freebsd-dev/sys/contrib/octeon-sdk/cvmx-sso-defs.h
Juli Mallett dc4ee6ca91 Merge the Cavium Octeon SDK 2.3.0 Simple Executive code and update FreeBSD to
make use of it where possible.

This primarily brings in support for newer hardware, and FreeBSD is not yet
able to support the abundance of IRQs on new hardware and many features in the
Ethernet driver.

Because of the changes to IRQs in the Simple Executive, we have to maintain our
own list of Octeon IRQs now, which probably can be pared-down and be specific
to the CIU interrupt unit soon, and when other interrupt mechanisms are added
they can maintain their own definitions.

Remove unmasking of interrupts from within the UART device now that the
function used is no longer present in the Simple Executive.  The unmasking
seems to have been gratuitous as this is more properly handled by the buses
above the UART device, and seems to work on that basis.
2012-03-11 06:17:49 +00:00

2195 lines
87 KiB
C

/***********************license start***************
* Copyright (c) 2003-2012 Cavium Inc. (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Cavium Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
* This Software, including technical data, may be subject to U.S. export control
* laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
* DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
/**
* cvmx-sso-defs.h
*
* Configuration and status register (CSR) type definitions for
* Octeon sso.
*
* This file is auto generated. Do not edit.
*
* <hr>$Revision$<hr>
*
*/
#ifndef __CVMX_SSO_DEFS_H__
#define __CVMX_SSO_DEFS_H__
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_ACTIVE_CYCLES CVMX_SSO_ACTIVE_CYCLES_FUNC()
static inline uint64_t CVMX_SSO_ACTIVE_CYCLES_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_ACTIVE_CYCLES not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00016700000010E8ull);
}
#else
#define CVMX_SSO_ACTIVE_CYCLES (CVMX_ADD_IO_SEG(0x00016700000010E8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_BIST_STAT CVMX_SSO_BIST_STAT_FUNC()
static inline uint64_t CVMX_SSO_BIST_STAT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_BIST_STAT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001078ull);
}
#else
#define CVMX_SSO_BIST_STAT (CVMX_ADD_IO_SEG(0x0001670000001078ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_CFG CVMX_SSO_CFG_FUNC()
static inline uint64_t CVMX_SSO_CFG_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_CFG not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001088ull);
}
#else
#define CVMX_SSO_CFG (CVMX_ADD_IO_SEG(0x0001670000001088ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_DS_PC CVMX_SSO_DS_PC_FUNC()
static inline uint64_t CVMX_SSO_DS_PC_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_DS_PC not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001070ull);
}
#else
#define CVMX_SSO_DS_PC (CVMX_ADD_IO_SEG(0x0001670000001070ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_ERR CVMX_SSO_ERR_FUNC()
static inline uint64_t CVMX_SSO_ERR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_ERR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001038ull);
}
#else
#define CVMX_SSO_ERR (CVMX_ADD_IO_SEG(0x0001670000001038ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_ERR_ENB CVMX_SSO_ERR_ENB_FUNC()
static inline uint64_t CVMX_SSO_ERR_ENB_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_ERR_ENB not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001030ull);
}
#else
#define CVMX_SSO_ERR_ENB (CVMX_ADD_IO_SEG(0x0001670000001030ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_FIDX_ECC_CTL CVMX_SSO_FIDX_ECC_CTL_FUNC()
static inline uint64_t CVMX_SSO_FIDX_ECC_CTL_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_FIDX_ECC_CTL not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00016700000010D0ull);
}
#else
#define CVMX_SSO_FIDX_ECC_CTL (CVMX_ADD_IO_SEG(0x00016700000010D0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_FIDX_ECC_ST CVMX_SSO_FIDX_ECC_ST_FUNC()
static inline uint64_t CVMX_SSO_FIDX_ECC_ST_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_FIDX_ECC_ST not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00016700000010D8ull);
}
#else
#define CVMX_SSO_FIDX_ECC_ST (CVMX_ADD_IO_SEG(0x00016700000010D8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_FPAGE_CNT CVMX_SSO_FPAGE_CNT_FUNC()
static inline uint64_t CVMX_SSO_FPAGE_CNT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_FPAGE_CNT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001090ull);
}
#else
#define CVMX_SSO_FPAGE_CNT (CVMX_ADD_IO_SEG(0x0001670000001090ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_GWE_CFG CVMX_SSO_GWE_CFG_FUNC()
static inline uint64_t CVMX_SSO_GWE_CFG_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_GWE_CFG not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001098ull);
}
#else
#define CVMX_SSO_GWE_CFG (CVMX_ADD_IO_SEG(0x0001670000001098ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_IDX_ECC_CTL CVMX_SSO_IDX_ECC_CTL_FUNC()
static inline uint64_t CVMX_SSO_IDX_ECC_CTL_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_IDX_ECC_CTL not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00016700000010C0ull);
}
#else
#define CVMX_SSO_IDX_ECC_CTL (CVMX_ADD_IO_SEG(0x00016700000010C0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_IDX_ECC_ST CVMX_SSO_IDX_ECC_ST_FUNC()
static inline uint64_t CVMX_SSO_IDX_ECC_ST_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_IDX_ECC_ST not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00016700000010C8ull);
}
#else
#define CVMX_SSO_IDX_ECC_ST (CVMX_ADD_IO_SEG(0x00016700000010C8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_IQ_CNTX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7)))))
cvmx_warn("CVMX_SSO_IQ_CNTX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001670000009000ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_SSO_IQ_CNTX(offset) (CVMX_ADD_IO_SEG(0x0001670000009000ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_IQ_COM_CNT CVMX_SSO_IQ_COM_CNT_FUNC()
static inline uint64_t CVMX_SSO_IQ_COM_CNT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_IQ_COM_CNT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001058ull);
}
#else
#define CVMX_SSO_IQ_COM_CNT (CVMX_ADD_IO_SEG(0x0001670000001058ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_IQ_INT CVMX_SSO_IQ_INT_FUNC()
static inline uint64_t CVMX_SSO_IQ_INT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_IQ_INT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001048ull);
}
#else
#define CVMX_SSO_IQ_INT (CVMX_ADD_IO_SEG(0x0001670000001048ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_IQ_INT_EN CVMX_SSO_IQ_INT_EN_FUNC()
static inline uint64_t CVMX_SSO_IQ_INT_EN_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_IQ_INT_EN not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001050ull);
}
#else
#define CVMX_SSO_IQ_INT_EN (CVMX_ADD_IO_SEG(0x0001670000001050ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_IQ_THRX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7)))))
cvmx_warn("CVMX_SSO_IQ_THRX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x000167000000A000ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_SSO_IQ_THRX(offset) (CVMX_ADD_IO_SEG(0x000167000000A000ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_NOS_CNT CVMX_SSO_NOS_CNT_FUNC()
static inline uint64_t CVMX_SSO_NOS_CNT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_NOS_CNT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001040ull);
}
#else
#define CVMX_SSO_NOS_CNT (CVMX_ADD_IO_SEG(0x0001670000001040ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_NW_TIM CVMX_SSO_NW_TIM_FUNC()
static inline uint64_t CVMX_SSO_NW_TIM_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_NW_TIM not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001028ull);
}
#else
#define CVMX_SSO_NW_TIM (CVMX_ADD_IO_SEG(0x0001670000001028ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_OTH_ECC_CTL CVMX_SSO_OTH_ECC_CTL_FUNC()
static inline uint64_t CVMX_SSO_OTH_ECC_CTL_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_OTH_ECC_CTL not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00016700000010B0ull);
}
#else
#define CVMX_SSO_OTH_ECC_CTL (CVMX_ADD_IO_SEG(0x00016700000010B0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_OTH_ECC_ST CVMX_SSO_OTH_ECC_ST_FUNC()
static inline uint64_t CVMX_SSO_OTH_ECC_ST_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_OTH_ECC_ST not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00016700000010B8ull);
}
#else
#define CVMX_SSO_OTH_ECC_ST (CVMX_ADD_IO_SEG(0x00016700000010B8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_PND_ECC_CTL CVMX_SSO_PND_ECC_CTL_FUNC()
static inline uint64_t CVMX_SSO_PND_ECC_CTL_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_PND_ECC_CTL not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00016700000010A0ull);
}
#else
#define CVMX_SSO_PND_ECC_CTL (CVMX_ADD_IO_SEG(0x00016700000010A0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_PND_ECC_ST CVMX_SSO_PND_ECC_ST_FUNC()
static inline uint64_t CVMX_SSO_PND_ECC_ST_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_PND_ECC_ST not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00016700000010A8ull);
}
#else
#define CVMX_SSO_PND_ECC_ST (CVMX_ADD_IO_SEG(0x00016700000010A8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_PPX_GRP_MSK(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 31)))))
cvmx_warn("CVMX_SSO_PPX_GRP_MSK(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001670000006000ull) + ((offset) & 31) * 8;
}
#else
#define CVMX_SSO_PPX_GRP_MSK(offset) (CVMX_ADD_IO_SEG(0x0001670000006000ull) + ((offset) & 31) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_PPX_QOS_PRI(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 31)))))
cvmx_warn("CVMX_SSO_PPX_QOS_PRI(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001670000003000ull) + ((offset) & 31) * 8;
}
#else
#define CVMX_SSO_PPX_QOS_PRI(offset) (CVMX_ADD_IO_SEG(0x0001670000003000ull) + ((offset) & 31) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_PP_STRICT CVMX_SSO_PP_STRICT_FUNC()
