freebsd-dev/sys/contrib/octeon-sdk/cvmx-bootmem.c
Juli Mallett dc4ee6ca91 Merge the Cavium Octeon SDK 2.3.0 Simple Executive code and update FreeBSD to
make use of it where possible.

This primarily brings in support for newer hardware, and FreeBSD is not yet
able to support the abundance of IRQs on new hardware and many features in the
Ethernet driver.

Because of the changes to IRQs in the Simple Executive, we have to maintain our
own list of Octeon IRQs now, which probably can be pared-down and be specific
to the CIU interrupt unit soon, and when other interrupt mechanisms are added
they can maintain their own definitions.

Remove unmasking of interrupts from within the UART device now that the
function used is no longer present in the Simple Executive.  The unmasking
seems to have been gratuitous as this is more properly handled by the buses
above the UART device, and seems to work on that basis.
2012-03-11 06:17:49 +00:00

1188 lines
41 KiB
C

/***********************license start***************
* Copyright (c) 2003-2010 Cavium Inc. (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Cavium Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
* This Software, including technical data, may be subject to U.S. export control
* laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
* DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
/**
* @file
* Simple allocate only memory allocator. Used to allocate memory at application
* start time.
*
* <hr>$Revision: 70030 $<hr>
*
*/
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
#include <linux/module.h>
#include <asm/octeon/cvmx.h>
#include <asm/octeon/cvmx-bootmem.h>
#else
#if !defined(__FreeBSD__) || !defined(_KERNEL)
#include "executive-config.h"
#endif
#include "cvmx.h"
#include "cvmx-bootmem.h"
#endif
typedef uint32_t cvmx_spinlock_t;
//#define DEBUG
#define ULL unsigned long long
#undef MAX
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#undef MIN
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#define ALIGN_ADDR_UP(addr, align) (((addr) + (~(align))) & (align))
/**
* This is the physical location of a cvmx_bootmem_desc_t
* structure in Octeon's memory. Note that dues to addressing
* limits or runtime environment it might not be possible to
* create a C pointer to this structure.
*/
static CVMX_SHARED uint64_t cvmx_bootmem_desc_addr = 0;
/**
* This macro returns the size of a member of a structure.
* Logically it is the same as "sizeof(s::field)" in C++, but
* C lacks the "::" operator.
*/
#define SIZEOF_FIELD(s, field) sizeof(((s*)NULL)->field)
/**
* This macro returns a member of the cvmx_bootmem_desc_t
* structure. These members can't be directly addressed as
* they might be in memory not directly reachable. In the case
* where bootmem is compiled with LINUX_HOST, the structure
* itself might be located on a remote Octeon. The argument
* "field" is the member name of the cvmx_bootmem_desc_t to read.
* Regardless of the type of the field, the return type is always
* a uint64_t.
*/
#define CVMX_BOOTMEM_DESC_GET_FIELD(field) \
__cvmx_bootmem_desc_get(cvmx_bootmem_desc_addr, \
offsetof(cvmx_bootmem_desc_t, field), \
SIZEOF_FIELD(cvmx_bootmem_desc_t, field))
/**
* This macro writes a member of the cvmx_bootmem_desc_t
* structure. These members can't be directly addressed as
* they might be in memory not directly reachable. In the case
* where bootmem is compiled with LINUX_HOST, the structure
* itself might be located on a remote Octeon. The argument
* "field" is the member name of the cvmx_bootmem_desc_t to write.
*/
#define CVMX_BOOTMEM_DESC_SET_FIELD(field, value) \
__cvmx_bootmem_desc_set(cvmx_bootmem_desc_addr, \
offsetof(cvmx_bootmem_desc_t, field), \
SIZEOF_FIELD(cvmx_bootmem_desc_t, field), value)
/**
* This macro returns a member of the
* cvmx_bootmem_named_block_desc_t structure. These members can't
* be directly addressed as they might be in memory not directly
* reachable. In the case where bootmem is compiled with
* LINUX_HOST, the structure itself might be located on a remote
* Octeon. The argument "field" is the member name of the
* cvmx_bootmem_named_block_desc_t to read. Regardless of the type
* of the field, the return type is always a uint64_t. The "addr"
* parameter is the physical address of the structure.
*/
#define CVMX_BOOTMEM_NAMED_GET_FIELD(addr, field) \
__cvmx_bootmem_desc_get(addr, \
offsetof(cvmx_bootmem_named_block_desc_t, field), \
SIZEOF_FIELD(cvmx_bootmem_named_block_desc_t, field))
/**
* This macro writes a member of the cvmx_bootmem_named_block_desc_t
* structure. These members can't be directly addressed as
* they might be in memory not directly reachable. In the case
* where bootmem is compiled with LINUX_HOST, the structure
* itself might be located on a remote Octeon. The argument
* "field" is the member name of the
* cvmx_bootmem_named_block_desc_t to write. The "addr" parameter
* is the physical address of the structure.
