freebsd-dev/sys/arm/allwinner/a10_codec.c
Emmanuel Vadot bfcf888a87 arm: allwinner: Fix audio for Allwinner H3/H5
Due to three conditions the codec driver for Allwinner A10/A20 and H3/H5 did not work properly here:

    Wrong bit position for the analog audio reset
    Hardware Reset of codec was not de-asserted correctly
    Linux DTS file did not contain the address of the analog register the way as the driver was expecting it.

This patch proposes fixes for those three parts.

Submitted by:	freebsdnewbie@freenet.de (Manuel Stühn)
MFC after:	1 month
Differential Revision:	https://reviews.freebsd.org/D19910
2019-04-17 21:45:19 +00:00

1215 lines
30 KiB
C

/*-
* Copyright (c) 2014-2016 Jared D. McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Allwinner A10/A20 and H3 Audio Codec
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/condvar.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/gpio.h>
#include <machine/bus.h>
#include <dev/sound/pcm/sound.h>
#include <dev/sound/chip.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/gpio/gpiobusvar.h>
#include <dev/extres/clk/clk.h>
#include <dev/extres/hwreset/hwreset.h>
#include "sunxi_dma_if.h"
#include "mixer_if.h"
struct a10codec_info;
struct a10codec_config {
/* mixer class */
struct kobj_class *mixer_class;
/* toggle DAC/ADC mute */
void (*mute)(struct a10codec_info *, int, int);
/* DRQ types */
u_int drqtype_codec;
u_int drqtype_sdram;
/* register map */
bus_size_t DPC,
DAC_FIFOC,
DAC_FIFOS,
DAC_TXDATA,
ADC_FIFOC,
ADC_FIFOS,
ADC_RXDATA,
DAC_CNT,
ADC_CNT;
};
#define TX_TRIG_LEVEL 0xf
#define RX_TRIG_LEVEL 0x7
#define DRQ_CLR_CNT 0x3
#define AC_DAC_DPC(_sc) ((_sc)->cfg->DPC)
#define DAC_DPC_EN_DA 0x80000000
#define AC_DAC_FIFOC(_sc) ((_sc)->cfg->DAC_FIFOC)
#define DAC_FIFOC_FS_SHIFT 29
#define DAC_FIFOC_FS_MASK (7U << DAC_FIFOC_FS_SHIFT)
#define DAC_FS_48KHZ 0
#define DAC_FS_32KHZ 1
#define DAC_FS_24KHZ 2
#define DAC_FS_16KHZ 3
#define DAC_FS_12KHZ 4
#define DAC_FS_8KHZ 5
#define DAC_FS_192KHZ 6
#define DAC_FS_96KHZ 7
#define DAC_FIFOC_FIFO_MODE_SHIFT 24
#define DAC_FIFOC_FIFO_MODE_MASK (3U << DAC_FIFOC_FIFO_MODE_SHIFT)
#define FIFO_MODE_24_31_8 0
#define FIFO_MODE_16_31_16 0
#define FIFO_MODE_16_15_0 1
#define DAC_FIFOC_DRQ_CLR_CNT_SHIFT 21
#define DAC_FIFOC_DRQ_CLR_CNT_MASK (3U << DAC_FIFOC_DRQ_CLR_CNT_SHIFT)
#define DAC_FIFOC_TX_TRIG_LEVEL_SHIFT 8
#define DAC_FIFOC_TX_TRIG_LEVEL_MASK (0x7f << DAC_FIFOC_TX_TRIG_LEVEL_SHIFT)
#define DAC_FIFOC_MONO_EN (1U << 6)
#define DAC_FIFOC_TX_BITS (1U << 5)
#define DAC_FIFOC_DRQ_EN (1U << 4)
#define DAC_FIFOC_FIFO_FLUSH (1U << 0)
#define AC_DAC_FIFOS(_sc) ((_sc)->cfg->DAC_FIFOS)
#define AC_DAC_TXDATA(_sc) ((_sc)->cfg->DAC_TXDATA)
#define AC_ADC_FIFOC(_sc) ((_sc)->cfg->ADC_FIFOC)
#define ADC_FIFOC_FS_SHIFT 29
#define ADC_FIFOC_FS_MASK (7U << ADC_FIFOC_FS_SHIFT)
#define ADC_FS_48KHZ 0
#define ADC_FIFOC_EN_AD (1U << 28)
#define ADC_FIFOC_RX_FIFO_MODE (1U << 24)
#define ADC_FIFOC_RX_TRIG_LEVEL_SHIFT 8
#define ADC_FIFOC_RX_TRIG_LEVEL_MASK (0x1f << ADC_FIFOC_RX_TRIG_LEVEL_SHIFT)
#define ADC_FIFOC_MONO_EN (1U << 7)
#define ADC_FIFOC_RX_BITS (1U << 6)
#define ADC_FIFOC_DRQ_EN (1U << 4)
#define ADC_FIFOC_FIFO_FLUSH (1U << 1)
#define AC_ADC_FIFOS(_sc) ((_sc)->cfg->ADC_FIFOS)
#define AC_ADC_RXDATA(_sc) ((_sc)->cfg->ADC_RXDATA)
#define AC_DAC_CNT(_sc) ((_sc)->cfg->DAC_CNT)
#define AC_ADC_CNT(_sc) ((_sc)->cfg->ADC_CNT)
static uint32_t a10codec_fmt[] = {
SND_FORMAT(AFMT_S16_LE, 1, 0),
SND_FORMAT(AFMT_S16_LE, 2, 0),
0
};