static inline uint64_t CVMX_SSO_PP_STRICT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_PP_STRICT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00016700000010E0ull);
}
#else
#define CVMX_SSO_PP_STRICT (CVMX_ADD_IO_SEG(0x00016700000010E0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_QOSX_RND(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7)))))
cvmx_warn("CVMX_SSO_QOSX_RND(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001670000002000ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_SSO_QOSX_RND(offset) (CVMX_ADD_IO_SEG(0x0001670000002000ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_QOS_THRX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7)))))
cvmx_warn("CVMX_SSO_QOS_THRX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x000167000000B000ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_SSO_QOS_THRX(offset) (CVMX_ADD_IO_SEG(0x000167000000B000ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_QOS_WE CVMX_SSO_QOS_WE_FUNC()
static inline uint64_t CVMX_SSO_QOS_WE_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_QOS_WE not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001080ull);
}
#else
#define CVMX_SSO_QOS_WE (CVMX_ADD_IO_SEG(0x0001670000001080ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_RESET CVMX_SSO_RESET_FUNC()
static inline uint64_t CVMX_SSO_RESET_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_RESET not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00016700000010F0ull);
}
#else
#define CVMX_SSO_RESET (CVMX_ADD_IO_SEG(0x00016700000010F0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_RWQ_HEAD_PTRX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7)))))
cvmx_warn("CVMX_SSO_RWQ_HEAD_PTRX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x000167000000C000ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_SSO_RWQ_HEAD_PTRX(offset) (CVMX_ADD_IO_SEG(0x000167000000C000ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_RWQ_POP_FPTR CVMX_SSO_RWQ_POP_FPTR_FUNC()
static inline uint64_t CVMX_SSO_RWQ_POP_FPTR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_RWQ_POP_FPTR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x000167000000C408ull);
}
#else
#define CVMX_SSO_RWQ_POP_FPTR (CVMX_ADD_IO_SEG(0x000167000000C408ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_RWQ_PSH_FPTR CVMX_SSO_RWQ_PSH_FPTR_FUNC()
static inline uint64_t CVMX_SSO_RWQ_PSH_FPTR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_RWQ_PSH_FPTR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x000167000000C400ull);
}
#else
#define CVMX_SSO_RWQ_PSH_FPTR (CVMX_ADD_IO_SEG(0x000167000000C400ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_RWQ_TAIL_PTRX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7)))))
cvmx_warn("CVMX_SSO_RWQ_TAIL_PTRX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x000167000000C200ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_SSO_RWQ_TAIL_PTRX(offset) (CVMX_ADD_IO_SEG(0x000167000000C200ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_TS_PC CVMX_SSO_TS_PC_FUNC()
static inline uint64_t CVMX_SSO_TS_PC_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_TS_PC not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001068ull);
}
#else
#define CVMX_SSO_TS_PC (CVMX_ADD_IO_SEG(0x0001670000001068ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_WA_COM_PC CVMX_SSO_WA_COM_PC_FUNC()
static inline uint64_t CVMX_SSO_WA_COM_PC_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_WA_COM_PC not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001060ull);
}
#else
#define CVMX_SSO_WA_COM_PC (CVMX_ADD_IO_SEG(0x0001670000001060ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_WA_PCX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7)))))
cvmx_warn("CVMX_SSO_WA_PCX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001670000005000ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_SSO_WA_PCX(offset) (CVMX_ADD_IO_SEG(0x0001670000005000ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_WQ_INT CVMX_SSO_WQ_INT_FUNC()
static inline uint64_t CVMX_SSO_WQ_INT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_WQ_INT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001000ull);
}
#else
#define CVMX_SSO_WQ_INT (CVMX_ADD_IO_SEG(0x0001670000001000ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_WQ_INT_CNTX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 63)))))
cvmx_warn("CVMX_SSO_WQ_INT_CNTX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001670000008000ull) + ((offset) & 63) * 8;
}
#else
#define CVMX_SSO_WQ_INT_CNTX(offset) (CVMX_ADD_IO_SEG(0x0001670000008000ull) + ((offset) & 63) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_WQ_INT_PC CVMX_SSO_WQ_INT_PC_FUNC()
static inline uint64_t CVMX_SSO_WQ_INT_PC_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_WQ_INT_PC not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001020ull);
}
#else
#define CVMX_SSO_WQ_INT_PC (CVMX_ADD_IO_SEG(0x0001670000001020ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_WQ_INT_THRX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 63)))))
cvmx_warn("CVMX_SSO_WQ_INT_THRX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001670000007000ull) + ((offset) & 63) * 8;
}
#else
#define CVMX_SSO_WQ_INT_THRX(offset) (CVMX_ADD_IO_SEG(0x0001670000007000ull) + ((offset) & 63) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_SSO_WQ_IQ_DIS CVMX_SSO_WQ_IQ_DIS_FUNC()
static inline uint64_t CVMX_SSO_WQ_IQ_DIS_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_SSO_WQ_IQ_DIS not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000001010ull);
}
#else
#define CVMX_SSO_WQ_IQ_DIS (CVMX_ADD_IO_SEG(0x0001670000001010ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_SSO_WS_PCX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 63)))))
cvmx_warn("CVMX_SSO_WS_PCX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001670000004000ull) + ((offset) & 63) * 8;
}
#else
#define CVMX_SSO_WS_PCX(offset) (CVMX_ADD_IO_SEG(0x0001670000004000ull) + ((offset) & 63) * 8)
#endif
/**
* cvmx_sso_active_cycles
*
* SSO_ACTIVE_CYCLES = SSO cycles SSO active
*
* This register counts every sclk cycle that the SSO clocks are active.
* **NOTE: Added in pass 2.0
*/
union cvmx_sso_active_cycles {
uint64_t u64;
struct cvmx_sso_active_cycles_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t act_cyc : 64; /**< Counts number of active cycles. */
#else
uint64_t act_cyc : 64;
#endif
} s;
struct cvmx_sso_active_cycles_s cn68xx;
};
typedef union cvmx_sso_active_cycles cvmx_sso_active_cycles_t;
/**
* cvmx_sso_bist_stat
*
* SSO_BIST_STAT = SSO BIST Status Register
*
* Contains the BIST status for the SSO memories ('0' = pass, '1' = fail).
* Note that PP BIST status is not reported here as it was in previous designs.
*
* There may be more for DDR interface buffers.
* It's possible that a RAM will be used for SSO_PP_QOS_RND.
*/
union cvmx_sso_bist_stat {
uint64_t u64;
struct cvmx_sso_bist_stat_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_62_63 : 2;
uint64_t odu_pref : 2; /**< ODU Prefetch memory BIST status */
uint64_t reserved_54_59 : 6;
uint64_t fptr : 2; /**< FPTR memory BIST status */
uint64_t reserved_45_51 : 7;
uint64_t rwo_dat : 1; /**< RWO_DAT memory BIST status */
uint64_t rwo : 2; /**< RWO memory BIST status */
uint64_t reserved_35_41 : 7;
uint64_t rwi_dat : 1; /**< RWI_DAT memory BIST status */
uint64_t reserved_32_33 : 2;
uint64_t soc : 1; /**< SSO CAM BIST status */
uint64_t reserved_28_30 : 3;
uint64_t ncbo : 4; /**< NCBO transmitter memory BIST status */
uint64_t reserved_21_23 : 3;
uint64_t index : 1; /**< Index memory BIST status */
uint64_t reserved_17_19 : 3;
uint64_t fidx : 1; /**< Forward index memory BIST status */
uint64_t reserved_10_15 : 6;
uint64_t pend : 2; /**< Pending switch memory BIST status */
uint64_t reserved_2_7 : 6;
uint64_t oth : 2; /**< WQP, GRP memory BIST status */
#else
uint64_t oth : 2;
uint64_t reserved_2_7 : 6;
uint64_t pend : 2;
uint64_t reserved_10_15 : 6;
uint64_t fidx : 1;
uint64_t reserved_17_19 : 3;
uint64_t index : 1;
uint64_t reserved_21_23 : 3;
uint64_t ncbo : 4;
uint64_t reserved_28_30 : 3;
uint64_t soc : 1;
uint64_t reserved_32_33 : 2;
uint64_t rwi_dat : 1;
uint64_t reserved_35_41 : 7;
uint64_t rwo : 2;
uint64_t rwo_dat : 1;
uint64_t reserved_45_51 : 7;
uint64_t fptr : 2;
uint64_t reserved_54_59 : 6;
uint64_t odu_pref : 2;
uint64_t reserved_62_63 : 2;
#endif
} s;
struct cvmx_sso_bist_stat_s cn68xx;
struct cvmx_sso_bist_stat_cn68xxp1 {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_54_63 : 10;
uint64_t fptr : 2; /**< FPTR memory BIST status */
uint64_t reserved_45_51 : 7;
uint64_t rwo_dat : 1; /**< RWO_DAT memory BIST status */
uint64_t rwo : 2; /**< RWO memory BIST status */
uint64_t reserved_35_41 : 7;
uint64_t rwi_dat : 1; /**< RWI_DAT memory BIST status */
uint64_t reserved_32_33 : 2;
uint64_t soc : 1; /**< SSO CAM BIST status */
uint64_t reserved_28_30 : 3;
uint64_t ncbo : 4; /**< NCBO transmitter memory BIST status */
uint64_t reserved_21_23 : 3;
uint64_t index : 1; /**< Index memory BIST status */
uint64_t reserved_17_19 : 3;
uint64_t fidx : 1; /**< Forward index memory BIST status */
uint64_t reserved_10_15 : 6;
uint64_t pend : 2; /**< Pending switch memory BIST status */
uint64_t reserved_2_7 : 6;
uint64_t oth : 2; /**< WQP, GRP memory BIST status */
#else
uint64_t oth : 2;
uint64_t reserved_2_7 : 6;
uint64_t pend : 2;
uint64_t reserved_10_15 : 6;
uint64_t fidx : 1;
uint64_t reserved_17_19 : 3;
uint64_t index : 1;
uint64_t reserved_21_23 : 3;
uint64_t ncbo : 4;
uint64_t reserved_28_30 : 3;
uint64_t soc : 1;
uint64_t reserved_32_33 : 2;
uint64_t rwi_dat : 1;
uint64_t reserved_35_41 : 7;
uint64_t rwo : 2;
uint64_t rwo_dat : 1;
uint64_t reserved_45_51 : 7;
uint64_t fptr : 2;
uint64_t reserved_54_63 : 10;
#endif
} cn68xxp1;
};
typedef union cvmx_sso_bist_stat cvmx_sso_bist_stat_t;
/**
* cvmx_sso_cfg
*
* SSO_CFG = SSO Config
*
* This register is an assortment of various SSO configuration bits.