*/
#define CVMX_BOOTMEM_NAMED_SET_FIELD(addr, field, value) \
__cvmx_bootmem_desc_set(addr, \
offsetof(cvmx_bootmem_named_block_desc_t, field), \
SIZEOF_FIELD(cvmx_bootmem_named_block_desc_t, field), value)
/**
* This function is the implementation of the get macros defined
* for individual structure members. The argument are generated
* by the macros inorder to read only the needed memory.
*
* @param base 64bit physical address of the complete structure
* @param offset Offset from the beginning of the structure to the member being
* accessed.
* @param size Size of the structure member.
*
* @return Value of the structure member promoted into a uint64_t.
*/
static inline uint64_t __cvmx_bootmem_desc_get(uint64_t base, int offset, int size)
{
base = (1ull << 63) | (base + offset);
switch (size)
{
case 4:
return cvmx_read64_uint32(base);
case 8:
return cvmx_read64_uint64(base);
default:
return 0;
}
}
/**
* This function is the implementation of the set macros defined
* for individual structure members. The argument are generated
* by the macros in order to write only the needed memory.
*
* @param base 64bit physical address of the complete structure
* @param offset Offset from the beginning of the structure to the member being
* accessed.
* @param size Size of the structure member.
* @param value Value to write into the structure
*/
static inline void __cvmx_bootmem_desc_set(uint64_t base, int offset, int size, uint64_t value)
{
base = (1ull << 63) | (base + offset);
switch (size)
{
case 4:
cvmx_write64_uint32(base, value);
break;
case 8:
cvmx_write64_uint64(base, value);
break;
default:
break;
}
}
/**
* This function retrieves the string name of a named block. It is
* more complicated than a simple memcpy() since the named block
* descriptor may not be directly accessable.
*
* @param addr Physical address of the named block descriptor
* @param str String to receive the named block string name
* @param len Length of the string buffer, which must match the length
* stored in the bootmem descriptor.
*/
static void CVMX_BOOTMEM_NAMED_GET_NAME(uint64_t addr, char *str, int len)
{
#ifndef CVMX_BUILD_FOR_LINUX_HOST
int l = len;
char *ptr = str;
addr |= (1ull << 63);
addr += offsetof(cvmx_bootmem_named_block_desc_t, name);
while (l--)
*ptr++ = cvmx_read64_uint8(addr++);
str[len] = 0;
#else
extern void octeon_remote_read_mem(void *buffer, uint64_t physical_address, int length);
addr += offsetof(cvmx_bootmem_named_block_desc_t, name);
octeon_remote_read_mem(str, addr, len);
str[len] = 0;
#endif
}
/**
* This function stores the string name of a named block. It is
* more complicated than a simple memcpy() since the named block
* descriptor may not be directly accessable.
*
* @param addr Physical address of the named block descriptor
* @param str String to store into the named block string name
* @param len Length of the string buffer, which must match the length
* stored in the bootmem descriptor.
*/
static void CVMX_BOOTMEM_NAMED_SET_NAME(uint64_t addr, const char *str, int len)
{
#ifndef CVMX_BUILD_FOR_LINUX_HOST
int l = len;
addr |= (1ull << 63);
addr += offsetof(cvmx_bootmem_named_block_desc_t, name);
while (l--)
{
if (l)
cvmx_write64_uint8(addr++, *str++);
else
cvmx_write64_uint8(addr++, 0);
}
#else
extern void octeon_remote_write_mem(uint64_t physical_address, const void *buffer, int length);
char zero = 0;
addr += offsetof(cvmx_bootmem_named_block_desc_t, name);
octeon_remote_write_mem(addr, str, len-1);
octeon_remote_write_mem(addr+len-1, &zero, 1);
#endif
}
/* See header file for descriptions of functions */
/* Wrapper functions are provided for reading/writing the size and next block
** values as these may not be directly addressible (in 32 bit applications, for instance.)
*/
/* Offsets of data elements in bootmem list, must match cvmx_bootmem_block_header_t */
#define NEXT_OFFSET 0
#define SIZE_OFFSET 8
static void cvmx_bootmem_phy_set_size(uint64_t addr, uint64_t size)
{
cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
}
static void cvmx_bootmem_phy_set_next(uint64_t addr, uint64_t next)
{
cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
}
static uint64_t cvmx_bootmem_phy_get_size(uint64_t addr)
{
return(cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63)));
}
static uint64_t cvmx_bootmem_phy_get_next(uint64_t addr)
{
return(cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63)));
}
/**
* Check the version information on the bootmem descriptor
*
* @param exact_match
* Exact major version to check against. A zero means
* check that the version supports named blocks.