static struct pcmchan_caps a10codec_pcaps = { 8000, 192000, a10codec_fmt, 0 };
static struct pcmchan_caps a10codec_rcaps = { 8000, 48000, a10codec_fmt, 0 };
struct a10codec_info;
struct a10codec_chinfo {
struct snd_dbuf *buffer;
struct pcm_channel *channel;
struct a10codec_info *parent;
bus_dmamap_t dmamap;
void *dmaaddr;
bus_addr_t physaddr;
bus_size_t fifo;
device_t dmac;
void *dmachan;
int dir;
int run;
uint32_t pos;
uint32_t format;
uint32_t blocksize;
uint32_t speed;
};
struct a10codec_info {
device_t dev;
struct resource *res[2];
struct mtx *lock;
bus_dma_tag_t dmat;
unsigned dmasize;
void *ih;
struct a10codec_config *cfg;
struct a10codec_chinfo play;
struct a10codec_chinfo rec;
};
static struct resource_spec a10codec_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ -1, 0 }
};
#define CODEC_ANALOG_READ(sc, reg) bus_read_4((sc)->res[1], (reg))
#define CODEC_ANALOG_WRITE(sc, reg, val) bus_write_4((sc)->res[1], (reg), (val))
#define CODEC_READ(sc, reg) bus_read_4((sc)->res[0], (reg))
#define CODEC_WRITE(sc, reg, val) bus_write_4((sc)->res[0], (reg), (val))
/*
* A10/A20 mixer interface
*/
#define A10_DAC_ACTL 0x10
#define A10_DACAREN (1U << 31)
#define A10_DACALEN (1U << 30)
#define A10_MIXEN (1U << 29)
#define A10_DACPAS (1U << 8)
#define A10_PAMUTE (1U << 6)
#define A10_PAVOL_SHIFT 0
#define A10_PAVOL_MASK (0x3f << A10_PAVOL_SHIFT)
#define A10_ADC_ACTL 0x28
#define A10_ADCREN (1U << 31)
#define A10_ADCLEN (1U << 30)
#define A10_PREG1EN (1U << 29)
#define A10_PREG2EN (1U << 28)
#define A10_VMICEN (1U << 27)
#define A10_ADCG_SHIFT 20
#define A10_ADCG_MASK (7U << A10_ADCG_SHIFT)
#define A10_ADCIS_SHIFT 17
#define A10_ADCIS_MASK (7U << A10_ADCIS_SHIFT)
#define A10_ADC_IS_LINEIN 0
#define A10_ADC_IS_FMIN 1
#define A10_ADC_IS_MIC1 2
#define A10_ADC_IS_MIC2 3
#define A10_ADC_IS_MIC1_L_MIC2_R 4
#define A10_ADC_IS_MIC1_LR_MIC2_LR 5
#define A10_ADC_IS_OMIX 6
#define A10_ADC_IS_LINEIN_L_MIC1_R 7
#define A10_LNRDF (1U << 16)
#define A10_LNPREG_SHIFT 13
#define A10_LNPREG_MASK (7U << A10_LNPREG_SHIFT)
#define A10_PA_EN (1U << 4)
#define A10_DDE (1U << 3)
static int
a10_mixer_init(struct snd_mixer *m)
{
struct a10codec_info *sc = mix_getdevinfo(m);
uint32_t val;
mix_setdevs(m, SOUND_MASK_VOLUME | SOUND_MASK_LINE | SOUND_MASK_RECLEV);
mix_setrecdevs(m, SOUND_MASK_LINE | SOUND_MASK_LINE1 | SOUND_MASK_MIC);
/* Unmute input source to PA */
val = CODEC_READ(sc, A10_DAC_ACTL);
val |= A10_PAMUTE;
CODEC_WRITE(sc, A10_DAC_ACTL, val);
/* Enable PA */
val = CODEC_READ(sc, A10_ADC_ACTL);
val |= A10_PA_EN;
CODEC_WRITE(sc, A10_ADC_ACTL, val);
return (0);
}
static const struct a10_mixer {
unsigned reg;
unsigned mask;
unsigned shift;
} a10_mixers[SOUND_MIXER_NRDEVICES] = {
[SOUND_MIXER_VOLUME] = { A10_DAC_ACTL, A10_PAVOL_MASK,
A10_PAVOL_SHIFT },
[SOUND_MIXER_LINE] = { A10_ADC_ACTL, A10_LNPREG_MASK,
A10_LNPREG_SHIFT },
[SOUND_MIXER_RECLEV] = { A10_ADC_ACTL, A10_ADCG_MASK,
A10_ADCG_SHIFT },
};
static int
a10_mixer_set(struct snd_mixer *m, unsigned dev, unsigned left,
unsigned right)
{
struct a10codec_info *sc = mix_getdevinfo(m);
uint32_t val;
unsigned nvol, max;
max = a10_mixers[dev].mask >> a10_mixers[dev].shift;
nvol = (left * max) / 100;
val = CODEC_READ(sc, a10_mixers[dev].reg);
val &= ~a10_mixers[dev].mask;
val |= (nvol << a10_mixers[dev].shift);
CODEC_WRITE(sc, a10_mixers[dev].reg, val);
left = right = (left * 100) / max;
return (left | (right << 8));
}
static uint32_t
a10_mixer_setrecsrc(struct snd_mixer *m, uint32_t src)
{
struct a10codec_info *sc = mix_getdevinfo(m);
uint32_t val;
