxs->rxs_dmamap);
|
|
}
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_rdmatag, rxs->rxs_dmamap,
|
|
m, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
KASSERT(nsegs == 1, ("Too many segments returned!"));
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"cannot load RS DMA map %d, error = %d\n", idx, error);
|
|
m_freem(m);
|
|
return (error);
|
|
}
|
|
/* If nsegs is wrong then the stack is corrupt. */
|
|
rxs->rxs_mbuf = m;
|
|
rxs->rxs_paddr = segs[0].ds_addr;
|
|
|
|
bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap,
|
|
BUS_DMASYNC_PREREAD);
|
|
|
|
GEM_INIT_RXDESC(sc, idx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
gem_eint(struct gem_softc *sc, u_int status)
|
|
{
|
|
|
|
sc->sc_ifp->if_ierrors++;
|
|
if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
|
|
gem_reset_rxdma(sc);
|
|
return;
|
|
}
|
|
|
|
device_printf(sc->sc_dev, "%s: status=%x\n", __func__, status);
|
|
}
|
|
|
|
void
|
|
gem_intr(void *v)
|
|
{
|
|
struct gem_softc *sc = v;
|
|
uint32_t status, status2;
|
|
|
|
GEM_LOCK(sc);
|
|
status = bus_read_4(sc->sc_res[0], GEM_STATUS);
|
|
|
|
#ifdef GEM_DEBUG
|
|
CTR4(KTR_GEM, "%s: %s: cplt %x, status %x",
|
|
device_get_name(sc->sc_dev), __func__, (status >> 19),
|
|
(u_int)status);
|
|
|
|
/*
|
|
* PCS interrupts must be cleared, otherwise no traffic is passed!
|
|
*/
|
|
if ((status & GEM_INTR_PCS) != 0) {
|
|
status2 =
|
|
bus_read_4(sc->sc_res[0], GEM_MII_INTERRUP_STATUS) |
|
|
bus_read_4(sc->sc_res[0], GEM_MII_INTERRUP_STATUS);
|
|
if ((status2 & GEM_MII_INTERRUP_LINK) != 0)
|
|
device_printf(sc->sc_dev,
|
|
"%s: PCS link status changed\n", __func__);
|
|
}
|
|
if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
|
|
status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
|
|
if ((status2 & GEM_MAC_PAUSED) != 0)
|
|
device_printf(sc->sc_dev,
|
|
"%s: PAUSE received (PAUSE time %d slots)\n",
|
|
__func__, GEM_MAC_PAUSE_TIME(status2));
|
|
if ((status2 & GEM_MAC_PAUSE) != 0)
|
|
device_printf(sc->sc_dev,
|
|
"%s: transited to PAUSE state\n", __func__);
|
|
if ((status2 & GEM_MAC_RESUME) != 0)
|
|
device_printf(sc->sc_dev,
|
|
"%s: transited to non-PAUSE state\n", __func__);
|
|
}
|
|
if ((status & GEM_INTR_MIF) != 0)
|
|
device_printf(sc->sc_dev, "%s: MIF interrupt\n", __func__);
|
|
#endif
|
|
|
|
if ((status &
|
|
(GEM_INTR_RX_TAG_ERR | GEM_INTR_PERR | GEM_INTR_BERR)) != 0)
|
|
gem_eint(sc, status);
|
|
|
|
if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
|
|
gem_rint(sc);
|
|
|
|
if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0)
|
|
gem_tint(sc);
|
|
|
|
if (status & GEM_INTR_TX_MAC) {
|
|
status2 = bus_read_4(sc->sc_res[0], GEM_MAC_TX_STATUS);
|
|
if ((status2 &
|
|
~(GEM_MAC_TX_XMIT_DONE | GEM_MAC_TX_DEFER_EXP)) != 0)
|
|
device_printf(sc->sc_dev,
|
|
"MAC TX fault, status %x\n", status2);
|
|
if ((status2 &
|
|
(GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG)) != 0)
|
|
gem_init_locked(sc);
|
|
}
|
|
if (status & GEM_INTR_RX_MAC) {
|
|
status2 = bus_read_4(sc->sc_res[0], GEM_MAC_RX_STATUS);
|
|
/*
|
|
* At least with GEM_SUN_GEM and some GEM_SUN_ERI
|
|
* revisions GEM_MAC_RX_OVERFLOW happen often due to a
|
|
* silicon bug so handle them silently. Moreover, it's
|
|
* likely that the receiver has hung so we reset it.