*
* @return Zero if the version is correct. Negative if the version is
* incorrect. Failures also cause a message to be displayed.
*/
static int __cvmx_bootmem_check_version(int exact_match)
{
int major_version;
#ifdef CVMX_BUILD_FOR_LINUX_HOST
if (!cvmx_bootmem_desc_addr)
cvmx_bootmem_desc_addr = cvmx_read64_uint64(0x48100);
#endif
major_version = CVMX_BOOTMEM_DESC_GET_FIELD(major_version);
if ((major_version > 3) || (exact_match && major_version != exact_match))
{
cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: 0x%llx\n",
major_version, (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version),
(ULL)cvmx_bootmem_desc_addr);
return -1;
}
else
return 0;
}
/**
* Get the low level bootmem descriptor lock. If no locking
* is specified in the flags, then nothing is done.
*
* @param flags CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
* nothing. This is used to support nested bootmem calls.
*/
static inline void __cvmx_bootmem_lock(uint32_t flags)
{
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
{
#ifndef CVMX_BUILD_FOR_LINUX_HOST
/* Unfortunately we can't use the normal cvmx-spinlock code as the
memory for the bootmem descriptor may be not accessable by a C
pointer. We use a 64bit XKPHYS address to access the memory
directly */
uint64_t lock_addr = (1ull << 63) | (cvmx_bootmem_desc_addr + offsetof(cvmx_bootmem_desc_t, lock));
unsigned int tmp;
__asm__ __volatile__(
".set noreorder \n"
"1: ll %[tmp], 0(%[addr])\n"
" bnez %[tmp], 1b \n"
" li %[tmp], 1 \n"
" sc %[tmp], 0(%[addr])\n"
" beqz %[tmp], 1b \n"
" nop \n"
".set reorder \n"
: [tmp] "=&r" (tmp)
: [addr] "r" (lock_addr)
: "memory");
#endif
}
}
/**
* Release the low level bootmem descriptor lock. If no locking
* is specified in the flags, then nothing is done.
*
* @param flags CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
* nothing. This is used to support nested bootmem calls.
*/
static inline void __cvmx_bootmem_unlock(uint32_t flags)
{
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
{
#ifndef CVMX_BUILD_FOR_LINUX_HOST
/* Unfortunately we can't use the normal cvmx-spinlock code as the
memory for the bootmem descriptor may be not accessable by a C
pointer. We use a 64bit XKPHYS address to access the memory
directly */
uint64_t lock_addr = (1ull << 63) | (cvmx_bootmem_desc_addr + offsetof(cvmx_bootmem_desc_t, lock));
CVMX_SYNCW;
__asm__ __volatile__("sw $0, 0(%[addr])\n"
:: [addr] "r" (lock_addr)
: "memory");
CVMX_SYNCW;
#endif
}
}
/* Some of the cvmx-bootmem functions dealing with C pointers are not supported
when we are compiling for CVMX_BUILD_FOR_LINUX_HOST. This ifndef removes
these functions when they aren't needed */
#ifndef CVMX_BUILD_FOR_LINUX_HOST
/* This functions takes an address range and adjusts it as necessary to
** match the ABI that is currently being used. This is required to ensure
** that bootmem_alloc* functions only return valid pointers for 32 bit ABIs */
static int __cvmx_validate_mem_range(uint64_t *min_addr_ptr, uint64_t *max_addr_ptr)
{
#if defined(__linux__) && defined(CVMX_ABI_N32)
{
extern uint64_t linux_mem32_min;
extern uint64_t linux_mem32_max;
/* For 32 bit Linux apps, we need to restrict the allocations to the range
** of memory configured for access from userspace. Also, we need to add mappings
** for the data structures that we access.*/
/* Narrow range requests to be bounded by the 32 bit limits. octeon_phy_mem_block_alloc()