val = CODEC_READ(sc, A10_ADC_ACTL);
switch (src) {
case SOUND_MASK_LINE: /* line-in */
val &= ~A10_ADCIS_MASK;
val |= (A10_ADC_IS_LINEIN << A10_ADCIS_SHIFT);
break;
case SOUND_MASK_MIC: /* MIC1 */
val &= ~A10_ADCIS_MASK;
val |= (A10_ADC_IS_MIC1 << A10_ADCIS_SHIFT);
break;
case SOUND_MASK_LINE1: /* MIC2 */
val &= ~A10_ADCIS_MASK;
val |= (A10_ADC_IS_MIC2 << A10_ADCIS_SHIFT);
break;
default:
break;
}
CODEC_WRITE(sc, A10_ADC_ACTL, val);
switch ((val & A10_ADCIS_MASK) >> A10_ADCIS_SHIFT) {
case A10_ADC_IS_LINEIN:
return (SOUND_MASK_LINE);
case A10_ADC_IS_MIC1:
return (SOUND_MASK_MIC);
case A10_ADC_IS_MIC2:
return (SOUND_MASK_LINE1);
default:
return (0);
}
}
static void
a10_mute(struct a10codec_info *sc, int mute, int dir)
{
uint32_t val;
if (dir == PCMDIR_PLAY) {
val = CODEC_READ(sc, A10_DAC_ACTL);
if (mute) {
/* Disable DAC analog l/r channels and output mixer */
val &= ~A10_DACAREN;
val &= ~A10_DACALEN;
val &= ~A10_DACPAS;
} else {
/* Enable DAC analog l/r channels and output mixer */
val |= A10_DACAREN;
val |= A10_DACALEN;
val |= A10_DACPAS;
}
CODEC_WRITE(sc, A10_DAC_ACTL, val);
} else {
val = CODEC_READ(sc, A10_ADC_ACTL);
if (mute) {
/* Disable ADC analog l/r channels, MIC1 preamp,
* and VMIC pin voltage
*/
val &= ~A10_ADCREN;
val &= ~A10_ADCLEN;
val &= ~A10_PREG1EN;
val &= ~A10_VMICEN;
} else {
/* Enable ADC analog l/r channels, MIC1 preamp,
* and VMIC pin voltage
*/
val |= A10_ADCREN;
val |= A10_ADCLEN;
val |= A10_PREG1EN;
val |= A10_VMICEN;
}
CODEC_WRITE(sc, A10_ADC_ACTL, val);
}
}
static kobj_method_t a10_mixer_methods[] = {
KOBJMETHOD(mixer_init, a10_mixer_init),
KOBJMETHOD(mixer_set, a10_mixer_set),
KOBJMETHOD(mixer_setrecsrc, a10_mixer_setrecsrc),
KOBJMETHOD_END
};
MIXER_DECLARE(a10_mixer);
/*
* H3 mixer interface
*/
#define H3_PR_CFG 0x00
#define H3_AC_PR_RST (1 << 28)
#define H3_AC_PR_RW (1 << 24)
#define H3_AC_PR_ADDR_SHIFT 16
#define H3_AC_PR_ADDR_MASK (0x1f << H3_AC_PR_ADDR_SHIFT)
#define H3_ACDA_PR_WDAT_SHIFT 8
#define H3_ACDA_PR_WDAT_MASK (0xff << H3_ACDA_PR_WDAT_SHIFT)
#define H3_ACDA_PR_RDAT_SHIFT 0
#define H3_ACDA_PR_RDAT_MASK (0xff << H3_ACDA_PR_RDAT_SHIFT)
#define H3_LOMIXSC 0x01
#define H3_LOMIXSC_LDAC (1 << 1)
#define H3_ROMIXSC 0x02
#define H3_ROMIXSC_RDAC (1 << 1)
#define H3_DAC_PA_SRC 0x03
#define H3_DACAREN (1 << 7)
#define H3_DACALEN (1 << 6)
#define H3_RMIXEN (1 << 5)
#define H3_LMIXEN (1 << 4)
#define H3_LINEIN_GCTR 0x05
#define H3_LINEING_SHIFT 4
#define H3_LINEING_MASK (0x7 << H3_LINEING_SHIFT)
#define H3_MIC_GCTR 0x06
#define H3_MIC1_GAIN_SHIFT 4
#define H3_MIC1_GAIN_MASK (0x7 << H3_MIC1_GAIN_SHIFT)
#define H3_MIC2_GAIN_SHIFT 0
#define H3_MIC2_GAIN_MASK (0x7 << H3_MIC2_GAIN_SHIFT)
#define H3_PAEN_CTR 0x07
#define H3_LINEOUTEN (1 << 7)
#define H3_LINEOUT_VOLC 0x09
#define H3_LINEOUTVOL_SHIFT 3
#define H3_LINEOUTVOL_MASK (0x1f << H3_LINEOUTVOL_SHIFT)
#define H3_MIC2G_LINEOUT_CTR 0x0a
#define H3_LINEOUT_LSEL (1 << 3)
#define H3_LINEOUT_RSEL (1 << 2)
#define H3_LADCMIXSC 0x0c
#define H3_RADCMIXSC 0x0d
#define H3_ADCMIXSC_MIC1 (1 << 6)
#define H3_ADCMIXSC_MIC2 (1 << 5)
#define H3_ADCMIXSC_LINEIN (1 << 2)
#define H3_ADCMIXSC_OMIXER (3 << 0)
#define H3_ADC_AP_EN 0x0f
#define H3_ADCREN (1 << 7)
#define H3_ADCLEN (1 << 6)
#define H3_ADCG_SHIFT 0
#define H3_ADCG_MASK (0x7 << H3_ADCG_SHIFT)
static u_int
h3_pr_read(struct a10codec_info *sc, u_int addr)
{
uint32_t val;
/* Read current value */
val = CODEC_ANALOG_READ(sc, H3_PR_CFG);
/* De-assert reset */
val |= H3_AC_PR_RST;
CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);
/* Read mode */