|
|
*/
|
|
if ((status2 & GEM_MAC_RX_OVERFLOW) != 0) {
|
|
sc->sc_ifp->if_ierrors++;
|
|
gem_reset_rxdma(sc);
|
|
} else if ((status2 &
|
|
~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT)) != 0)
|
|
device_printf(sc->sc_dev,
|
|
"MAC RX fault, status %x\n", status2);
|
|
}
|
|
GEM_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
gem_watchdog(struct gem_softc *sc)
|
|
{
|
|
|
|
GEM_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
#ifdef GEM_DEBUG
|
|
CTR4(KTR_GEM,
|
|
"%s: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x GEM_MAC_RX_CONFIG %x",
|
|
__func__, bus_read_4(sc->sc_res[0], GEM_RX_CONFIG),
|
|
bus_read_4(sc->sc_res[0], GEM_MAC_RX_STATUS),
|
|
bus_read_4(sc->sc_res[0], GEM_MAC_RX_CONFIG));
|
|
CTR4(KTR_GEM,
|
|
"%s: GEM_TX_CONFIG %x GEM_MAC_TX_STATUS %x GEM_MAC_TX_CONFIG %x",
|
|
__func__, bus_read_4(sc->sc_res[0], GEM_TX_CONFIG),
|
|
bus_read_4(sc->sc_res[0], GEM_MAC_TX_STATUS),
|
|
bus_read_4(sc->sc_res[0], GEM_MAC_TX_CONFIG));
|
|
#endif
|
|
|
|
if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0)
|
|
return (0);
|
|
|
|
if ((sc->sc_flags & GEM_LINK) != 0)
|
|
device_printf(sc->sc_dev, "device timeout\n");
|
|
else if (bootverbose)
|
|
device_printf(sc->sc_dev, "device timeout (no link)\n");
|
|
++sc->sc_ifp->if_oerrors;
|
|
|
|
/* Try to get more packets going. */
|
|
gem_init_locked(sc);
|
|
return (EJUSTRETURN);
|
|
}
|
|
|
|
static void
|
|
gem_mifinit(struct gem_softc *sc)
|
|
{
|
|
|
|
/* Configure the MIF in frame mode */
|
|
bus_write_4(sc->sc_res[0], GEM_MIF_CONFIG, bus_read_4(sc->sc_res[0],
|
|
GEM_MIF_CONFIG) & ~GEM_MIF_CONFIG_BB_ENA);
|
|
}
|
|
|
|
/*
|
|
* MII interface
|
|
*
|
|
* The GEM MII interface supports at least three different operating modes:
|
|
*
|
|
* Bitbang mode is implemented using data, clock and output enable registers.
|
|
*
|
|
* Frame mode is implemented by loading a complete frame into the frame
|
|
* register and polling the valid bit for completion.
|
|
*
|
|
* Polling mode uses the frame register but completion is indicated by
|
|
* an interrupt.
|
|
*
|
|
*/
|
|
int
|
|
gem_mii_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct gem_softc *sc;
|
|
int n;
|
|
uint32_t v;
|
|
|
|
#ifdef GEM_DEBUG_PHY
|
|
printf("%s: phy %d reg %d\n", __func__, phy, reg);
|
|
#endif
|
|
|
|
sc = device_get_softc(dev);
|
|
if (sc->sc_phyad != -1 && phy != sc->sc_phyad)
|
|
return (0);
|
|
|
|
if ((sc->sc_flags & GEM_SERDES) != 0) {
|
|
switch (reg) {
|
|
case MII_BMCR:
|
|
reg = GEM_MII_CONTROL;
|
|
break;
|
|
case MII_BMSR:
|
|
reg = GEM_MII_STATUS;
|
|
break;
|
|
case MII_PHYIDR1:
|
|
case MII_PHYIDR2:
|
|
return (0);
|
|
case MII_ANAR:
|
|
reg = GEM_MII_ANAR;
|
|
break;
|
|
case MII_ANLPAR:
|
|
reg = GEM_MII_ANLPAR;
|
|
break;
|
|
case MII_EXTSR:
|
|
return (EXTSR_1000XFDX | EXTSR_1000XHDX);
|
|
default:
|
|
device_printf(sc->sc_dev,
|
|
"%s: unhandled register %d\n", __func__, reg);
|
|
return (0);
|
|
}
|
|
return (bus_read_4(sc->sc_res[0], reg));
|
|
}
|
|
|
|
/* Construct the frame command. */
|
|
v = GEM_MIF_FRAME_READ |
|
|