** will reject inconsistent req_size/range requests, so we don't repeat those checks here.
** If max unspecified, set to 32 bit maximum. */
*min_addr_ptr = MIN(MAX(*min_addr_ptr, linux_mem32_min), linux_mem32_max);
if (!*max_addr_ptr)
*max_addr_ptr = linux_mem32_max;
else
*max_addr_ptr = MAX(MIN(*max_addr_ptr, linux_mem32_max), linux_mem32_min);
}
#elif defined(CVMX_ABI_N32)
{
uint32_t max_phys = 0x0FFFFFFF; /* Max physical address when 1-1 mappings not used */
#if CVMX_USE_1_TO_1_TLB_MAPPINGS
max_phys = 0x7FFFFFFF;
#endif
/* We are are running standalone simple executive, so we need to limit the range
** that we allocate from */
/* Narrow range requests to be bounded by the 32 bit limits. octeon_phy_mem_block_alloc()
** will reject inconsistent req_size/range requests, so we don't repeat those checks here.
** If max unspecified, set to 32 bit maximum. */
*min_addr_ptr = MIN(MAX(*min_addr_ptr, 0x0), max_phys);
if (!*max_addr_ptr)
*max_addr_ptr = max_phys;
else
*max_addr_ptr = MAX(MIN(*max_addr_ptr, max_phys), 0x0);
}
#endif
return 0;
}
void *cvmx_bootmem_alloc_range(uint64_t size, uint64_t alignment, uint64_t min_addr, uint64_t max_addr)
{
int64_t address;
__cvmx_validate_mem_range(&min_addr, &max_addr);
address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0);
if (address > 0)
return cvmx_phys_to_ptr(address);
else
return NULL;
}
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
EXPORT_SYMBOL(cvmx_bootmem_alloc_range);
#endif
void *cvmx_bootmem_alloc_address(uint64_t size, uint64_t address, uint64_t alignment)
{
return cvmx_bootmem_alloc_range(size, alignment, address, address + size);
}
void *cvmx_bootmem_alloc(uint64_t size, uint64_t alignment)
{
return cvmx_bootmem_alloc_range(size, alignment, 0, 0);
}
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
EXPORT_SYMBOL(cvmx_bootmem_alloc);
#endif
void *cvmx_bootmem_alloc_named_range_once(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t align, const char *name, void (*init)(void*))
{
int64_t addr;
void *ptr;
uint64_t named_block_desc_addr;
__cvmx_bootmem_lock(0);
__cvmx_validate_mem_range(&min_addr, &max_addr);
named_block_desc_addr = cvmx_bootmem_phy_named_block_find(name, CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (named_block_desc_addr)
{
addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_desc_addr, base_addr);
__cvmx_bootmem_unlock(0);
return cvmx_phys_to_ptr(addr);
}
addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr, align, name, CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (addr < 0)
{
__cvmx_bootmem_unlock(0);
return NULL;
}
ptr = cvmx_phys_to_ptr(addr);
init(ptr);
__cvmx_bootmem_unlock(0);
return ptr;
}
static void *cvmx_bootmem_alloc_named_range_flags(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t align, const char *name, uint32_t flags)
{
int64_t addr;
__cvmx_validate_mem_range(&min_addr, &max_addr);
addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr, align, name, flags);
if (addr >= 0)
return cvmx_phys_to_ptr(addr);
else
return NULL;
}
void *cvmx_bootmem_alloc_named_range(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t align, const char *name)
{
return cvmx_bootmem_alloc_named_range_flags(size, min_addr, max_addr, align, name, 0);
}
void *cvmx_bootmem_alloc_named_address(uint64_t size, uint64_t address, const char *name)
{
return(cvmx_bootmem_alloc_named_range(size, address, address + size, 0, name));
}
void *cvmx_bootmem_alloc_named(uint64_t size, uint64_t alignment, const char *name)
{
return(cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name));
}
void *cvmx_bootmem_alloc_named_flags(uint64_t size, uint64_t alignment, const char *name, uint32_t flags)
{
return cvmx_bootmem_alloc_named_range_flags(size, 0, 0, alignment, name, flags);
}
int cvmx_bootmem_free_named(const char *name)
{
return(cvmx_bootmem_phy_named_block_free(name, 0));
}
#endif
const cvmx_bootmem_named_block_desc_t *cvmx_bootmem_find_named_block(const char *name)
{
/* FIXME: Returning a single static object is probably a bad thing */
static cvmx_bootmem_named_block_desc_t desc;
uint64_t named_addr = cvmx_bootmem_phy_named_block_find(name, 0);
if (named_addr)
{
desc.base_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, base_addr);
desc.size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
strncpy(desc.name, name, sizeof(desc.name));
desc.name[sizeof(desc.name)-1] = 0;
return &desc;
}
else
return NULL;
}
void cvmx_bootmem_print_named(void)
{
cvmx_bootmem_phy_named_block_print();
}
int cvmx_bootmem_init(uint64_t mem_desc_addr)
{
/* Verify that the size of cvmx_spinlock_t meets our assumptions */
if (sizeof(cvmx_spinlock_t) != 4)
{
cvmx_dprintf("ERROR: Unexpected size of cvmx_spinlock_t\n");
return(-1);
}
if (!cvmx_bootmem_desc_addr)
cvmx_bootmem_desc_addr = mem_desc_addr;
return(0);
}
uint64_t cvmx_bootmem_available_mem(uint64_t min_block_size)
{
return(cvmx_bootmem_phy_available_mem(min_block_size));