val &= ~H3_AC_PR_RW;
CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);
/* Set address */
val &= ~H3_AC_PR_ADDR_MASK;
val |= (addr << H3_AC_PR_ADDR_SHIFT);
CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);
/* Read data */
return (CODEC_ANALOG_READ(sc , H3_PR_CFG) & H3_ACDA_PR_RDAT_MASK);
}
static void
h3_pr_write(struct a10codec_info *sc, u_int addr, u_int data)
{
uint32_t val;
/* Read current value */
val = CODEC_ANALOG_READ(sc, H3_PR_CFG);
/* De-assert reset */
val |= H3_AC_PR_RST;
CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);
/* Set address */
val &= ~H3_AC_PR_ADDR_MASK;
val |= (addr << H3_AC_PR_ADDR_SHIFT);
CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);
/* Write data */
val &= ~H3_ACDA_PR_WDAT_MASK;
val |= (data << H3_ACDA_PR_WDAT_SHIFT);
CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);
/* Write mode */
val |= H3_AC_PR_RW;
CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);
}
static void
h3_pr_set_clear(struct a10codec_info *sc, u_int addr, u_int set, u_int clr)
{
u_int old, new;
old = h3_pr_read(sc, addr);
new = set | (old & ~clr);
h3_pr_write(sc, addr, new);
}
static int
h3_mixer_init(struct snd_mixer *m)
{
int rid=1;
pcell_t reg[2];
phandle_t analogref;
struct a10codec_info *sc = mix_getdevinfo(m);
if (OF_getencprop(ofw_bus_get_node(sc->dev), "allwinner,codec-analog-controls",
&analogref, sizeof(analogref)) <= 0) {
return (ENXIO);
}
if (OF_getencprop(OF_node_from_xref(analogref), "reg",
reg, sizeof(reg)) <= 0) {
return (ENXIO);
}
sc->res[1] = bus_alloc_resource(sc->dev, SYS_RES_MEMORY, &rid, reg[0],
reg[0]+reg[1], reg[1], RF_ACTIVE );
if (sc->res[1] == NULL) {
return (ENXIO);
}
mix_setdevs(m, SOUND_MASK_PCM | SOUND_MASK_VOLUME | SOUND_MASK_RECLEV |
SOUND_MASK_MIC | SOUND_MASK_LINE | SOUND_MASK_LINE1);
mix_setrecdevs(m, SOUND_MASK_MIC | SOUND_MASK_LINE | SOUND_MASK_LINE1 |
SOUND_MASK_IMIX);
pcm_setflags(sc->dev, pcm_getflags(sc->dev) | SD_F_SOFTPCMVOL);
/* Right & Left LINEOUT enable */
h3_pr_set_clear(sc, H3_PAEN_CTR, H3_LINEOUTEN, 0);
h3_pr_set_clear(sc, H3_MIC2G_LINEOUT_CTR,
H3_LINEOUT_LSEL | H3_LINEOUT_RSEL, 0);
return (0);
}
static const struct h3_mixer {
unsigned reg;
unsigned mask;
unsigned shift;
} h3_mixers[SOUND_MIXER_NRDEVICES] = {
[SOUND_MIXER_VOLUME] = { H3_LINEOUT_VOLC, H3_LINEOUTVOL_MASK,
H3_LINEOUTVOL_SHIFT },
[SOUND_MIXER_RECLEV] = { H3_ADC_AP_EN, H3_ADCG_MASK,
H3_ADCG_SHIFT },
[SOUND_MIXER_LINE] = { H3_LINEIN_GCTR, H3_LINEING_MASK,
H3_LINEING_SHIFT },
[SOUND_MIXER_MIC] = { H3_MIC_GCTR, H3_MIC1_GAIN_MASK,
H3_MIC1_GAIN_SHIFT },
[SOUND_MIXER_LINE1] = { H3_MIC_GCTR, H3_MIC2_GAIN_MASK,
H3_MIC2_GAIN_SHIFT },
};
static int
h3_mixer_set(struct snd_mixer *m, unsigned dev, unsigned left,
unsigned right)
{
struct a10codec_info *sc = mix_getdevinfo(m);
unsigned nvol, max;
max = h3_mixers[dev].mask >> h3_mixers[dev].shift;
nvol = (left * max) / 100;
h3_pr_set_clear(sc, h3_mixers[dev].reg,
nvol << h3_mixers[dev].shift, h3_mixers[dev].mask);
left = right = (left * 100) / max;
return (left | (right << 8));
}
static uint32_t
h3_mixer_setrecsrc(struct snd_mixer *m, uint32_t src)
{
struct a10codec_info *sc = mix_getdevinfo(m);
uint32_t val;
val = 0;
src &= (SOUND_MASK_LINE | SOUND_MASK_MIC |
SOUND_MASK_LINE1 | SOUND_MASK_IMIX);
if ((src & SOUND_MASK_LINE) != 0) /* line-in */
val |= H3_ADCMIXSC_LINEIN;
if ((src & SOUND_MASK_MIC) != 0) /* MIC1 */
val |= H3_ADCMIXSC_MIC1;
if ((src & SOUND_MASK_LINE1) != 0) /* MIC2 */
val |= H3_ADCMIXSC_MIC2;
if ((src & SOUND_MASK_IMIX) != 0) /* l/r output mixer */