(phy << GEM_MIF_PHY_SHIFT) |
|
|
(reg << GEM_MIF_REG_SHIFT);
|
|
|
|
bus_write_4(sc->sc_res[0], GEM_MIF_FRAME, v);
|
|
for (n = 0; n < 100; n++) {
|
|
DELAY(1);
|
|
v = bus_read_4(sc->sc_res[0], GEM_MIF_FRAME);
|
|
if (v & GEM_MIF_FRAME_TA0)
|
|
return (v & GEM_MIF_FRAME_DATA);
|
|
}
|
|
|
|
device_printf(sc->sc_dev, "%s: timed out\n", __func__);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
gem_mii_writereg(device_t dev, int phy, int reg, int val)
|
|
{
|
|
struct gem_softc *sc;
|
|
int n;
|
|
uint32_t v;
|
|
|
|
#ifdef GEM_DEBUG_PHY
|
|
printf("%s: phy %d reg %d val %x\n", phy, reg, val, __func__);
|
|
#endif
|
|
|
|
sc = device_get_softc(dev);
|
|
if (sc->sc_phyad != -1 && phy != sc->sc_phyad)
|
|
return (0);
|
|
|
|
if ((sc->sc_flags & GEM_SERDES) != 0) {
|
|
switch (reg) {
|
|
case MII_BMCR:
|
|
reg = GEM_MII_CONTROL;
|
|
break;
|
|
case MII_BMSR:
|
|
reg = GEM_MII_STATUS;
|
|
break;
|
|
case MII_ANAR:
|
|
bus_write_4(sc->sc_res[0], GEM_MII_CONFIG, 0);
|
|
bus_barrier(sc->sc_res[0], GEM_MII_CONFIG, 4,
|
|
BUS_SPACE_BARRIER_WRITE);
|
|
bus_write_4(sc->sc_res[0], GEM_MII_ANAR, val);
|
|
bus_write_4(sc->sc_res[0], GEM_MII_SLINK_CONTROL,
|
|
GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_EN_SYNC_D);
|
|
bus_write_4(sc->sc_res[0], GEM_MII_CONFIG,
|
|
GEM_MII_CONFIG_ENABLE);
|
|
return (0);
|
|
case MII_ANLPAR:
|
|
reg = GEM_MII_ANLPAR;
|
|
break;
|
|
default:
|
|
device_printf(sc->sc_dev,
|
|
"%s: unhandled register %d\n", __func__, reg);
|
|
return (0);
|
|
}
|
|
bus_write_4(sc->sc_res[0], reg, val);
|
|
return (0);
|
|
}
|
|
|
|
/* Construct the frame command. */
|
|
v = GEM_MIF_FRAME_WRITE |
|
|
(phy << GEM_MIF_PHY_SHIFT) |
|
|
(reg << GEM_MIF_REG_SHIFT) |
|
|
(val & GEM_MIF_FRAME_DATA);
|
|
|
|
bus_write_4(sc->sc_res[0], GEM_MIF_FRAME, v);
|
|
for (n = 0; n < 100; n++) {
|
|
DELAY(1);
|
|
v = bus_read_4(sc->sc_res[0], GEM_MIF_FRAME);
|
|
if (v & GEM_MIF_FRAME_TA0)
|
|
return (1);
|
|
}
|
|
|
|
device_printf(sc->sc_dev, "%s: timed out\n", __func__);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
gem_mii_statchg(device_t dev)
|
|
{
|
|
struct gem_softc *sc;
|
|
int gigabit;
|
|
uint32_t rxcfg, txcfg, v;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
#ifdef GEM_DEBUG
|
|
if ((sc->sc_ifp->if_flags & IFF_DEBUG) != 0)
|
|
device_printf(sc->sc_dev, "%s: status change: PHY = %d\n",
|
|
__func__, sc->sc_phyad);
|
|
#endif
|
|
|
|
if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 &&
|
|
IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE)
|
|
sc->sc_flags |= GEM_LINK;
|
|
else
|
|
sc->sc_flags &= ~GEM_LINK;
|
|
|
|
switch (IFM_SUBTYPE(sc->sc_mii->mii_media_active)) {
|
|
case IFM_1000_SX:
|
|
case IFM_1000_LX:
|
|
case IFM_1000_CX:
|
|
case IFM_1000_T:
|
|
gigabit = 1;
|
|
break;
|
|
default:
|
|
gigabit = 0;
|
|
}
|
|
|
|
/*
|
|
* The configuration done here corresponds to the steps F) and
|
|
* G) and as far as enabling of RX and TX MAC goes also step H)
|
|
* of the initialization sequence outlined in section 3.2.1 of
|
|
* the GEM Gigabit Ethernet ASIC Specification.