}
/*********************************************************************
** The cvmx_bootmem_phy* functions below return 64 bit physical addresses,
** and expose more features that the cvmx_bootmem_functions above. These are
** required for full memory space access in 32 bit applications, as well as for
** using some advance features.
** Most applications should not need to use these.
**
**/
int64_t cvmx_bootmem_phy_alloc(uint64_t req_size, uint64_t address_min, uint64_t address_max, uint64_t alignment, uint32_t flags)
{
uint64_t head_addr;
uint64_t ent_addr;
uint64_t prev_addr = 0; /* points to previous list entry, NULL current entry is head of list */
uint64_t new_ent_addr = 0;
uint64_t desired_min_addr;
uint64_t alignment_mask = ~(alignment - 1);
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_alloc: req_size: 0x%llx, min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
(ULL)req_size, (ULL)address_min, (ULL)address_max, (ULL)alignment);
#endif
if (__cvmx_bootmem_check_version(0))
goto error_out;
/* Do a variety of checks to validate the arguments. The allocator code will later assume
** that these checks have been made. We validate that the requested constraints are not
** self-contradictory before we look through the list of available memory
*/
/* 0 is not a valid req_size for this allocator */
if (!req_size)
goto error_out;
/* Round req_size up to mult of minimum alignment bytes */
req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
/* Enforce minimum alignment (this also keeps the minimum free block
** req_size the same as the alignment req_size */
if (alignment < CVMX_BOOTMEM_ALIGNMENT_SIZE)
{
alignment = CVMX_BOOTMEM_ALIGNMENT_SIZE;
}
alignment_mask = ~(alignment - 1);
/* Adjust address minimum based on requested alignment (round up to meet alignment). Do this here so we can
** reject impossible requests up front. (NOP for address_min == 0) */
if (alignment)
address_min = (address_min + (alignment - 1)) & ~(alignment - 1);
/* Convert !0 address_min and 0 address_max to special case of range that specifies an exact
** memory block to allocate. Do this before other checks and adjustments so that this tranformation will be validated */
if (address_min && !address_max)
address_max = address_min + req_size;
else if (!address_min && !address_max)
address_max = ~0ull; /* If no limits given, use max limits */
/* Reject inconsistent args. We have adjusted these, so this may fail due to our internal changes
** even if this check would pass for the values the user supplied. */
if (req_size > address_max - address_min)
goto error_out;
/* Walk through the list entries - first fit found is returned */
__cvmx_bootmem_lock(flags);
head_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
ent_addr = head_addr;
while (ent_addr)
{
uint64_t usable_base, usable_max;
uint64_t ent_size = cvmx_bootmem_phy_get_size(ent_addr);
if (cvmx_bootmem_phy_get_next(ent_addr) && ent_addr > cvmx_bootmem_phy_get_next(ent_addr))
{
cvmx_dprintf("Internal bootmem_alloc() error: ent: 0x%llx, next: 0x%llx\n",
(ULL)ent_addr, (ULL)cvmx_bootmem_phy_get_next(ent_addr));
goto error_out;
}
/* Determine if this is an entry that can satisify the request */
/* Check to make sure entry is large enough to satisfy request */
usable_base = ALIGN_ADDR_UP(MAX(address_min, ent_addr), alignment_mask);
usable_max = MIN(address_max, ent_addr + ent_size);
/* We should be able to allocate block at address usable_base */
desired_min_addr = usable_base;
/* Determine if request can be satisfied from the current entry */
if ((((ent_addr + ent_size) > usable_base && ent_addr < address_max))
&& req_size <= usable_max - usable_base)
{
/* We have found an entry that has room to satisfy the request, so allocate it from this entry */
/* If end CVMX_BOOTMEM_FLAG_END_ALLOC set, then allocate from the end of this block
** rather than the beginning */
if (flags & CVMX_BOOTMEM_FLAG_END_ALLOC)
{
desired_min_addr = usable_max - req_size;
/* Align desired address down to required alignment */
desired_min_addr &= alignment_mask;
}
/* Match at start of entry */
if (desired_min_addr == ent_addr)
{
if (req_size < ent_size)
{
/* big enough to create a new block from top portion of block */
new_ent_addr = ent_addr + req_size;
cvmx_bootmem_phy_set_next(new_ent_addr, cvmx_bootmem_phy_get_next(ent_addr));
cvmx_bootmem_phy_set_size(new_ent_addr, ent_size - req_size);
/* Adjust next pointer as following code uses this */
cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
}
/* adjust prev ptr or head to remove this entry from list */
if (prev_addr)
{
cvmx_bootmem_phy_set_next(prev_addr, cvmx_bootmem_phy_get_next(ent_addr));
}
else
{
/* head of list being returned, so update head ptr */
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, cvmx_bootmem_phy_get_next(ent_addr));
}
__cvmx_bootmem_unlock(flags);
return(desired_min_addr);