*/
union cvmx_sso_cfg {
uint64_t u64;
struct cvmx_sso_cfg_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_16_63 : 48;
uint64_t qck_gw_rsp_adj : 3; /**< Fast GET_WORK response fine adjustment
Allowed values are 0, 1, and 2 (0 is quickest) */
uint64_t qck_gw_rsp_dis : 1; /**< Disable faster response to GET_WORK */
uint64_t qck_sw_dis : 1; /**< Disable faster switch to UNSCHEDULED on GET_WORK */
uint64_t rwq_alloc_dis : 1; /**< Disable FPA Alloc Requests when SSO_FPAGE_CNT < 16 */
uint64_t soc_ccam_dis : 1; /**< Disable power saving SOC conditional CAM
(**NOTE: Added in pass 2.0) */
uint64_t sso_cclk_dis : 1; /**< Disable power saving SSO conditional clocking
(**NOTE: Added in pass 2.0) */
uint64_t rwo_flush : 1; /**< Flush RWO engine
Allows outbound NCB entries to go immediately rather
than waiting for a complete fill packet. This register
is one-shot and clears itself each time it is set. */
uint64_t wfe_thr : 1; /**< Use 1 Work-fetch engine (instead of 4) */
uint64_t rwio_byp_dis : 1; /**< Disable Bypass path in RWI/RWO Engines */
uint64_t rwq_byp_dis : 1; /**< Disable Bypass path in RWQ Engine */
uint64_t stt : 1; /**< STT Setting for RW Stores */
uint64_t ldt : 1; /**< LDT Setting for RW Loads */
uint64_t dwb : 1; /**< DWB Setting for Return Page Requests
1 = 2 128B cache pages to issue DWB for
0 = 0 128B cache pages ro issue DWB for */
uint64_t rwen : 1; /**< Enable RWI/RWO operations
This bit should be set after SSO_RWQ_HEAD_PTRX and
SSO_RWQ_TAIL_PTRX have been programmed. */
#else
uint64_t rwen : 1;
uint64_t dwb : 1;
uint64_t ldt : 1;
uint64_t stt : 1;
uint64_t rwq_byp_dis : 1;
uint64_t rwio_byp_dis : 1;
uint64_t wfe_thr : 1;
uint64_t rwo_flush : 1;
uint64_t sso_cclk_dis : 1;
uint64_t soc_ccam_dis : 1;
uint64_t rwq_alloc_dis : 1;
uint64_t qck_sw_dis : 1;
uint64_t qck_gw_rsp_dis : 1;
uint64_t qck_gw_rsp_adj : 3;
uint64_t reserved_16_63 : 48;
#endif
} s;
struct cvmx_sso_cfg_s cn68xx;
struct cvmx_sso_cfg_cn68xxp1 {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t rwo_flush : 1; /**< Flush RWO engine
Allows outbound NCB entries to go immediately rather
than waiting for a complete fill packet. This register
is one-shot and clears itself each time it is set. */
uint64_t wfe_thr : 1; /**< Use 1 Work-fetch engine (instead of 4) */
uint64_t rwio_byp_dis : 1; /**< Disable Bypass path in RWI/RWO Engines */
uint64_t rwq_byp_dis : 1; /**< Disable Bypass path in RWQ Engine */
uint64_t stt : 1; /**< STT Setting for RW Stores */
uint64_t ldt : 1; /**< LDT Setting for RW Loads */
uint64_t dwb : 1; /**< DWB Setting for Return Page Requests
1 = 2 128B cache pages to issue DWB for
0 = 0 128B cache pages ro issue DWB for */
uint64_t rwen : 1; /**< Enable RWI/RWO operations
This bit should be set after SSO_RWQ_HEAD_PTRX and
SSO_RWQ_TAIL_PTRX have been programmed. */
#else
uint64_t rwen : 1;
uint64_t dwb : 1;
uint64_t ldt : 1;
uint64_t stt : 1;
uint64_t rwq_byp_dis : 1;
uint64_t rwio_byp_dis : 1;
uint64_t wfe_thr : 1;
uint64_t rwo_flush : 1;
uint64_t reserved_8_63 : 56;
#endif
} cn68xxp1;
};
typedef union cvmx_sso_cfg cvmx_sso_cfg_t;
/**
* cvmx_sso_ds_pc
*
* SSO_DS_PC = SSO De-Schedule Performance Counter
*
* Counts the number of de-schedule requests.
* Counter rolls over through zero when max value exceeded.
*/
union cvmx_sso_ds_pc {
uint64_t u64;
struct cvmx_sso_ds_pc_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t ds_pc : 64; /**< De-schedule performance counter */
#else
uint64_t ds_pc : 64;
#endif
} s;
struct cvmx_sso_ds_pc_s cn68xx;
struct cvmx_sso_ds_pc_s cn68xxp1;
};
typedef union cvmx_sso_ds_pc cvmx_sso_ds_pc_t;
/**
* cvmx_sso_err
*
* SSO_ERR = SSO Error Register
*
* Contains ECC and other misc error bits.
*
* <45> The free page error bit will assert when SSO_FPAGE_CNT <= 16 and
* SSO_CFG[RWEN] is 1. Software will want to disable the interrupt
* associated with this error when recovering SSO pointers from the
* FPA and SSO.
*
* This register also contains the illegal operation error bits:
*
* <42> Received ADDWQ with tag specified as EMPTY
* <41> Received illegal opcode
* <40> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP/GET_WORK/ALLOC_WE
* from WS with CLR_NSCHED pending
* <39> Received CLR_NSCHED
* from WS with SWTAG_DESCH/DESCH/CLR_NSCHED pending
* <38> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP/GET_WORK/ALLOC_WE
* from WS with ALLOC_WE pending
* <37> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP/GET_WORK/ALLOC_WE/CLR_NSCHED
* from WS with GET_WORK pending
* <36> Received SWTAG_FULL/SWTAG_DESCH
* with tag specified as UNSCHEDULED
* <35> Received SWTAG/SWTAG_FULL/SWTAG_DESCH
* with tag specified as EMPTY
* <34> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/GET_WORK
* from WS with pending tag switch to ORDERED or ATOMIC
* <33> Received SWTAG/SWTAG_DESCH/DESCH/UPD_WQP
* from WS in UNSCHEDULED state
* <32> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP
* from WS in EMPTY state
*/
union cvmx_sso_err {
uint64_t u64;
struct cvmx_sso_err_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_48_63 : 16;
uint64_t bfp : 1; /**< Bad Fill Packet error
Last byte of the fill packet did not match 8'h1a */
uint64_t awe : 1; /**< Out-of-memory error (ADDWQ Request is dropped) */
uint64_t fpe : 1; /**< Free page error */
uint64_t reserved_43_44 : 2;
uint64_t iop : 11; /**< Illegal operation errors */
uint64_t reserved_12_31 : 20;
uint64_t pnd_dbe0 : 1; /**< Double bit error for even PND RAM */
uint64_t pnd_sbe0 : 1; /**< Single bit error for even PND RAM */
uint64_t pnd_dbe1 : 1; /**< Double bit error for odd PND RAM */
uint64_t pnd_sbe1 : 1; /**< Single bit error for odd PND RAM */
uint64_t oth_dbe0 : 1; /**< Double bit error for even OTH RAM */
uint64_t oth_sbe0 : 1; /**< Single bit error for even OTH RAM */
uint64_t oth_dbe1 : 1; /**< Double bit error for odd OTH RAM */
uint64_t oth_sbe1 : 1; /**< Single bit error for odd OTH RAM */
uint64_t idx_dbe : 1; /**< Double bit error for IDX RAM */
uint64_t idx_sbe : 1; /**< Single bit error for IDX RAM */
uint64_t fidx_dbe : 1; /**< Double bit error for FIDX RAM */
uint64_t fidx_sbe : 1; /**< Single bit error for FIDX RAM */
#else
uint64_t fidx_sbe : 1;
uint64_t fidx_dbe : 1;
uint64_t idx_sbe : 1;
uint64_t idx_dbe : 1;
uint64_t oth_sbe1 : 1;
uint64_t oth_dbe1 : 1;
uint64_t oth_sbe0 : 1;
uint64_t oth_dbe0 : 1;
uint64_t pnd_sbe1 : 1;
uint64_t pnd_dbe1 : 1;
uint64_t pnd_sbe0 : 1;
uint64_t pnd_dbe0 : 1;
uint64_t reserved_12_31 : 20;
uint64_t iop : 11;
uint64_t reserved_43_44 : 2;
uint64_t fpe : 1;
uint64_t awe : 1;
uint64_t bfp : 1;
uint64_t reserved_48_63 : 16;
#endif
} s;
struct cvmx_sso_err_s cn68xx;
struct cvmx_sso_err_s cn68xxp1;
};
typedef union cvmx_sso_err cvmx_sso_err_t;
/**
* cvmx_sso_err_enb
*
* SSO_ERR_ENB = SSO Error Enable Register
*
* Contains the interrupt enables corresponding to SSO_ERR.