val |= H3_ADCMIXSC_OMIXER;
h3_pr_write(sc, H3_LADCMIXSC, val);
h3_pr_write(sc, H3_RADCMIXSC, val);
return (src);
}
static void
h3_mute(struct a10codec_info *sc, int mute, int dir)
{
if (dir == PCMDIR_PLAY) {
if (mute) {
/* Mute DAC l/r channels to output mixer */
h3_pr_set_clear(sc, H3_LOMIXSC, 0, H3_LOMIXSC_LDAC);
h3_pr_set_clear(sc, H3_ROMIXSC, 0, H3_ROMIXSC_RDAC);
/* Disable DAC analog l/r channels and output mixer */
h3_pr_set_clear(sc, H3_DAC_PA_SRC,
0, H3_DACAREN | H3_DACALEN | H3_RMIXEN | H3_LMIXEN);
} else {
/* Enable DAC analog l/r channels and output mixer */
h3_pr_set_clear(sc, H3_DAC_PA_SRC,
H3_DACAREN | H3_DACALEN | H3_RMIXEN | H3_LMIXEN, 0);
/* Unmute DAC l/r channels to output mixer */
h3_pr_set_clear(sc, H3_LOMIXSC, H3_LOMIXSC_LDAC, 0);
h3_pr_set_clear(sc, H3_ROMIXSC, H3_ROMIXSC_RDAC, 0);
}
} else {
if (mute) {
/* Disable ADC analog l/r channels */
h3_pr_set_clear(sc, H3_ADC_AP_EN,
0, H3_ADCREN | H3_ADCLEN);
} else {
/* Enable ADC analog l/r channels */
h3_pr_set_clear(sc, H3_ADC_AP_EN,
H3_ADCREN | H3_ADCLEN, 0);
}
}
}
static kobj_method_t h3_mixer_methods[] = {
KOBJMETHOD(mixer_init, h3_mixer_init),
KOBJMETHOD(mixer_set, h3_mixer_set),
KOBJMETHOD(mixer_setrecsrc, h3_mixer_setrecsrc),
KOBJMETHOD_END
};
MIXER_DECLARE(h3_mixer);
/*
* Channel interface
*/
static void
a10codec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct a10codec_chinfo *ch = arg;
if (error != 0)
return;
ch->physaddr = segs[0].ds_addr;
}
static void
a10codec_transfer(struct a10codec_chinfo *ch)
{
bus_addr_t src, dst;
int error;
if (ch->dir == PCMDIR_PLAY) {
src = ch->physaddr + ch->pos;
dst = ch->fifo;
} else {
src = ch->fifo;
dst = ch->physaddr + ch->pos;
}
error = SUNXI_DMA_TRANSFER(ch->dmac, ch->dmachan, src, dst,
ch->blocksize);
if (error) {
ch->run = 0;
device_printf(ch->parent->dev, "DMA transfer failed: %d\n",
error);
}
}
static void
a10codec_dmaconfig(struct a10codec_chinfo *ch)
{
struct a10codec_info *sc = ch->parent;
struct sunxi_dma_config conf;
memset(&conf, 0, sizeof(conf));
conf.src_width = conf.dst_width = 16;
conf.src_burst_len = conf.dst_burst_len = 4;
if (ch->dir == PCMDIR_PLAY) {
conf.dst_noincr = true;
conf.src_drqtype = sc->cfg->drqtype_sdram;
conf.dst_drqtype = sc->cfg->drqtype_codec;
} else {
conf.src_noincr = true;
conf.src_drqtype = sc->cfg->drqtype_codec;
conf.dst_drqtype = sc->cfg->drqtype_sdram;
}
SUNXI_DMA_SET_CONFIG(ch->dmac, ch->dmachan, &conf);
}
static void
a10codec_dmaintr(void *priv)
{
struct a10codec_chinfo *ch = priv;
unsigned bufsize;
bufsize = sndbuf_getsize(ch->buffer);
ch->pos += ch->blocksize;
if (ch->pos >= bufsize)
ch->pos -= bufsize;
if (ch->run) {
chn_intr(ch->channel);
a10codec_transfer(ch);
}
}
static unsigned
a10codec_fs(struct a10codec_chinfo *ch)
{
switch (ch->speed) {
case 48000:
return (DAC_FS_48KHZ);
case 24000:
return (DAC_FS_24KHZ);
case 12000:
return (DAC_FS_12KHZ);
case 192000:
return (DAC_FS_192KHZ);
case 32000:
return (DAC_FS_32KHZ);
case 16000:
return (DAC_FS_16KHZ);
case 8000:
return (DAC_FS_8KHZ);
case 96000:
return (DAC_FS_96KHZ);
default:
return (DAC_FS_48KHZ);
}
}
static void
a10codec_start(struct a10codec_chinfo *ch)
{
struct a10codec_info *sc = ch->parent;
uint32_t val;
ch->pos = 0;
if (ch->dir == PCMDIR_PLAY) {
/* Flush DAC FIFO */
CODEC_WRITE(sc, AC_DAC_FIFOC(sc), DAC_FIFOC_FIFO_FLUSH);
/* Clear DAC FIFO status */
CODEC_WRITE(sc, AC_DAC_FIFOS(sc),
CODEC_READ(sc, AC_DAC_FIFOS(sc)));
/* Unmute output */
sc->cfg->mute(sc, 0, ch->dir);
/* Configure DAC DMA channel */
a10codec_dmaconfig(ch);