}
/* block returned doesn't start at beginning of entry, so we know
** that we will be splitting a block off the front of this one. Create a new block
** from the beginning, add to list, and go to top of loop again.
**
** create new block from high portion of block, so that top block
** starts at desired addr
**/
new_ent_addr = desired_min_addr;
cvmx_bootmem_phy_set_next(new_ent_addr, cvmx_bootmem_phy_get_next(ent_addr));
cvmx_bootmem_phy_set_size(new_ent_addr, cvmx_bootmem_phy_get_size(ent_addr) - (desired_min_addr - ent_addr));
cvmx_bootmem_phy_set_size(ent_addr, desired_min_addr - ent_addr);
cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
/* Loop again to handle actual alloc from new block */
}
prev_addr = ent_addr;
ent_addr = cvmx_bootmem_phy_get_next(ent_addr);
}
error_out:
/* We didn't find anything, so return error */
__cvmx_bootmem_unlock(flags);
return(-1);
}
int __cvmx_bootmem_phy_free(uint64_t phy_addr, uint64_t size, uint32_t flags)
{
uint64_t cur_addr;
uint64_t prev_addr = 0; /* zero is invalid */
int retval = 0;
#ifdef DEBUG
cvmx_dprintf("__cvmx_bootmem_phy_free addr: 0x%llx, size: 0x%llx\n", (ULL)phy_addr, (ULL)size);
#endif
if (__cvmx_bootmem_check_version(0))
return(0);
/* 0 is not a valid size for this allocator */
if (!size)
return(0);
__cvmx_bootmem_lock(flags);
cur_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
if (cur_addr == 0 || phy_addr < cur_addr)
{
/* add at front of list - special case with changing head ptr */
if (cur_addr && phy_addr + size > cur_addr)
goto bootmem_free_done; /* error, overlapping section */
else if (phy_addr + size == cur_addr)
{
/* Add to front of existing first block */
cvmx_bootmem_phy_set_next(phy_addr, cvmx_bootmem_phy_get_next(cur_addr));
cvmx_bootmem_phy_set_size(phy_addr, cvmx_bootmem_phy_get_size(cur_addr) + size);
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
}
else
{
/* New block before first block */
cvmx_bootmem_phy_set_next(phy_addr, cur_addr); /* OK if cur_addr is 0 */
cvmx_bootmem_phy_set_size(phy_addr, size);
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
}
retval = 1;
goto bootmem_free_done;
}
/* Find place in list to add block */
while (cur_addr && phy_addr > cur_addr)
{
prev_addr = cur_addr;
cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
}
if (!cur_addr)
{
/* We have reached the end of the list, add on to end, checking
** to see if we need to combine with last block
**/
if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr)
{
cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(prev_addr) + size);
}
else
{
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
cvmx_bootmem_phy_set_size(phy_addr, size);
cvmx_bootmem_phy_set_next(phy_addr, 0);
}
retval = 1;
goto bootmem_free_done;
}
else
{
/* insert between prev and cur nodes, checking for merge with either/both */
if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr)
{
/* Merge with previous */
cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(prev_addr) + size);
if (phy_addr + size == cur_addr)
{
/* Also merge with current */
cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(cur_addr) + cvmx_bootmem_phy_get_size(prev_addr));
cvmx_bootmem_phy_set_next(prev_addr, cvmx_bootmem_phy_get_next(cur_addr));
}
retval = 1;
goto bootmem_free_done;
}
else if (phy_addr + size == cur_addr)
{
/* Merge with current */
cvmx_bootmem_phy_set_size(phy_addr, cvmx_bootmem_phy_get_size(cur_addr) + size);
cvmx_bootmem_phy_set_next(phy_addr, cvmx_bootmem_phy_get_next(cur_addr));
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
retval = 1;
goto bootmem_free_done;
}
/* It is a standalone block, add in between prev and cur */
cvmx_bootmem_phy_set_size(phy_addr, size);
cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
}
retval = 1;
bootmem_free_done:
__cvmx_bootmem_unlock(flags);
return(retval);
}
void cvmx_bootmem_phy_list_print(void)
{
uint64_t addr;
addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
cvmx_dprintf("\n\n\nPrinting bootmem block list, descriptor: 0x%llx, head is 0x%llx\n",
(ULL)cvmx_bootmem_desc_addr, (ULL)addr);
cvmx_dprintf("Descriptor version: %d.%d\n",
(int)CVMX_BOOTMEM_DESC_GET_FIELD(major_version),
(int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version));
if (CVMX_BOOTMEM_DESC_GET_FIELD(major_version) > 3)
{
cvmx_dprintf("Warning: Bootmem descriptor version is newer than expected\n");