*/
union cvmx_sso_err_enb {
uint64_t u64;
struct cvmx_sso_err_enb_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_48_63 : 16;
uint64_t bfp_ie : 1; /**< Bad Fill Packet error interrupt enable */
uint64_t awe_ie : 1; /**< Add-work error interrupt enable */
uint64_t fpe_ie : 1; /**< Free Page error interrupt enable */
uint64_t reserved_43_44 : 2;
uint64_t iop_ie : 11; /**< Illegal operation interrupt enables */
uint64_t reserved_12_31 : 20;
uint64_t pnd_dbe0_ie : 1; /**< Double bit error interrupt enable for even PND RAM */
uint64_t pnd_sbe0_ie : 1; /**< Single bit error interrupt enable for even PND RAM */
uint64_t pnd_dbe1_ie : 1; /**< Double bit error interrupt enable for odd PND RAM */
uint64_t pnd_sbe1_ie : 1; /**< Single bit error interrupt enable for odd PND RAM */
uint64_t oth_dbe0_ie : 1; /**< Double bit error interrupt enable for even OTH RAM */
uint64_t oth_sbe0_ie : 1; /**< Single bit error interrupt enable for even OTH RAM */
uint64_t oth_dbe1_ie : 1; /**< Double bit error interrupt enable for odd OTH RAM */
uint64_t oth_sbe1_ie : 1; /**< Single bit error interrupt enable for odd OTH RAM */
uint64_t idx_dbe_ie : 1; /**< Double bit error interrupt enable for IDX RAM */
uint64_t idx_sbe_ie : 1; /**< Single bit error interrupt enable for IDX RAM */
uint64_t fidx_dbe_ie : 1; /**< Double bit error interrupt enable for FIDX RAM */
uint64_t fidx_sbe_ie : 1; /**< Single bit error interrupt enable for FIDX RAM */
#else
uint64_t fidx_sbe_ie : 1;
uint64_t fidx_dbe_ie : 1;
uint64_t idx_sbe_ie : 1;
uint64_t idx_dbe_ie : 1;
uint64_t oth_sbe1_ie : 1;
uint64_t oth_dbe1_ie : 1;
uint64_t oth_sbe0_ie : 1;
uint64_t oth_dbe0_ie : 1;
uint64_t pnd_sbe1_ie : 1;
uint64_t pnd_dbe1_ie : 1;
uint64_t pnd_sbe0_ie : 1;
uint64_t pnd_dbe0_ie : 1;
uint64_t reserved_12_31 : 20;
uint64_t iop_ie : 11;
uint64_t reserved_43_44 : 2;
uint64_t fpe_ie : 1;
uint64_t awe_ie : 1;
uint64_t bfp_ie : 1;
uint64_t reserved_48_63 : 16;
#endif
} s;
struct cvmx_sso_err_enb_s cn68xx;
struct cvmx_sso_err_enb_s cn68xxp1;
};
typedef union cvmx_sso_err_enb cvmx_sso_err_enb_t;
/**
* cvmx_sso_fidx_ecc_ctl
*
* SSO_FIDX_ECC_CTL = SSO FIDX ECC Control
*
*/
union cvmx_sso_fidx_ecc_ctl {
uint64_t u64;
struct cvmx_sso_fidx_ecc_ctl_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_3_63 : 61;
uint64_t flip_synd : 2; /**< Testing feature. Flip Syndrom to generate single or
double bit error for the FIDX RAM. */
uint64_t ecc_ena : 1; /**< ECC Enable: When set will enable the 5 bit ECC
correct logic for the FIDX RAM. */
#else
uint64_t ecc_ena : 1;
uint64_t flip_synd : 2;
uint64_t reserved_3_63 : 61;
#endif
} s;
struct cvmx_sso_fidx_ecc_ctl_s cn68xx;
struct cvmx_sso_fidx_ecc_ctl_s cn68xxp1;
};
typedef union cvmx_sso_fidx_ecc_ctl cvmx_sso_fidx_ecc_ctl_t;
/**
* cvmx_sso_fidx_ecc_st
*
* SSO_FIDX_ECC_ST = SSO FIDX ECC Status
*
*/
union cvmx_sso_fidx_ecc_st {
uint64_t u64;
struct cvmx_sso_fidx_ecc_st_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_27_63 : 37;
uint64_t addr : 11; /**< Latch the address for latest sde/dbe occured
for the FIDX RAM */
uint64_t reserved_9_15 : 7;
uint64_t syndrom : 5; /**< Report the latest error syndrom for the
FIDX RAM */
uint64_t reserved_0_3 : 4;
#else
uint64_t reserved_0_3 : 4;
uint64_t syndrom : 5;
uint64_t reserved_9_15 : 7;
uint64_t addr : 11;
uint64_t reserved_27_63 : 37;
#endif
} s;
struct cvmx_sso_fidx_ecc_st_s cn68xx;
struct cvmx_sso_fidx_ecc_st_s cn68xxp1;
};
typedef union cvmx_sso_fidx_ecc_st cvmx_sso_fidx_ecc_st_t;
/**
* cvmx_sso_fpage_cnt
*
* SSO_FPAGE_CNT = SSO Free Page Cnt
*
* This register keeps track of the number of free pages pointers available for use in external memory.
*/
union cvmx_sso_fpage_cnt {
uint64_t u64;
struct cvmx_sso_fpage_cnt_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t fpage_cnt : 32; /**< Free Page Cnt
HW updates this register. Writes to this register
are only for diagnostic purposes */
#else
uint64_t fpage_cnt : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_sso_fpage_cnt_s cn68xx;
struct cvmx_sso_fpage_cnt_s cn68xxp1;
};
typedef union cvmx_sso_fpage_cnt cvmx_sso_fpage_cnt_t;
/**
* cvmx_sso_gwe_cfg
*
* SSO_GWE_CFG = SSO Get-Work Examiner Configuration
*
* This register controls the operation of the Get-Work Examiner (GWE)
*/
union cvmx_sso_gwe_cfg {
uint64_t u64;
struct cvmx_sso_gwe_cfg_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_12_63 : 52;
uint64_t odu_ffpgw_dis : 1; /**< Disable flushing ODU on periodic restart of GWE */
uint64_t gwe_rfpgw_dis : 1; /**< Disable periodic restart of GWE for pending get_work */
uint64_t odu_prf_dis : 1; /**< Disable ODU-initiated prefetches of WQEs into L2C
For diagnostic use only. */
uint64_t odu_bmp_dis : 1; /**< Disable ODU bumps.
If SSO_PP_STRICT is true, could
prevent forward progress under some circumstances.
For diagnostic use only. */
uint64_t reserved_5_7 : 3;
uint64_t gwe_hvy_dis : 1; /**< Disable GWE automatic, proportional weight-increase
mechanism and use SSO_QOSX_RND values as-is.
For diagnostic use only. */
uint64_t gwe_poe : 1; /**< Pause GWE on extracts
For diagnostic use only. */
uint64_t gwe_fpor : 1; /**< Flush GWE pipeline when restarting GWE.
For diagnostic use only. */
uint64_t gwe_rah : 1; /**< Begin at head of input queues when restarting GWE.
For diagnostic use only. */
uint64_t gwe_dis : 1; /**< Disable Get-Work Examiner */
#else
uint64_t gwe_dis : 1;
uint64_t gwe_rah : 1;
uint64_t gwe_fpor : 1;
uint64_t gwe_poe : 1;
uint64_t gwe_hvy_dis : 1;
uint64_t reserved_5_7 : 3;
uint64_t odu_bmp_dis : 1;
uint64_t odu_prf_dis : 1;
uint64_t gwe_rfpgw_dis : 1;
uint64_t odu_ffpgw_dis : 1;
uint64_t reserved_12_63 : 52;
#endif
} s;
struct cvmx_sso_gwe_cfg_s cn68xx;
struct cvmx_sso_gwe_cfg_cn68xxp1 {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_4_63 : 60;
uint64_t gwe_poe : 1; /**< Pause GWE on extracts
For diagnostic use only. */
uint64_t gwe_fpor : 1; /**< Flush GWE pipeline when restarting GWE.
For diagnostic use only. */
uint64_t gwe_rah : 1; /**< Begin at head of input queues when restarting GWE.
For diagnostic use only. */
uint64_t gwe_dis : 1; /**< Disable Get-Work Examiner */
#else
uint64_t gwe_dis : 1;
uint64_t gwe_rah : 1;
uint64_t gwe_fpor : 1;
uint64_t gwe_poe : 1;
uint64_t reserved_4_63 : 60;
#endif
} cn68xxp1;
};
typedef union cvmx_sso_gwe_cfg cvmx_sso_gwe_cfg_t;
/**
* cvmx_sso_idx_ecc_ctl
*
* SSO_IDX_ECC_CTL = SSO IDX ECC Control
*
*/
union cvmx_sso_idx_ecc_ctl {
uint64_t u64;
struct cvmx_sso_idx_ecc_ctl_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_3_63 : 61;
uint64_t flip_synd : 2; /**< Testing feature. Flip Syndrom to generate single or
double bit error for the IDX RAM. */
uint64_t ecc_ena : 1; /**< ECC Enable: When set will enable the 5 bit ECC
correct logic for the IDX RAM. */
#else
uint64_t ecc_ena : 1;
uint64_t flip_synd : 2;
uint64_t reserved_3_63 : 61;
#endif
} s;
struct cvmx_sso_idx_ecc_ctl_s cn68xx;
struct cvmx_sso_idx_ecc_ctl_s cn68xxp1;
};
typedef union cvmx_sso_idx_ecc_ctl cvmx_sso_idx_ecc_ctl_t;
/**
* cvmx_sso_idx_ecc_st
*
* SSO_IDX_ECC_ST = SSO IDX ECC Status
*
*/
union cvmx_sso_idx_ecc_st {
uint64_t u64;
struct cvmx_sso_idx_ecc_st_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_27_63 : 37;
uint64_t addr : 11; /**< Latch the address for latest sde/dbe occured
for the IDX RAM */
uint64_t reserved_9_15 : 7;
uint64_t syndrom : 5; /**< Report the latest error syndrom for the
IDX RAM */
uint64_t reserved_0_3 : 4;
#else
uint64_t reserved_0_3 : 4;
uint64_t syndrom : 5;
uint64_t reserved_9_15 : 7;
uint64_t addr : 11;
uint64_t reserved_27_63 : 37;
#endif
} s;
struct cvmx_sso_idx_ecc_st_s cn68xx;
struct cvmx_sso_idx_ecc_st_s cn68xxp1;
};
typedef union cvmx_sso_idx_ecc_st cvmx_sso_idx_ecc_st_t;
/**
* cvmx_sso_iq_cnt#
*
* CSR reserved addresses: (64): 0x8200..0x83f8
* CSR align addresses: ===========================================================================================================
* SSO_IQ_CNTX = SSO Input Queue Count Register
* (one per QOS level)
*
* Contains a read-only count of the number of work queue entries for each QOS
* level. Counts both in-unit and in-memory entries.