/* Configure DAC FIFO */
CODEC_WRITE(sc, AC_DAC_FIFOC(sc),
(AFMT_CHANNEL(ch->format) == 1 ? DAC_FIFOC_MONO_EN : 0) |
(a10codec_fs(ch) << DAC_FIFOC_FS_SHIFT) |
(FIFO_MODE_16_15_0 << DAC_FIFOC_FIFO_MODE_SHIFT) |
(DRQ_CLR_CNT << DAC_FIFOC_DRQ_CLR_CNT_SHIFT) |
(TX_TRIG_LEVEL << DAC_FIFOC_TX_TRIG_LEVEL_SHIFT));
/* Enable DAC DRQ */
val = CODEC_READ(sc, AC_DAC_FIFOC(sc));
val |= DAC_FIFOC_DRQ_EN;
CODEC_WRITE(sc, AC_DAC_FIFOC(sc), val);
} else {
/* Flush ADC FIFO */
CODEC_WRITE(sc, AC_ADC_FIFOC(sc), ADC_FIFOC_FIFO_FLUSH);
/* Clear ADC FIFO status */
CODEC_WRITE(sc, AC_ADC_FIFOS(sc),
CODEC_READ(sc, AC_ADC_FIFOS(sc)));
/* Unmute input */
sc->cfg->mute(sc, 0, ch->dir);
/* Configure ADC DMA channel */
a10codec_dmaconfig(ch);
/* Configure ADC FIFO */
CODEC_WRITE(sc, AC_ADC_FIFOC(sc),
ADC_FIFOC_EN_AD |
ADC_FIFOC_RX_FIFO_MODE |
(AFMT_CHANNEL(ch->format) == 1 ? ADC_FIFOC_MONO_EN : 0) |
(a10codec_fs(ch) << ADC_FIFOC_FS_SHIFT) |
(RX_TRIG_LEVEL << ADC_FIFOC_RX_TRIG_LEVEL_SHIFT));
/* Enable ADC DRQ */
val = CODEC_READ(sc, AC_ADC_FIFOC(sc));
val |= ADC_FIFOC_DRQ_EN;
CODEC_WRITE(sc, AC_ADC_FIFOC(sc), val);
}
/* Start DMA transfer */
a10codec_transfer(ch);
}
static void
a10codec_stop(struct a10codec_chinfo *ch)
{
struct a10codec_info *sc = ch->parent;
/* Disable DMA channel */
SUNXI_DMA_HALT(ch->dmac, ch->dmachan);
sc->cfg->mute(sc, 1, ch->dir);
if (ch->dir == PCMDIR_PLAY) {
/* Disable DAC DRQ */
CODEC_WRITE(sc, AC_DAC_FIFOC(sc), 0);
} else {
/* Disable ADC DRQ */
CODEC_WRITE(sc, AC_ADC_FIFOC(sc), 0);
}
}
static void *
a10codec_chan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
struct pcm_channel *c, int dir)
{
struct a10codec_info *sc = devinfo;
struct a10codec_chinfo *ch = dir == PCMDIR_PLAY ? &sc->play : &sc->rec;
phandle_t xref;
pcell_t *cells;
int ncells, error;
error = ofw_bus_parse_xref_list_alloc(ofw_bus_get_node(sc->dev),
"dmas", "#dma-cells", dir == PCMDIR_PLAY ? 1 : 0,
&xref, &ncells, &cells);
if (error != 0) {
device_printf(sc->dev, "cannot parse 'dmas' property\n");
return (NULL);
}
OF_prop_free(cells);
ch->parent = sc;
ch->channel = c;
ch->buffer = b;
ch->dir = dir;
ch->fifo = rman_get_start(sc->res[0]) +
(dir == PCMDIR_REC ? AC_ADC_RXDATA(sc) : AC_DAC_TXDATA(sc));
ch->dmac = OF_device_from_xref(xref);
if (ch->dmac == NULL) {
device_printf(sc->dev, "cannot find DMA controller\n");
device_printf(sc->dev, "xref = 0x%x\n", (u_int)xref);
return (NULL);
}
ch->dmachan = SUNXI_DMA_ALLOC(ch->dmac, false, a10codec_dmaintr, ch);
if (ch->dmachan == NULL) {
device_printf(sc->dev, "cannot allocate DMA channel\n");
return (NULL);
}
error = bus_dmamem_alloc(sc->dmat, &ch->dmaaddr,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &ch->dmamap);
if (error != 0) {
device_printf(sc->dev, "cannot allocate channel buffer\n");
return (NULL);
}
error = bus_dmamap_load(sc->dmat, ch->dmamap, ch->dmaaddr,
sc->dmasize, a10codec_dmamap_cb, ch, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->dev, "cannot load DMA map\n");
return (NULL);
}
memset(ch->dmaaddr, 0, sc->dmasize);
if (sndbuf_setup(ch->buffer, ch->dmaaddr, sc->dmasize) != 0) {
device_printf(sc->dev, "cannot setup sndbuf\n");
return (NULL);
}
return (ch);
}
static int
a10codec_chan_free(kobj_t obj, void *data)
{
struct a10codec_chinfo *ch = data;
struct a10codec_info *sc = ch->parent;
SUNXI_DMA_FREE(ch->dmac, ch->dmachan);
bus_dmamap_unload(sc->dmat, ch->dmamap);
bus_dmamem_free(sc->dmat, ch->dmaaddr, ch->dmamap);
return (0);
}
static int
a10codec_chan_setformat(kobj_t obj, void *data, uint32_t format)
{