}
if (!addr)
{
cvmx_dprintf("mem list is empty!\n");
}
while (addr)
{
cvmx_dprintf("Block address: 0x%08llx, size: 0x%08llx, next: 0x%08llx\n",
(ULL)addr,
(ULL)cvmx_bootmem_phy_get_size(addr),
(ULL)cvmx_bootmem_phy_get_next(addr));
addr = cvmx_bootmem_phy_get_next(addr);
}
cvmx_dprintf("\n\n");
}
uint64_t cvmx_bootmem_phy_available_mem(uint64_t min_block_size)
{
uint64_t addr;
uint64_t available_mem = 0;
__cvmx_bootmem_lock(0);
addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
while (addr)
{
if (cvmx_bootmem_phy_get_size(addr) >= min_block_size)
available_mem += cvmx_bootmem_phy_get_size(addr);
addr = cvmx_bootmem_phy_get_next(addr);
}
__cvmx_bootmem_unlock(0);
return(available_mem);
}
uint64_t cvmx_bootmem_phy_named_block_find(const char *name, uint32_t flags)
{
uint64_t result = 0;
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_named_block_find: %s\n", name);
#endif
__cvmx_bootmem_lock(flags);
if (!__cvmx_bootmem_check_version(3))
{
int i;
uint64_t named_block_array_addr = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
int num_blocks = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
int name_length = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
uint64_t named_addr = named_block_array_addr;
for (i = 0; i < num_blocks; i++)
{
uint64_t named_size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
if (name && named_size)
{
char name_tmp[name_length];
CVMX_BOOTMEM_NAMED_GET_NAME(named_addr, name_tmp, name_length);
if (!strncmp(name, name_tmp, name_length - 1))
{
result = named_addr;
break;
}
}
else if (!name && !named_size)
{
result = named_addr;
break;
}
named_addr += sizeof(cvmx_bootmem_named_block_desc_t);
}
}
__cvmx_bootmem_unlock(flags);
return result;
}
int cvmx_bootmem_phy_named_block_free(const char *name, uint32_t flags)
{
uint64_t named_block_addr;
if (__cvmx_bootmem_check_version(3))
return(0);
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s\n", name);
#endif
/* Take lock here, as name lookup/block free/name free need to be atomic */
__cvmx_bootmem_lock(flags);
named_block_addr = cvmx_bootmem_phy_named_block_find(name, CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (named_block_addr)
{
uint64_t named_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, base_addr);
uint64_t named_size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s, base: 0x%llx, size: 0x%llx\n",
name, (ULL)named_addr, (ULL)named_size);
#endif
__cvmx_bootmem_phy_free(named_addr, named_size, CVMX_BOOTMEM_FLAG_NO_LOCKING);
/* Set size to zero to indicate block not used. */
CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_addr, size, 0);
}
__cvmx_bootmem_unlock(flags);
return(!!named_block_addr); /* 0 on failure, 1 on success */
}
int64_t cvmx_bootmem_phy_named_block_alloc(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t alignment, const char *name, uint32_t flags)
{
int64_t addr_allocated;
uint64_t named_block_desc_addr;
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_named_block_alloc: size: 0x%llx, min: 0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n",
(ULL)size,
(ULL)min_addr,
(ULL)max_addr,
(ULL)alignment,
name);
#endif
if (__cvmx_bootmem_check_version(3))
return(-1);
/* Take lock here, as name lookup/block alloc/name add need to be atomic */
__cvmx_bootmem_lock(flags);
named_block_desc_addr = cvmx_bootmem_phy_named_block_find(name, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (named_block_desc_addr)
{
__cvmx_bootmem_unlock(flags);
return(-1);
}
/* Get pointer to first available named block descriptor */
named_block_desc_addr = cvmx_bootmem_phy_named_block_find(NULL, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (!named_block_desc_addr)
{
__cvmx_bootmem_unlock(flags);
return(-1);
}
/* Round size up to mult of minimum alignment bytes
** We need the actual size allocated to allow for blocks to be coallesced
** when they are freed. The alloc routine does the same rounding up
** on all allocations. */
size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (addr_allocated >= 0)
{
CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, base_addr, addr_allocated);
CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, size, size);
CVMX_BOOTMEM_NAMED_SET_NAME(named_block_desc_addr, name, CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len));