|
|
*/
|
|
|
|
rxcfg = bus_read_4(sc->sc_res[0], GEM_MAC_RX_CONFIG);
|
|
rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
|
|
txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
|
|
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
|
|
txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
|
|
else if (gigabit != 0) {
|
|
rxcfg |= GEM_MAC_RX_CARR_EXTEND;
|
|
txcfg |= GEM_MAC_TX_CARR_EXTEND;
|
|
}
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_TX_CONFIG, 0);
|
|
bus_barrier(sc->sc_res[0], GEM_MAC_TX_CONFIG, 4,
|
|
BUS_SPACE_BARRIER_WRITE);
|
|
if (!gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
|
|
device_printf(sc->sc_dev, "cannot disable TX MAC\n");
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_TX_CONFIG, txcfg);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, 0);
|
|
bus_barrier(sc->sc_res[0], GEM_MAC_RX_CONFIG, 4,
|
|
BUS_SPACE_BARRIER_WRITE);
|
|
if (!gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
|
|
device_printf(sc->sc_dev, "cannot disable RX MAC\n");
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, rxcfg);
|
|
|
|
v = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_CONFIG) &
|
|
~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
|
|
#ifdef notyet
|
|
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
|
|
IFM_ETH_RXPAUSE) != 0)
|
|
v |= GEM_MAC_CC_RX_PAUSE;
|
|
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
|
|
IFM_ETH_TXPAUSE) != 0)
|
|
v |= GEM_MAC_CC_TX_PAUSE;
|
|
#endif
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_CONTROL_CONFIG, v);
|
|
|
|
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0 &&
|
|
gigabit != 0)
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_SLOT_TIME,
|
|
GEM_MAC_SLOT_TIME_CARR_EXTEND);
|
|
else
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_SLOT_TIME,
|
|
GEM_MAC_SLOT_TIME_NORMAL);
|
|
|
|
/* XIF Configuration */
|
|
v = GEM_MAC_XIF_LINK_LED;
|
|
v |= GEM_MAC_XIF_TX_MII_ENA;
|
|
if ((sc->sc_flags & GEM_SERDES) == 0) {
|
|
if ((bus_read_4(sc->sc_res[0], GEM_MIF_CONFIG) &
|
|
GEM_MIF_CONFIG_PHY_SEL) != 0 &&
|
|
(IFM_OPTIONS(sc->sc_mii->mii_media_active) &
|
|
IFM_FDX) == 0)
|
|
/* External MII needs echo disable if half duplex. */
|
|
v |= GEM_MAC_XIF_ECHO_DISABL;
|
|
else
|
|
/*
|
|
* Internal MII needs buffer enable.
|
|
* XXX buffer enable makes only sense for an
|
|
* external PHY.