*/
union cvmx_sso_iq_cntx {
uint64_t u64;
struct cvmx_sso_iq_cntx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t iq_cnt : 32; /**< Input queue count for QOS level X */
#else
uint64_t iq_cnt : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_sso_iq_cntx_s cn68xx;
struct cvmx_sso_iq_cntx_s cn68xxp1;
};
typedef union cvmx_sso_iq_cntx cvmx_sso_iq_cntx_t;
/**
* cvmx_sso_iq_com_cnt
*
* SSO_IQ_COM_CNT = SSO Input Queue Combined Count Register
*
* Contains a read-only count of the total number of work queue entries in all
* QOS levels. Counts both in-unit and in-memory entries.
*/
union cvmx_sso_iq_com_cnt {
uint64_t u64;
struct cvmx_sso_iq_com_cnt_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t iq_cnt : 32; /**< Input queue combined count */
#else
uint64_t iq_cnt : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_sso_iq_com_cnt_s cn68xx;
struct cvmx_sso_iq_com_cnt_s cn68xxp1;
};
typedef union cvmx_sso_iq_com_cnt cvmx_sso_iq_com_cnt_t;
/**
* cvmx_sso_iq_int
*
* SSO_IQ_INT = SSO Input Queue Interrupt Register
*
* Contains the bits (one per QOS level) that can trigger the input queue
* interrupt. An IQ_INT bit will be set if SSO_IQ_CNT#QOS# changes and the
* resulting value is equal to SSO_IQ_THR#QOS#.
*/
union cvmx_sso_iq_int {
uint64_t u64;
struct cvmx_sso_iq_int_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t iq_int : 8; /**< Input queue interrupt bits */
#else
uint64_t iq_int : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_sso_iq_int_s cn68xx;
struct cvmx_sso_iq_int_s cn68xxp1;
};
typedef union cvmx_sso_iq_int cvmx_sso_iq_int_t;
/**
* cvmx_sso_iq_int_en
*
* SSO_IQ_INT_EN = SSO Input Queue Interrupt Enable Register
*
* Contains the bits (one per QOS level) that enable the input queue interrupt.
*/
union cvmx_sso_iq_int_en {
uint64_t u64;
struct cvmx_sso_iq_int_en_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t int_en : 8; /**< Input queue interrupt enable bits */
#else
uint64_t int_en : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_sso_iq_int_en_s cn68xx;
struct cvmx_sso_iq_int_en_s cn68xxp1;
};
typedef union cvmx_sso_iq_int_en cvmx_sso_iq_int_en_t;
/**
* cvmx_sso_iq_thr#
*
* CSR reserved addresses: (24): 0x9040..0x90f8
* CSR align addresses: ===========================================================================================================
* SSO_IQ_THRX = SSO Input Queue Threshold Register
* (one per QOS level)
*
* Threshold value for triggering input queue interrupts.
*/
union cvmx_sso_iq_thrx {
uint64_t u64;
struct cvmx_sso_iq_thrx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t iq_thr : 32; /**< Input queue threshold for QOS level X */
#else
uint64_t iq_thr : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_sso_iq_thrx_s cn68xx;
struct cvmx_sso_iq_thrx_s cn68xxp1;
};
typedef union cvmx_sso_iq_thrx cvmx_sso_iq_thrx_t;
/**
* cvmx_sso_nos_cnt
*
* SSO_NOS_CNT = SSO No-schedule Count Register
*
* Contains the number of work queue entries on the no-schedule list.
*/
union cvmx_sso_nos_cnt {
uint64_t u64;
struct cvmx_sso_nos_cnt_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_12_63 : 52;
uint64_t nos_cnt : 12; /**< Number of work queue entries on the no-schedule list */
#else
uint64_t nos_cnt : 12;
uint64_t reserved_12_63 : 52;
#endif
} s;
struct cvmx_sso_nos_cnt_s cn68xx;
struct cvmx_sso_nos_cnt_s cn68xxp1;
};
typedef union cvmx_sso_nos_cnt cvmx_sso_nos_cnt_t;
/**
* cvmx_sso_nw_tim
*
* SSO_NW_TIM = SSO New Work Timer Period Register
*
* Sets the minimum period for a new work request timeout. Period is specified
* in n-1 notation where the increment value is 1024 clock cycles. Thus, a
* value of 0x0 in this register translates to 1024 cycles, 0x1 translates to
* 2048 cycles, 0x2 translates to 3072 cycles, etc... Note: the maximum period
* for a new work request timeout is 2 times the minimum period. Note: the new
* work request timeout counter is reset when this register is written.
*
* There are two new work request timeout cases:
*
* - WAIT bit clear. The new work request can timeout if the timer expires
* before the pre-fetch engine has reached the end of all work queues. This
* can occur if the executable work queue entry is deep in the queue and the
* pre-fetch engine is subject to many resets (i.e. high switch, de-schedule,
* or new work load from other PP's). Thus, it is possible for a PP to
* receive a work response with the NO_WORK bit set even though there was at
* least one executable entry in the work queues. The other (and typical)
* scenario for receiving a NO_WORK response with the WAIT bit clear is that
* the pre-fetch engine has reached the end of all work queues without
* finding executable work.
*
* - WAIT bit set. The new work request can timeout if the timer expires
* before the pre-fetch engine has found executable work. In this case, the
* only scenario where the PP will receive a work response with the NO_WORK
* bit set is if the timer expires. Note: it is still possible for a PP to
* receive a NO_WORK response even though there was at least one executable
* entry in the work queues.
*
* In either case, it's important to note that switches and de-schedules are
* higher priority operations that can cause the pre-fetch engine to reset.
* Thus in a system with many switches or de-schedules occurring, it's possible
* for the new work timer to expire (resulting in NO_WORK responses) before the
* pre-fetch engine is able to get very deep into the work queues.
*/
union cvmx_sso_nw_tim {
uint64_t u64;
struct cvmx_sso_nw_tim_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_10_63 : 54;
uint64_t nw_tim : 10; /**< New work timer period */
#else
uint64_t nw_tim : 10;
uint64_t reserved_10_63 : 54;
#endif
} s;
struct cvmx_sso_nw_tim_s cn68xx;
struct cvmx_sso_nw_tim_s cn68xxp1;
};
typedef union cvmx_sso_nw_tim cvmx_sso_nw_tim_t;
/**
* cvmx_sso_oth_ecc_ctl
*
* SSO_OTH_ECC_CTL = SSO OTH ECC Control
*
*/
union cvmx_sso_oth_ecc_ctl {
uint64_t u64;
struct cvmx_sso_oth_ecc_ctl_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_6_63 : 58;
uint64_t flip_synd1 : 2; /**< Testing feature. Flip Syndrom to generate single or
double bit error for the odd OTH RAM. */
uint64_t ecc_ena1 : 1; /**< ECC Enable: When set will enable the 7 bit ECC
correct logic for the odd OTH RAM. */
uint64_t flip_synd0 : 2; /**< Testing feature. Flip Syndrom to generate single or
double bit error for the even OTH RAM. */
uint64_t ecc_ena0 : 1; /**< ECC Enable: When set will enable the 7 bit ECC
correct logic for the even OTH RAM. */
#else
uint64_t ecc_ena0 : 1;
uint64_t flip_synd0 : 2;
uint64_t ecc_ena1 : 1;
uint64_t flip_synd1 : 2;
uint64_t reserved_6_63 : 58;
#endif
} s;
struct cvmx_sso_oth_ecc_ctl_s cn68xx;
struct cvmx_sso_oth_ecc_ctl_s cn68xxp1;
};
typedef union cvmx_sso_oth_ecc_ctl cvmx_sso_oth_ecc_ctl_t;
/**
* cvmx_sso_oth_ecc_st
*
* SSO_OTH_ECC_ST = SSO OTH ECC Status
*
*/
union cvmx_sso_oth_ecc_st {
uint64_t u64;
struct cvmx_sso_oth_ecc_st_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_59_63 : 5;
uint64_t addr1 : 11; /**< Latch the address for latest sde/dbe occured
for the odd OTH RAM */
uint64_t reserved_43_47 : 5;
uint64_t syndrom1 : 7; /**< Report the latest error syndrom for the odd
OTH RAM */
uint64_t reserved_27_35 : 9;
uint64_t addr0 : 11; /**< Latch the address for latest sde/dbe occured
for the even OTH RAM */
uint64_t reserved_11_15 : 5;
uint64_t syndrom0 : 7; /**< Report the latest error syndrom for the even
OTH RAM */
uint64_t reserved_0_3 : 4;
#else
uint64_t reserved_0_3 : 4;
uint64_t syndrom0 : 7;
uint64_t reserved_11_15 : 5;
uint64_t addr0 : 11;
uint64_t reserved_27_35 : 9;
uint64_t syndrom1 : 7;
uint64_t reserved_43_47 : 5;
uint64_t addr1 : 11;
uint64_t reserved_59_63 : 5;
#endif
} s;
struct cvmx_sso_oth_ecc_st_s cn68xx;
struct cvmx_sso_oth_ecc_st_s cn68xxp1;
};
typedef union cvmx_sso_oth_ecc_st cvmx_sso_oth_ecc_st_t;
/**
* cvmx_sso_pnd_ecc_ctl
*
* SSO_PND_ECC_CTL = SSO PND ECC Control
*
*/
union cvmx_sso_pnd_ecc_ctl {
uint64_t u64;
struct cvmx_sso_pnd_ecc_ctl_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_6_63 : 58;
uint64_t flip_synd1 : 2; /**< Testing feature. Flip Syndrom to generate single or
double bit error for the odd PND RAM. */
uint64_t ecc_ena1 : 1; /**< ECC Enable: When set will enable the 7 bit ECC
correct logic for the odd PND RAM. */
uint64_t flip_synd0 : 2; /**< Testing feature. Flip Syndrom to generate single or
double bit error for the even PND RAM. */
uint64_t ecc_ena0 : 1; /**< ECC Enable: When set will enable the 7 bit ECC
correct logic for the even PND RAM. */
#else
uint64_t ecc_ena0 : 1;
uint64_t flip_synd0 : 2;
uint64_t ecc_ena1 : 1;
uint64_t flip_synd1 : 2;
uint64_t reserved_6_63 : 58;
#endif
} s;
struct cvmx_sso_pnd_ecc_ctl_s cn68xx;
struct cvmx_sso_pnd_ecc_ctl_s cn68xxp1;
};
typedef union cvmx_sso_pnd_ecc_ctl cvmx_sso_pnd_ecc_ctl_t;
/**
* cvmx_sso_pnd_ecc_st
*
* SSO_PND_ECC_ST = SSO PND ECC Status
*
*/
union cvmx_sso_pnd_ecc_st {
uint64_t u64;
struct cvmx_sso_pnd_ecc_st_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_59_63 : 5;
uint64_t addr1 : 11; /**< Latch the address for latest sde/dbe occured
for the odd PND RAM */
uint64_t reserved_43_47 : 5;
uint64_t syndrom1 : 7; /**< Report the latest error syndrom for the odd
PND RAM */
uint64_t reserved_27_35 : 9;
uint64_t addr0 : 11; /**< Latch the address for latest sde/dbe occured
for the even PND RAM */
uint64_t reserved_11_15 : 5;
uint64_t syndrom0 : 7; /**< Report the latest error syndrom for the even
PND RAM */
uint64_t reserved_0_3 : 4;
#else
uint64_t reserved_0_3 : 4;
uint64_t syndrom0 : 7;
uint64_t reserved_11_15 : 5;
uint64_t addr0 : 11;
uint64_t reserved_27_35 : 9;
uint64_t syndrom1 : 7;
uint64_t reserved_43_47 : 5;
uint64_t addr1 : 11;
uint64_t reserved_59_63 : 5;
#endif
} s;
struct cvmx_sso_pnd_ecc_st_s cn68xx;
struct cvmx_sso_pnd_ecc_st_s cn68xxp1;
};
typedef union cvmx_sso_pnd_ecc_st cvmx_sso_pnd_ecc_st_t;
/**
* cvmx_sso_pp#_grp_msk
*
* CSR reserved addresses: (24): 0x5040..0x50f8
* CSR align addresses: ===========================================================================================================
* SSO_PPX_GRP_MSK = SSO PP Group Mask Register
* (one bit per group per PP)
*
* Selects which group(s) a PP belongs to. A '1' in any bit position sets the
* PP's membership in the corresponding group. A value of 0x0 will prevent the
* PP from receiving new work.