struct a10codec_chinfo *ch = data;
ch->format = format;
return (0);
}
static uint32_t
a10codec_chan_setspeed(kobj_t obj, void *data, uint32_t speed)
{
struct a10codec_chinfo *ch = data;
/*
* The codec supports full duplex operation but both DAC and ADC
* use the same source clock (PLL2). Limit the available speeds to
* those supported by a 24576000 Hz input.
*/
switch (speed) {
case 8000:
case 12000:
case 16000:
case 24000:
case 32000:
case 48000:
ch->speed = speed;
break;
case 96000:
case 192000:
/* 96 KHz / 192 KHz mode only supported for playback */
if (ch->dir == PCMDIR_PLAY) {
ch->speed = speed;
} else {
ch->speed = 48000;
}
break;
case 44100:
ch->speed = 48000;
break;
case 22050:
ch->speed = 24000;
break;
case 11025:
ch->speed = 12000;
break;
default:
ch->speed = 48000;
break;
}
return (ch->speed);
}
static uint32_t
a10codec_chan_setblocksize(kobj_t obj, void *data, uint32_t blocksize)
{
struct a10codec_chinfo *ch = data;
ch->blocksize = blocksize & ~3;
return (ch->blocksize);
}
static int
a10codec_chan_trigger(kobj_t obj, void *data, int go)
{
struct a10codec_chinfo *ch = data;
struct a10codec_info *sc = ch->parent;
if (!PCMTRIG_COMMON(go))
return (0);
snd_mtxlock(sc->lock);
switch (go) {
case PCMTRIG_START:
ch->run = 1;
a10codec_stop(ch);
a10codec_start(ch);
break;
case PCMTRIG_STOP:
case PCMTRIG_ABORT:
ch->run = 0;
a10codec_stop(ch);
break;
default:
break;
}
snd_mtxunlock(sc->lock);
return (0);
}
static uint32_t
a10codec_chan_getptr(kobj_t obj, void *data)
{
struct a10codec_chinfo *ch = data;
return (ch->pos);
}
static struct pcmchan_caps *
a10codec_chan_getcaps(kobj_t obj, void *data)
{
struct a10codec_chinfo *ch = data;
if (ch->dir == PCMDIR_PLAY) {
return (&a10codec_pcaps);
} else {
return (&a10codec_rcaps);
}
}
static kobj_method_t a10codec_chan_methods[] = {
KOBJMETHOD(channel_init, a10codec_chan_init),
KOBJMETHOD(channel_free, a10codec_chan_free),
KOBJMETHOD(channel_setformat, a10codec_chan_setformat),
KOBJMETHOD(channel_setspeed, a10codec_chan_setspeed),
KOBJMETHOD(channel_setblocksize, a10codec_chan_setblocksize),
KOBJMETHOD(channel_trigger, a10codec_chan_trigger),
KOBJMETHOD(channel_getptr, a10codec_chan_getptr),
KOBJMETHOD(channel_getcaps, a10codec_chan_getcaps),
KOBJMETHOD_END
};
CHANNEL_DECLARE(a10codec_chan);
/*
* Device interface
*/
static const struct a10codec_config a10_config = {
.mixer_class = &a10_mixer_class,
.mute = a10_mute,
.drqtype_codec = 19,
.drqtype_sdram = 22,
.DPC = 0x00,
.DAC_FIFOC = 0x04,
.DAC_FIFOS = 0x08,
.DAC_TXDATA = 0x0c,
.ADC_FIFOC = 0x1c,
.ADC_FIFOS = 0x20,
.ADC_RXDATA = 0x24,
.DAC_CNT = 0x30,
.ADC_CNT = 0x34,
};
static const struct a10codec_config h3_config = {
.mixer_class = &h3_mixer_class,
.mute = h3_mute,
.drqtype_codec = 15,
.drqtype_sdram = 1,
.DPC = 0x00,
.DAC_FIFOC = 0x04,
.DAC_FIFOS = 0x08,
.DAC_TXDATA = 0x20,
.ADC_FIFOC = 0x10,
.ADC_FIFOS = 0x14,
.ADC_RXDATA = 0x18,
.DAC_CNT = 0x40,
.ADC_CNT = 0x44,
};
static struct ofw_compat_data compat_data[] = {
{ "allwinner,sun4i-a10-codec", (uintptr_t)&a10_config },
{ "allwinner,sun7i-a20-codec", (uintptr_t)&a10_config },
{ "allwinner,sun8i-h3-codec", (uintptr_t)&h3_config },
{ NULL, 0 }
};
static int
a10codec_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
return (ENXIO);
device_set_desc(dev, "Allwinner Audio Codec");
return (BUS_PROBE_DEFAULT);
}
static int
a10codec_attach(device_t dev)
{
struct a10codec_info *sc;
char status[SND_STATUSLEN];
struct gpiobus_pin *pa_pin;
phandle_t node;
clk_t clk_bus, clk_codec;
hwreset_t rst;
uint32_t val;
int error;
