freebsd-dev/sys/netinet/in_pcb.c
2022-04-13 16:08:23 -07:00

3431 lines
88 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1982, 1986, 1991, 1993, 1995
* The Regents of the University of California.
* Copyright (c) 2007-2009 Robert N. M. Watson
* Copyright (c) 2010-2011 Juniper Networks, Inc.
* All rights reserved.
*
* Portions of this software were developed by Robert N. M. Watson under
* contract to Juniper Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include "opt_ipsec.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ratelimit.h"
#include "opt_route.h"
#include "opt_rss.h"
#include <sys/param.h>
#include <sys/hash.h>
#include <sys/systm.h>
#include <sys/libkern.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/callout.h>
#include <sys/eventhandler.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/refcount.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <vm/uma.h>
#include <vm/vm.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_types.h>
#include <net/if_llatbl.h>
#include <net/route.h>
#include <net/rss_config.h>
#include <net/vnet.h>
#if defined(INET) || defined(INET6)
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/in_pcb_var.h>
#ifdef INET
#include <netinet/in_var.h>
#include <netinet/in_fib.h>
#endif
#include <netinet/ip_var.h>
#include <netinet/tcp_var.h>
#ifdef TCPHPTS
#include <netinet/tcp_hpts.h>
#endif
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet6/in6_pcb.h>
#include <netinet6/in6_var.h>
#include <netinet6/ip6_var.h>
#endif /* INET6 */
#include <net/route/nhop.h>
#endif
#include <netipsec/ipsec_support.h>
#include <security/mac/mac_framework.h>
#define INPCBLBGROUP_SIZMIN 8
#define INPCBLBGROUP_SIZMAX 256
#define INP_FREED 0x00000200 /* See in_pcb.h. */
static struct callout ipport_tick_callout;
/*
* These configure the range of local port addresses assigned to
* "unspecified" outgoing connections/packets/whatever.
*/
VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */
VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */
VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */
VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */
VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */
VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */
/*
* Reserved ports accessible only to root. There are significant
* security considerations that must be accounted for when changing these,
* but the security benefits can be great. Please be careful.
*/
VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */
VNET_DEFINE(int, ipport_reservedlow);
/* Variables dealing with random ephemeral port allocation. */
VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */
VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */
VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */
VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */
VNET_DEFINE(int, ipport_tcpallocs);
VNET_DEFINE_STATIC(int, ipport_tcplastcount);
#define V_ipport_tcplastcount VNET(ipport_tcplastcount)
#ifdef INET
static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
struct in_addr faddr, u_int fport_arg,
struct in_addr laddr, u_int lport_arg,
int lookupflags, struct ifnet *ifp,
uint8_t numa_domain);
#define RANGECHK(var, min, max) \
if ((var) < (min)) { (var) = (min); } \
else if ((var) > (max)) { (var) = (max); }
static int
sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
{
int error;
error = sysctl_handle_int(oidp, arg1, arg2, req);
if (error == 0) {
RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
}
return (error);
}
#undef RANGECHK
static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"IP Ports");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
"");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
"");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
"");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
"");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
"");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
"");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
&VNET_NAME(ipport_reservedhigh), 0, "");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
"allocations before switching to a sequential one");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(ipport_randomtime), 0,
"Minimum time to keep sequential port "
"allocation before switching to a random one");
#ifdef RATELIMIT
counter_u64_t rate_limit_new;
counter_u64_t rate_limit_chg;
counter_u64_t rate_limit_active;
counter_u64_t rate_limit_alloc_fail;
counter_u64_t rate_limit_set_ok;
static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"IP Rate Limiting");
SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
&rate_limit_active, "Active rate limited connections");
SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
&rate_limit_alloc_fail, "Rate limited connection failures");
SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
&rate_limit_set_ok, "Rate limited setting succeeded");
SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD,
&rate_limit_new, "Total Rate limit new attempts");
SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD,
&rate_limit_chg, "Total Rate limited change attempts");
#endif /* RATELIMIT */
#endif /* INET */
VNET_DEFINE(uint32_t, in_pcbhashseed);
static void
in_pcbhashseed_init(void)
{
V_in_pcbhashseed = arc4random();
}
VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST,
in_pcbhashseed_init, 0);
/*
* in_pcb.c: manage the Protocol Control Blocks.