*
* Note that these do not contain QOS level priorities for each PP. This is a
* change from previous POW designs.
*/
union cvmx_sso_ppx_grp_msk {
uint64_t u64;
struct cvmx_sso_ppx_grp_msk_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t grp_msk : 64; /**< PPX group mask */
#else
uint64_t grp_msk : 64;
#endif
} s;
struct cvmx_sso_ppx_grp_msk_s cn68xx;
struct cvmx_sso_ppx_grp_msk_s cn68xxp1;
};
typedef union cvmx_sso_ppx_grp_msk cvmx_sso_ppx_grp_msk_t;
/**
* cvmx_sso_pp#_qos_pri
*
* CSR reserved addresses: (56): 0x2040..0x21f8
* CSR align addresses: ===========================================================================================================
* SSO_PP(0..31)_QOS_PRI = SSO PP QOS Priority Register
* (one field per IQ per PP)
*
* Contains the QOS level priorities for each PP.
* 0x0 is the highest priority
* 0x7 is the lowest priority
* 0xf prevents the PP from receiving work from that QOS level
* 0x8-0xe Reserved
*
* For a given PP, priorities should begin at 0x0, and remain contiguous
* throughout the range. Failure to do so may result in severe
* performance degradation.
*
*
* Priorities for IQs 0..7
*/
union cvmx_sso_ppx_qos_pri {
uint64_t u64;
struct cvmx_sso_ppx_qos_pri_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_60_63 : 4;
uint64_t qos7_pri : 4; /**< QOS7 priority for PPX */
uint64_t reserved_52_55 : 4;
uint64_t qos6_pri : 4; /**< QOS6 priority for PPX */
uint64_t reserved_44_47 : 4;
uint64_t qos5_pri : 4; /**< QOS5 priority for PPX */
uint64_t reserved_36_39 : 4;
uint64_t qos4_pri : 4; /**< QOS4 priority for PPX */
uint64_t reserved_28_31 : 4;
uint64_t qos3_pri : 4; /**< QOS3 priority for PPX */
uint64_t reserved_20_23 : 4;
uint64_t qos2_pri : 4; /**< QOS2 priority for PPX */
uint64_t reserved_12_15 : 4;
uint64_t qos1_pri : 4; /**< QOS1 priority for PPX */
uint64_t reserved_4_7 : 4;
uint64_t qos0_pri : 4; /**< QOS0 priority for PPX */
#else
uint64_t qos0_pri : 4;
uint64_t reserved_4_7 : 4;
uint64_t qos1_pri : 4;
uint64_t reserved_12_15 : 4;
uint64_t qos2_pri : 4;
uint64_t reserved_20_23 : 4;
uint64_t qos3_pri : 4;
uint64_t reserved_28_31 : 4;
uint64_t qos4_pri : 4;
uint64_t reserved_36_39 : 4;
uint64_t qos5_pri : 4;
uint64_t reserved_44_47 : 4;
uint64_t qos6_pri : 4;
uint64_t reserved_52_55 : 4;
uint64_t qos7_pri : 4;
uint64_t reserved_60_63 : 4;
#endif
} s;
struct cvmx_sso_ppx_qos_pri_s cn68xx;
struct cvmx_sso_ppx_qos_pri_s cn68xxp1;
};
typedef union cvmx_sso_ppx_qos_pri cvmx_sso_ppx_qos_pri_t;
/**
* cvmx_sso_pp_strict
*
* SSO_PP_STRICT = SSO Strict Priority
*
* This register controls getting work from the input queues. If the bit
* corresponding to a PP is set, that PP will not take work off the input
* queues until it is known that there is no higher-priority work available.
*
* Setting SSO_PP_STRICT may incur a performance penalty if highest-priority
* work is not found early.
*
* It is possible to starve a PP of work with SSO_PP_STRICT. If the
* SSO_PPX_GRP_MSK for a PP masks-out much of the work added to the input
* queues that are higher-priority for that PP, and if there is a constant
* stream of work through one or more of those higher-priority input queues,
* then that PP may not accept work from lower-priority input queues. This can
* be alleviated by ensuring that most or all the work added to the
* higher-priority input queues for a PP with SSO_PP_STRICT set are in a group
* acceptable to that PP.
*
* It is also possible to neglect work in an input queue if SSO_PP_STRICT is
* used. If an input queue is a lower-priority queue for all PPs, and if all
* the PPs have their corresponding bit in SSO_PP_STRICT set, then work may
* never be taken (or be seldom taken) from that queue. This can be alleviated
* by ensuring that work in all input queues can be serviced by one or more PPs
* that do not have SSO_PP_STRICT set, or that the input queue is the
* highest-priority input queue for one or more PPs that do have SSO_PP_STRICT
* set.
*/
union cvmx_sso_pp_strict {
uint64_t u64;
struct cvmx_sso_pp_strict_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t pp_strict : 32; /**< Corresponding PP operates in strict mode. */
#else
uint64_t pp_strict : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_sso_pp_strict_s cn68xx;
struct cvmx_sso_pp_strict_s cn68xxp1;
};
typedef union cvmx_sso_pp_strict cvmx_sso_pp_strict_t;
/**
* cvmx_sso_qos#_rnd
*
* CSR align addresses: ===========================================================================================================
* SSO_QOS(0..7)_RND = SSO QOS Issue Round Register
* (one per IQ)
*
* The number of arbitration rounds each QOS level participates in.
*/
union cvmx_sso_qosx_rnd {
uint64_t u64;
struct cvmx_sso_qosx_rnd_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t rnds_qos : 8; /**< Number of rounds to participate in for IQ(X). */
#else
uint64_t rnds_qos : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_sso_qosx_rnd_s cn68xx;
struct cvmx_sso_qosx_rnd_s cn68xxp1;
};
typedef union cvmx_sso_qosx_rnd cvmx_sso_qosx_rnd_t;
/**
* cvmx_sso_qos_thr#
*
* CSR reserved addresses: (24): 0xa040..0xa0f8
* CSR align addresses: ===========================================================================================================
* SSO_QOS_THRX = SSO QOS Threshold Register
* (one per QOS level)
*
* Contains the thresholds for allocating SSO internal storage buffers. If the
* number of remaining free buffers drops below the minimum threshold (MIN_THR)
* or the number of allocated buffers for this QOS level rises above the
* maximum threshold (MAX_THR), future incoming work queue entries will be
* buffered externally rather than internally. This register also contains the
* number of internal buffers currently allocated to this QOS level (BUF_CNT).
*/
union cvmx_sso_qos_thrx {
uint64_t u64;
struct cvmx_sso_qos_thrx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_40_63 : 24;
uint64_t buf_cnt : 12; /**< # of internal buffers allocated to QOS level X */
uint64_t reserved_26_27 : 2;
uint64_t max_thr : 12; /**< Max threshold for QOS level X
For performance reasons, MAX_THR can have a slop of 4
WQE for QOS level X. */
uint64_t reserved_12_13 : 2;
uint64_t min_thr : 12; /**< Min threshold for QOS level X
For performance reasons, MIN_THR can have a slop of 4
WQEs for QOS level X. */
#else
uint64_t min_thr : 12;
uint64_t reserved_12_13 : 2;
uint64_t max_thr : 12;
uint64_t reserved_26_27 : 2;
uint64_t buf_cnt : 12;
uint64_t reserved_40_63 : 24;
#endif
} s;
struct cvmx_sso_qos_thrx_s cn68xx;
struct cvmx_sso_qos_thrx_s cn68xxp1;
};
typedef union cvmx_sso_qos_thrx cvmx_sso_qos_thrx_t;
/**
* cvmx_sso_qos_we
*
* SSO_QOS_WE = SSO WE Buffers
*
* This register contains a read-only count of the current number of free
* buffers (FREE_CNT) and the total number of tag chain heads on the de-schedule list
* (DES_CNT) (which is not the same as the total number of entries on all of the descheduled
* tag chains.)