node = ofw_bus_get_node(dev);
sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO);
sc->cfg = (void *)ofw_bus_search_compatible(dev, compat_data)->ocd_data;
sc->dev = dev;
sc->lock = snd_mtxcreate(device_get_nameunit(dev), "a10codec softc");
if (bus_alloc_resources(dev, a10codec_spec, sc->res)) {
device_printf(dev, "cannot allocate resources for device\n");
error = ENXIO;
goto fail;
}
sc->dmasize = 131072;
error = bus_dma_tag_create(
bus_get_dma_tag(dev),
4, sc->dmasize, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sc->dmasize, 1, /* maxsize, nsegs */
sc->dmasize, 0, /* maxsegsize, flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->dmat);
if (error != 0) {
device_printf(dev, "cannot create DMA tag\n");
goto fail;
}
/* Get clocks */
if (clk_get_by_ofw_name(dev, 0, "apb", &clk_bus) != 0 &&
clk_get_by_ofw_name(dev, 0, "ahb", &clk_bus) != 0) {
device_printf(dev, "cannot find bus clock\n");
goto fail;
}
if (clk_get_by_ofw_name(dev, 0, "codec", &clk_codec) != 0) {
device_printf(dev, "cannot find codec clock\n");
goto fail;
}
/* Gating bus clock for codec */
if (clk_enable(clk_bus) != 0) {
device_printf(dev, "cannot enable bus clock\n");
goto fail;
}
/* Activate audio codec clock. According to the A10 and A20 user
* manuals, Audio_pll can be either 24.576MHz or 22.5792MHz. Most
* audio sampling rates require an 24.576MHz input clock with the
* exception of 44.1kHz, 22.05kHz, and 11.025kHz. Unfortunately,
* both capture and playback use the same clock source so to
* safely support independent full duplex operation, we use a fixed
* 24.576MHz clock source and don't advertise native support for
* the three sampling rates that require a 22.5792MHz input.
*/
error = clk_set_freq(clk_codec, 24576000, CLK_SET_ROUND_DOWN);
if (error != 0) {
device_printf(dev, "cannot set codec clock frequency\n");
goto fail;
}
/* Enable audio codec clock */
error = clk_enable(clk_codec);
if (error != 0) {
device_printf(dev, "cannot enable codec clock\n");
goto fail;
}
/* De-assert hwreset */
if (hwreset_get_by_ofw_idx(dev, 0, 0, &rst) == 0) {
error = hwreset_deassert(rst);
if (error != 0) {
device_printf(dev, "cannot de-assert reset\n");
goto fail;
}
}
/* Enable DAC */
val = CODEC_READ(sc, AC_DAC_DPC(sc));
val |= DAC_DPC_EN_DA;
CODEC_WRITE(sc, AC_DAC_DPC(sc), val);
if (mixer_init(dev, sc->cfg->mixer_class, sc)) {
device_printf(dev, "mixer_init failed\n");
goto fail;
}
/* Unmute PA */
if (gpio_pin_get_by_ofw_property(dev, node, "allwinner,pa-gpios",
&pa_pin) == 0) {
error = gpio_pin_set_active(pa_pin, 1);
if (error != 0)
device_printf(dev, "failed to unmute PA\n");
}
pcm_setflags(dev, pcm_getflags(dev) | SD_F_MPSAFE);
if (pcm_register(dev, sc, 1, 1)) {
device_printf(dev, "pcm_register failed\n");
goto fail;
}
pcm_addchan(dev, PCMDIR_PLAY, &a10codec_chan_class, sc);
pcm_addchan(dev, PCMDIR_REC, &a10codec_chan_class, sc);
snprintf(status, SND_STATUSLEN, "at %s", ofw_bus_get_name(dev));
pcm_setstatus(dev, status);
return (0);
fail:
bus_release_resources(dev, a10codec_spec, sc->res);
snd_mtxfree(sc->lock);
free(sc, M_DEVBUF);
return (ENXIO);
}
static device_method_t a10codec_pcm_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, a10codec_probe),
DEVMETHOD(device_attach, a10codec_attach),
DEVMETHOD_END
};
static driver_t a10codec_pcm_driver = {
"pcm",
a10codec_pcm_methods,
PCM_SOFTC_SIZE,
};
DRIVER_MODULE(a10codec, simplebus, a10codec_pcm_driver, pcm_devclass, 0, 0);
MODULE_DEPEND(a10codec, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
MODULE_VERSION(a10codec, 1);