}
__cvmx_bootmem_unlock(flags);
return(addr_allocated);
}
void cvmx_bootmem_phy_named_block_print(void)
{
int i;
int printed = 0;
uint64_t named_block_array_addr = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
int num_blocks = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
int name_length = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
uint64_t named_block_addr = named_block_array_addr;
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_named_block_print, desc addr: 0x%llx\n",
(ULL)cvmx_bootmem_desc_addr);
#endif
if (__cvmx_bootmem_check_version(3))
return;
cvmx_dprintf("List of currently allocated named bootmem blocks:\n");
for (i = 0; i < num_blocks; i++)
{
uint64_t named_size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
if (named_size)
{
char name_tmp[name_length];
uint64_t named_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, base_addr);
CVMX_BOOTMEM_NAMED_GET_NAME(named_block_addr, name_tmp, name_length);
printed++;
cvmx_dprintf("Name: %s, address: 0x%08llx, size: 0x%08llx, index: %d\n",
name_tmp, (ULL)named_addr, (ULL)named_size, i);
}
named_block_addr += sizeof(cvmx_bootmem_named_block_desc_t);
}
if (!printed)
{
cvmx_dprintf("No named bootmem blocks exist.\n");
}
}
int64_t cvmx_bootmem_phy_mem_list_init(uint64_t mem_size, uint32_t low_reserved_bytes, cvmx_bootmem_desc_t *desc_buffer)
{
uint64_t cur_block_addr;
int64_t addr;
int i;
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_mem_list_init (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n",
desc_buffer, (ULL)cvmx_bootmem_desc_addr);
#endif
/* Descriptor buffer needs to be in 32 bit addressable space to be compatible with
** 32 bit applications */
if (!desc_buffer)
{
cvmx_dprintf("ERROR: no memory for cvmx_bootmem descriptor provided\n");
return 0;
}
if (mem_size > OCTEON_MAX_PHY_MEM_SIZE)
{
mem_size = OCTEON_MAX_PHY_MEM_SIZE;
cvmx_dprintf("ERROR: requested memory size too large, truncating to maximum size\n");
}
if (cvmx_bootmem_desc_addr)
return 1;
/* Initialize cvmx pointer to descriptor */
#ifndef CVMX_BUILD_FOR_LINUX_HOST
cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer));
#else
cvmx_bootmem_init((unsigned long)desc_buffer);
#endif
/* Fill the bootmem descriptor */
CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER);
CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER);
CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0);
/* Set up global pointer to start of list, exclude low 64k for exception vectors, space for global descriptor */
cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes);
if (mem_size <= OCTEON_DDR0_SIZE)
{
__cvmx_bootmem_phy_free(cur_block_addr, mem_size - low_reserved_bytes, 0);
goto frees_done;
}
__cvmx_bootmem_phy_free(cur_block_addr, OCTEON_DDR0_SIZE - low_reserved_bytes, 0);
mem_size -= OCTEON_DDR0_SIZE;
/* Add DDR2 block next if present */
if (mem_size > OCTEON_DDR1_SIZE)
{
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE, mem_size - OCTEON_DDR1_SIZE, 0);
}
else
{
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
}
frees_done:
/* Initialize the named block structure */
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN);
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks, CVMX_BOOTMEM_NUM_NAMED_BLOCKS);
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0);
/* Allocate this near the top of the low 256 MBytes of memory */
addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS * sizeof(cvmx_bootmem_named_block_desc_t),0, 0x10000000, 0 ,CVMX_BOOTMEM_FLAG_END_ALLOC);
if (addr >= 0)
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr);
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_mem_list_init: named_block_array_addr: 0x%llx)\n",
(ULL)addr);
#endif
if (!addr)
{
cvmx_dprintf("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n");
return(0);
}
for (i=0; i<CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++)
{
CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0);
CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0);
addr += sizeof(cvmx_bootmem_named_block_desc_t);
}
return(1);
}
void cvmx_bootmem_lock(void)
{
__cvmx_bootmem_lock(0);
}
void cvmx_bootmem_unlock(void)
{
__cvmx_bootmem_unlock(0);
}
#ifndef CVMX_BUILD_FOR_LINUX_HOST
void *__cvmx_bootmem_internal_get_desc_ptr(void)
{
return cvmx_phys_to_ptr(cvmx_bootmem_desc_addr);
}
#endif