*/
union cvmx_sso_qos_we {
uint64_t u64;
struct cvmx_sso_qos_we_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_26_63 : 38;
uint64_t des_cnt : 12; /**< Number of buffers on de-schedule list */
uint64_t reserved_12_13 : 2;
uint64_t free_cnt : 12; /**< Number of total free buffers */
#else
uint64_t free_cnt : 12;
uint64_t reserved_12_13 : 2;
uint64_t des_cnt : 12;
uint64_t reserved_26_63 : 38;
#endif
} s;
struct cvmx_sso_qos_we_s cn68xx;
struct cvmx_sso_qos_we_s cn68xxp1;
};
typedef union cvmx_sso_qos_we cvmx_sso_qos_we_t;
/**
* cvmx_sso_reset
*
* SSO_RESET = SSO Soft Reset
*
* Writing a one to SSO_RESET[RESET] will reset the SSO. After receiving a
* store to this CSR, the SSO must not be sent any other operations for 2500
* sclk cycles.
*
* Note that the contents of this register are reset along with the rest of the
* SSO.
*
* IMPLEMENTATION NOTES--NOT FOR SPEC:
* The SSO must return the bus credit associated with the CSR store used
* to write this register before reseting itself. And the RSL tree
* that passes through the SSO must continue to work for RSL operations
* that do not target the SSO itself.
*/
union cvmx_sso_reset {
uint64_t u64;
struct cvmx_sso_reset_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_1_63 : 63;
uint64_t reset : 1; /**< Reset the SSO */
#else
uint64_t reset : 1;
uint64_t reserved_1_63 : 63;
#endif
} s;
struct cvmx_sso_reset_s cn68xx;
};
typedef union cvmx_sso_reset cvmx_sso_reset_t;
/**
* cvmx_sso_rwq_head_ptr#
*
* CSR reserved addresses: (24): 0xb040..0xb0f8
* CSR align addresses: ===========================================================================================================
* SSO_RWQ_HEAD_PTRX = SSO Remote Queue Head Register
* (one per QOS level)
* Contains the ptr to the first entry of the remote linked list(s) for a particular
* QoS level. SW should initialize the remote linked list(s) by programming
* SSO_RWQ_HEAD_PTRX and SSO_RWQ_TAIL_PTRX to identical values.
*/
union cvmx_sso_rwq_head_ptrx {
uint64_t u64;
struct cvmx_sso_rwq_head_ptrx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_38_63 : 26;
uint64_t ptr : 31; /**< Head Pointer */
uint64_t reserved_5_6 : 2;
uint64_t rctr : 5; /**< Index of next WQE entry in fill packet to be
processed (inbound queues) */
#else
uint64_t rctr : 5;
uint64_t reserved_5_6 : 2;
uint64_t ptr : 31;
uint64_t reserved_38_63 : 26;
#endif
} s;
struct cvmx_sso_rwq_head_ptrx_s cn68xx;
struct cvmx_sso_rwq_head_ptrx_s cn68xxp1;
};
typedef union cvmx_sso_rwq_head_ptrx cvmx_sso_rwq_head_ptrx_t;
/**
* cvmx_sso_rwq_pop_fptr
*
* SSO_RWQ_POP_FPTR = SSO Pop Free Pointer
*
* This register is used by SW to remove pointers for buffer-reallocation and diagnostics, and
* should only be used when SSO is idle.
*
* To remove ALL pointers, software must insure that there are modulus 16
* pointers in the FPA. To do this, SSO_CFG.RWQ_BYP_DIS must be set, the FPA
* pointer count read, and enough fake buffers pushed via SSO_RWQ_PSH_FPTR to
* bring the FPA pointer count up to mod 16.
*/
union cvmx_sso_rwq_pop_fptr {
uint64_t u64;
struct cvmx_sso_rwq_pop_fptr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t val : 1; /**< Free Pointer Valid */
uint64_t cnt : 6; /**< fptr_in count */
uint64_t reserved_38_56 : 19;
uint64_t fptr : 31; /**< Free Pointer */
uint64_t reserved_0_6 : 7;
#else
uint64_t reserved_0_6 : 7;
uint64_t fptr : 31;
uint64_t reserved_38_56 : 19;
uint64_t cnt : 6;
uint64_t val : 1;
#endif
} s;
struct cvmx_sso_rwq_pop_fptr_s cn68xx;
struct cvmx_sso_rwq_pop_fptr_cn68xxp1 {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t val : 1; /**< Free Pointer Valid */
uint64_t reserved_38_62 : 25;
uint64_t fptr : 31; /**< Free Pointer */
uint64_t reserved_0_6 : 7;
#else
uint64_t reserved_0_6 : 7;
uint64_t fptr : 31;
uint64_t reserved_38_62 : 25;
uint64_t val : 1;
#endif
} cn68xxp1;
};
typedef union cvmx_sso_rwq_pop_fptr cvmx_sso_rwq_pop_fptr_t;
/**
* cvmx_sso_rwq_psh_fptr
*
* CSR reserved addresses: (56): 0xc240..0xc3f8
* SSO_RWQ_PSH_FPTR = SSO Free Pointer FIFO
*
* This register is used by SW to initialize the SSO with a pool of free
* pointers by writing the FPTR field whenever FULL = 0. Free pointers are
* fetched/released from/to the pool when accessing WQE entries stored remotely
* (in remote linked lists). Free pointers should be 128 byte aligned, each of
* 256 bytes. This register should only be used when SSO is idle.
*
* Software needs to set aside buffering for
* 8 + 48 + ROUNDUP(N/26)
*
* where as many as N DRAM work queue entries may be used. The first 8 buffers
* are used to setup the SSO_RWQ_HEAD_PTR and SSO_RWQ_TAIL_PTRs, and the
* remainder are pushed via this register.
*
* IMPLEMENTATION NOTES--NOT FOR SPEC:
* 48 avoids false out of buffer error due to (16) FPA and in-sso FPA buffering (32)
* 26 is number of WAE's per 256B buffer
*/
union cvmx_sso_rwq_psh_fptr {
uint64_t u64;
struct cvmx_sso_rwq_psh_fptr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t full : 1; /**< FIFO Full. When set, the FPA is busy writing entries
and software must wait before adding new entries. */
uint64_t cnt : 4; /**< fptr_out count */
uint64_t reserved_38_58 : 21;
uint64_t fptr : 31; /**< Free Pointer */
uint64_t reserved_0_6 : 7;
#else
uint64_t reserved_0_6 : 7;
uint64_t fptr : 31;
uint64_t reserved_38_58 : 21;
uint64_t cnt : 4;
uint64_t full : 1;
#endif
} s;
struct cvmx_sso_rwq_psh_fptr_s cn68xx;
struct cvmx_sso_rwq_psh_fptr_cn68xxp1 {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t full : 1; /**< FIFO Full. When set, the FPA is busy writing entries
and software must wait before adding new entries. */
uint64_t reserved_38_62 : 25;
uint64_t fptr : 31; /**< Free Pointer */
uint64_t reserved_0_6 : 7;
#else
uint64_t reserved_0_6 : 7;
uint64_t fptr : 31;
uint64_t reserved_38_62 : 25;
uint64_t full : 1;
#endif
} cn68xxp1;
};
typedef union cvmx_sso_rwq_psh_fptr cvmx_sso_rwq_psh_fptr_t;
/**
* cvmx_sso_rwq_tail_ptr#
*
* CSR reserved addresses: (56): 0xc040..0xc1f8
* SSO_RWQ_TAIL_PTRX = SSO Remote Queue Tail Register
* (one per QOS level)
* Contains the ptr to the last entry of the remote linked list(s) for a particular
* QoS level. SW must initialize the remote linked list(s) by programming
* SSO_RWQ_HEAD_PTRX and SSO_RWQ_TAIL_PTRX to identical values.
*/
union cvmx_sso_rwq_tail_ptrx {
uint64_t u64;
struct cvmx_sso_rwq_tail_ptrx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_38_63 : 26;
uint64_t ptr : 31; /**< Tail Pointer */
uint64_t reserved_5_6 : 2;
uint64_t rctr : 5; /**< Number of entries waiting to be sent out to external
RAM (outbound queues) */
#else
uint64_t rctr : 5;
uint64_t reserved_5_6 : 2;
uint64_t ptr : 31;
uint64_t reserved_38_63 : 26;
#endif
} s;
struct cvmx_sso_rwq_tail_ptrx_s cn68xx;
struct cvmx_sso_rwq_tail_ptrx_s cn68xxp1;
};
typedef union cvmx_sso_rwq_tail_ptrx cvmx_sso_rwq_tail_ptrx_t;
/**
* cvmx_sso_ts_pc
*
* SSO_TS_PC = SSO Tag Switch Performance Counter
*
* Counts the number of tag switch requests.
* Counter rolls over through zero when max value exceeded.
*/
union cvmx_sso_ts_pc {
uint64_t u64;
struct cvmx_sso_ts_pc_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t ts_pc : 64; /**< Tag switch performance counter */
#else
uint64_t ts_pc : 64;
#endif
} s;
struct cvmx_sso_ts_pc_s cn68xx;
struct cvmx_sso_ts_pc_s cn68xxp1;
};
typedef union cvmx_sso_ts_pc cvmx_sso_ts_pc_t;
/**
* cvmx_sso_wa_com_pc
*
* SSO_WA_COM_PC = SSO Work Add Combined Performance Counter
*
* Counts the number of add new work requests for all QOS levels.
* Counter rolls over through zero when max value exceeded.
*/
union cvmx_sso_wa_com_pc {
uint64_t u64;
struct cvmx_sso_wa_com_pc_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t wa_pc : 64; /**< Work add combined performance counter */
#else
uint64_t wa_pc : 64;
#endif
} s;
struct cvmx_sso_wa_com_pc_s cn68xx;
struct cvmx_sso_wa_com_pc_s cn68xxp1;
};
typedef union cvmx_sso_wa_com_pc cvmx_sso_wa_com_pc_t;
/**
* cvmx_sso_wa_pc#
*
* CSR reserved addresses: (64): 0x4200..0x43f8
* CSR align addresses: ===========================================================================================================
* SSO_WA_PCX = SSO Work Add Performance Counter
* (one per QOS level)
*
* Counts the number of add new work requests for each QOS level.