|
|
*/
|
|
v |= GEM_MAC_XIF_MII_BUF_ENA;
|
|
}
|
|
if (gigabit != 0)
|
|
v |= GEM_MAC_XIF_GMII_MODE;
|
|
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
|
|
v |= GEM_MAC_XIF_FDPLX_LED;
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_XIF_CONFIG, v);
|
|
|
|
if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
|
|
(sc->sc_flags & GEM_LINK) != 0) {
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_TX_CONFIG,
|
|
txcfg | GEM_MAC_TX_ENABLE);
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG,
|
|
rxcfg | GEM_MAC_RX_ENABLE);
|
|
}
|
|
}
|
|
|
|
int
|
|
gem_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct gem_softc *sc = ifp->if_softc;
|
|
int error;
|
|
|
|
/* XXX add support for serial media. */
|
|
|
|
GEM_LOCK(sc);
|
|
error = mii_mediachg(sc->sc_mii);
|
|
GEM_UNLOCK(sc);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
gem_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct gem_softc *sc = ifp->if_softc;
|
|
|
|
GEM_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) == 0) {
|
|
GEM_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
mii_pollstat(sc->sc_mii);
|
|
ifmr->ifm_active = sc->sc_mii->mii_media_active;
|
|
ifmr->ifm_status = sc->sc_mii->mii_media_status;
|
|
GEM_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
gem_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct gem_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int error;
|
|
|
|
error = 0;
|
|
switch (cmd) {
|
|
case SIOCSIFFLAGS:
|
|
GEM_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) != 0) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
|
|
((ifp->if_flags ^ sc->sc_ifflags) &
|
|
(IFF_ALLMULTI | IFF_PROMISC)) != 0)
|
|
gem_setladrf(sc);
|
|
else
|
|
gem_init_locked(sc);
|
|
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
gem_stop(ifp, 0);
|
|
if ((ifp->if_flags & IFF_LINK0) != 0)
|
|
sc->sc_csum_features |= CSUM_UDP;
|
|
else
|
|
sc->sc_csum_features &= ~CSUM_UDP;
|
|
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
|
|
ifp->if_hwassist = sc->sc_csum_features;
|
|
sc->sc_ifflags = ifp->if_flags;
|
|
GEM_UNLOCK(sc);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
GEM_LOCK(sc);
|
|
gem_setladrf(sc);
|
|
GEM_UNLOCK(sc);
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
GEM_LOCK(sc);
|
|
ifp->if_capenable = ifr->ifr_reqcap;
|
|
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
|
|
ifp->if_hwassist = sc->sc_csum_features;
|
|
else
|
|
ifp->if_hwassist = 0;
|
|
GEM_UNLOCK(sc);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
gem_setladrf(struct gem_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ifmultiaddr *inm;
|
|
int i;
|
|
uint32_t hash[16];
|
|
uint32_t crc, v;
|
|
|
|
GEM_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
/* Get the current RX configuration. */
|
|
v = bus_read_4(sc->sc_res[0], GEM_MAC_RX_CONFIG);
|
|
|
|
/*
|
|
* Turn off promiscuous mode, promiscuous group mode (all multicast),
|
|
* and hash filter. Depending on the case, the right bit will be
|
|
* enabled.
|
|
*/
|
|
v &= ~(GEM_MAC_RX_PROMISCUOUS | GEM_MAC_RX_HASH_FILTER |
|
|
GEM_MAC_RX_PROMISC_GRP);
|
|
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, v);
|
|
bus_barrier(sc->sc_res[0], GEM_MAC_RX_CONFIG, 4,
|
|
BUS_SPACE_BARRIER_WRITE);
|
|
if (!gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_HASH_FILTER, 0))
|
|
device_printf(sc->sc_dev, "cannot disable RX hash filter\n");
|
|
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0) {
|
|
v |= GEM_MAC_RX_PROMISCUOUS;
|
|
goto chipit;
|
|
}
|
|
if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
|
|
v |= GEM_MAC_RX_PROMISC_GRP;
|
|
goto chipit;
|
|
}
|
|
|
|
/*
|
|
* Set up multicast address filter by passing all multicast
|
|
* addresses through a crc generator, and then using the high
|
|
* order 8 bits as an index into the 256 bit logical address
|
|
* filter. The high order 4 bits selects the word, while the
|
|
* other 4 bits select the bit within the word (where bit 0
|
|
* is the MSB).
|
|
*/
|
|
|
|
/* Clear the hash table. */
|
|
memset(hash, 0, sizeof(hash));
|
|
|
|
IF_ADDR_LOCK(ifp);
|
|
TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) {
|
|
if (inm->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
|
|
inm->ifma_addr), ETHER_ADDR_LEN);
|
|
|
|
/* We just want the 8 most significant bits. */
|
|
crc >>= 24;
|
|
|
|
/* Set the corresponding bit in the filter. */
|
|
hash[crc >> 4] |= 1 << (15 - (crc & 15));
|
|
}
|
|
IF_ADDR_UNLOCK(ifp);
|
|
|
|
v |= GEM_MAC_RX_HASH_FILTER;
|
|
|
|
/* Now load the hash table into the chip (if we are using it). */
|
|
for (i = 0; i < 16; i++)
|
|
bus_write_4(sc->sc_res[0],
|
|
GEM_MAC_HASH0 + i * (GEM_MAC_HASH1 - GEM_MAC_HASH0),
|
|
hash[i]);
|
|
|
|
chipit:
|
|
bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, v);
|
|
}
|