* Counter rolls over through zero when max value exceeded.
*/
union cvmx_sso_wa_pcx {
uint64_t u64;
struct cvmx_sso_wa_pcx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t wa_pc : 64; /**< Work add performance counter for QOS level X */
#else
uint64_t wa_pc : 64;
#endif
} s;
struct cvmx_sso_wa_pcx_s cn68xx;
struct cvmx_sso_wa_pcx_s cn68xxp1;
};
typedef union cvmx_sso_wa_pcx cvmx_sso_wa_pcx_t;
/**
* cvmx_sso_wq_int
*
* Note, the old POW offsets ran from 0x0 to 0x3f8, leaving the next available slot at 0x400.
* To ensure no overlap, start on 4k boundary: 0x1000.
* SSO_WQ_INT = SSO Work Queue Interrupt Register
*
* Contains the bits (one per group) that set work queue interrupts and are
* used to clear these interrupts. For more information regarding this
* register, see the interrupt section of the SSO spec.
*/
union cvmx_sso_wq_int {
uint64_t u64;
struct cvmx_sso_wq_int_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t wq_int : 64; /**< Work queue interrupt bits
Corresponding WQ_INT bit is set by HW whenever:
- SSO_WQ_INT_CNTX[IQ_CNT] >=
SSO_WQ_INT_THRX[IQ_THR] and the threshold
interrupt is not disabled.
SSO_WQ_IQ_DISX[IQ_DIS<X>]==1 disables the interrupt
SSO_WQ_INT_THRX[IQ_THR]==0 disables the int.
- SSO_WQ_INT_CNTX[DS_CNT] >=
SSO_WQ_INT_THRX[DS_THR] and the threshold
interrupt is not disabled
SSO_WQ_INT_THRX[DS_THR]==0 disables the int.
- SSO_WQ_INT_CNTX[TC_CNT]==1 when periodic
counter SSO_WQ_INT_PC[PC]==0 and
SSO_WQ_INT_THRX[TC_EN]==1 and at least one of:
- SSO_WQ_INT_CNTX[IQ_CNT] > 0
- SSO_WQ_INT_CNTX[DS_CNT] > 0 */
#else
uint64_t wq_int : 64;
#endif
} s;
struct cvmx_sso_wq_int_s cn68xx;
struct cvmx_sso_wq_int_s cn68xxp1;
};
typedef union cvmx_sso_wq_int cvmx_sso_wq_int_t;
/**
* cvmx_sso_wq_int_cnt#
*
* CSR reserved addresses: (64): 0x7200..0x73f8
* CSR align addresses: ===========================================================================================================
* SSO_WQ_INT_CNTX = SSO Work Queue Interrupt Count Register
* (one per group)
*
* Contains a read-only copy of the counts used to trigger work queue
* interrupts. For more information regarding this register, see the interrupt
* section.
*/
union cvmx_sso_wq_int_cntx {
uint64_t u64;
struct cvmx_sso_wq_int_cntx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t tc_cnt : 4; /**< Time counter current value for group X
HW sets TC_CNT to SSO_WQ_INT_THRX[TC_THR] whenever:
- corresponding SSO_WQ_INT_CNTX[IQ_CNT]==0 and
corresponding SSO_WQ_INT_CNTX[DS_CNT]==0
- corresponding SSO_WQ_INT[WQ_INT<X>] is written
with a 1 by SW
- corresponding SSO_WQ_IQ_DIS[IQ_DIS<X>] is written
with a 1 by SW
- corresponding SSO_WQ_INT_THRX is written by SW
- TC_CNT==1 and periodic counter
SSO_WQ_INT_PC[PC]==0
Otherwise, HW decrements TC_CNT whenever the
periodic counter SSO_WQ_INT_PC[PC]==0.
TC_CNT is 0 whenever SSO_WQ_INT_THRX[TC_THR]==0. */
uint64_t reserved_26_27 : 2;
uint64_t ds_cnt : 12; /**< De-schedule executable count for group X */
uint64_t reserved_12_13 : 2;
uint64_t iq_cnt : 12; /**< Input queue executable count for group X */
#else
uint64_t iq_cnt : 12;
uint64_t reserved_12_13 : 2;
uint64_t ds_cnt : 12;
uint64_t reserved_26_27 : 2;
uint64_t tc_cnt : 4;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_sso_wq_int_cntx_s cn68xx;
struct cvmx_sso_wq_int_cntx_s cn68xxp1;
};
typedef union cvmx_sso_wq_int_cntx cvmx_sso_wq_int_cntx_t;
/**
* cvmx_sso_wq_int_pc
*
* CSR reserved addresses: (1): 0x1018..0x1018
* SSO_WQ_INT_PC = SSO Work Queue Interrupt Periodic Counter Register
*
* Contains the threshold value for the work queue interrupt periodic counter
* and also a read-only copy of the periodic counter. For more information
* regarding this register, see the interrupt section.
*/
union cvmx_sso_wq_int_pc {
uint64_t u64;
struct cvmx_sso_wq_int_pc_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_60_63 : 4;
uint64_t pc : 28; /**< Work queue interrupt periodic counter */
uint64_t reserved_28_31 : 4;
uint64_t pc_thr : 20; /**< Work queue interrupt periodic counter threshold */
uint64_t reserved_0_7 : 8;
#else
uint64_t reserved_0_7 : 8;
uint64_t pc_thr : 20;
uint64_t reserved_28_31 : 4;
uint64_t pc : 28;
uint64_t reserved_60_63 : 4;
#endif
} s;
struct cvmx_sso_wq_int_pc_s cn68xx;
struct cvmx_sso_wq_int_pc_s cn68xxp1;
};
typedef union cvmx_sso_wq_int_pc cvmx_sso_wq_int_pc_t;
/**
* cvmx_sso_wq_int_thr#
*
* CSR reserved addresses: (96): 0x6100..0x63f8
* CSR align addresses: ===========================================================================================================
* SSO_WQ_INT_THR(0..63) = SSO Work Queue Interrupt Threshold Registers
* (one per group)
*
* Contains the thresholds for enabling and setting work queue interrupts. For
* more information, see the interrupt section.
*
* Note: Up to 16 of the SSO's internal storage buffers can be allocated
* for hardware use and are therefore not available for incoming work queue
* entries. Additionally, any WS that is not in the EMPTY state consumes a
* buffer. Thus in a 32 PP system, it is not advisable to set either IQ_THR or
* DS_THR to greater than 2048 - 16 - 32*2 = 1968. Doing so may prevent the
* interrupt from ever triggering.
*
* Priorities for QOS levels 0..7
*/
union cvmx_sso_wq_int_thrx {
uint64_t u64;
struct cvmx_sso_wq_int_thrx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_33_63 : 31;
uint64_t tc_en : 1; /**< Time counter interrupt enable for group X
TC_EN must be zero when TC_THR==0 */
uint64_t tc_thr : 4; /**< Time counter interrupt threshold for group X
When TC_THR==0, SSO_WQ_INT_CNTX[TC_CNT] is zero */
uint64_t reserved_26_27 : 2;
uint64_t ds_thr : 12; /**< De-schedule count threshold for group X
DS_THR==0 disables the threshold interrupt */
uint64_t reserved_12_13 : 2;
uint64_t iq_thr : 12; /**< Input queue count threshold for group X
IQ_THR==0 disables the threshold interrupt */
#else
uint64_t iq_thr : 12;
uint64_t reserved_12_13 : 2;
uint64_t ds_thr : 12;
uint64_t reserved_26_27 : 2;
uint64_t tc_thr : 4;
uint64_t tc_en : 1;
uint64_t reserved_33_63 : 31;
#endif
} s;
struct cvmx_sso_wq_int_thrx_s cn68xx;
struct cvmx_sso_wq_int_thrx_s cn68xxp1;
};
typedef union cvmx_sso_wq_int_thrx cvmx_sso_wq_int_thrx_t;
/**
* cvmx_sso_wq_iq_dis
*
* CSR reserved addresses: (1): 0x1008..0x1008
* SSO_WQ_IQ_DIS = SSO Input Queue Interrupt Temporary Disable Mask
*
* Contains the input queue interrupt temporary disable bits (one per group).
* For more information regarding this register, see the interrupt section.
*/
union cvmx_sso_wq_iq_dis {
uint64_t u64;
struct cvmx_sso_wq_iq_dis_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t iq_dis : 64; /**< Input queue interrupt temporary disable mask
Corresponding SSO_WQ_INTX[WQ_INT<X>] bit cannot be
set due to IQ_CNT/IQ_THR check when this bit is set.
Corresponding IQ_DIS bit is cleared by HW whenever:
- SSO_WQ_INT_CNTX[IQ_CNT] is zero, or
- SSO_WQ_INT_CNTX[TC_CNT]==1 when periodic
counter SSO_WQ_INT_PC[PC]==0 */
#else
uint64_t iq_dis : 64;
#endif
} s;
struct cvmx_sso_wq_iq_dis_s cn68xx;
struct cvmx_sso_wq_iq_dis_s cn68xxp1;
};
typedef union cvmx_sso_wq_iq_dis cvmx_sso_wq_iq_dis_t;
/**
* cvmx_sso_ws_pc#
*
* CSR reserved addresses: (225): 0x3100..0x3800
* CSR align addresses: ===========================================================================================================
* SSO_WS_PCX = SSO Work Schedule Performance Counter
* (one per group)
*
* Counts the number of work schedules for each group.
* Counter rolls over through zero when max value exceeded.
*/
union cvmx_sso_ws_pcx {
uint64_t u64;
struct cvmx_sso_ws_pcx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t ws_pc : 64; /**< Work schedule performance counter for group X */
#else
uint64_t ws_pc : 64;
#endif
} s;
struct cvmx_sso_ws_pcx_s cn68xx;
struct cvmx_sso_ws_pcx_s cn68xxp1;
};
typedef union cvmx_sso_ws_pcx cvmx_sso_ws_pcx_t;
#endif