*
* NOTE: It is assumed that most of these functions will be called with
* the pcbinfo lock held, and often, the inpcb lock held, as these utility
* functions often modify hash chains or addresses in pcbs.
*/
static struct inpcblbgroup *
in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
uint16_t port, const union in_dependaddr *addr, int size,
uint8_t numa_domain)
{
struct inpcblbgroup *grp;
size_t bytes;
bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
if (!grp)
return (NULL);
grp->il_vflag = vflag;
grp->il_lport = port;
grp->il_numa_domain = numa_domain;
grp->il_dependladdr = *addr;
grp->il_inpsiz = size;
CK_LIST_INSERT_HEAD(hdr, grp, il_list);
return (grp);
}
static void
in_pcblbgroup_free_deferred(epoch_context_t ctx)
{
struct inpcblbgroup *grp;
grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
free(grp, M_PCB);
}
static void
in_pcblbgroup_free(struct inpcblbgroup *grp)
{
CK_LIST_REMOVE(grp, il_list);
NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
}
static struct inpcblbgroup *
in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
struct inpcblbgroup *old_grp, int size)
{
struct inpcblbgroup *grp;
int i;
grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
old_grp->il_lport, &old_grp->il_dependladdr, size,
old_grp->il_numa_domain);
if (grp == NULL)
return (NULL);
KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
("invalid new local group size %d and old local group count %d",
grp->il_inpsiz, old_grp->il_inpcnt));
for (i = 0; i < old_grp->il_inpcnt; ++i)
grp->il_inp[i] = old_grp->il_inp[i];
grp->il_inpcnt = old_grp->il_inpcnt;
in_pcblbgroup_free(old_grp);
return (grp);
}
/*
* PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
* and shrink group if possible.
*/
static void
in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
int i)
{
struct inpcblbgroup *grp, *new_grp;
grp = *grpp;
for (; i + 1 < grp->il_inpcnt; ++i)
grp->il_inp[i] = grp->il_inp[i + 1];
grp->il_inpcnt--;
if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
grp->il_inpcnt <= grp->il_inpsiz / 4) {
/* Shrink this group. */
new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
if (new_grp != NULL)
*grpp = new_grp;
}
}
/*
* Add PCB to load balance group for SO_REUSEPORT_LB option.
*/
static int
in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
{
const static struct timeval interval = { 60, 0 };
static struct timeval lastprint;
struct inpcbinfo *pcbinfo;
struct inpcblbgrouphead *hdr;
struct inpcblbgroup *grp;
uint32_t idx;
pcbinfo = inp->inp_pcbinfo;
INP_WLOCK_ASSERT(inp);
INP_HASH_WLOCK_ASSERT(pcbinfo);
/*
* Don't allow jailed socket to join local group.
*/
if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred))
return (0);
#ifdef INET6
/*
* Don't allow IPv4 mapped INET6 wild socket.
*/
if ((inp->inp_vflag & INP_IPV4) &&
inp->inp_laddr.s_addr == INADDR_ANY &&
INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
return (0);
}
#endif
idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
CK_LIST_FOREACH(grp, hdr, il_list) {
if (grp->il_vflag == inp->inp_vflag &&
grp->il_lport == inp->inp_lport &&
grp->il_numa_domain == numa_domain &&
memcmp(&grp->il_dependladdr,
&inp->inp_inc.inc_ie.ie_dependladdr,
sizeof(grp->il_dependladdr)) == 0)
break;
}
if (grp == NULL) {
/* Create new load balance group. */
grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
INPCBLBGROUP_SIZMIN, numa_domain);
if (grp == NULL)
return (ENOBUFS);
} else if (grp->il_inpcnt == grp->il_inpsiz) {
if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
if (ratecheck(&lastprint, &interval))
printf("lb group port %d, limit reached\n",
ntohs(grp->il_lport));
return (0);
}
/* Expand this local group. */
grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
if (grp == NULL)
return (ENOBUFS);
}
KASSERT(grp->il_inpcnt < grp->il_inpsiz,
("invalid local group size %d and count %d", grp->il_inpsiz,
grp->il_inpcnt));
grp->il_inp[grp->il_inpcnt] = inp;
grp->il_inpcnt++;
return (0);
}
/*
* Remove PCB from load balance group.
*/
static void
in_pcbremlbgrouphash(struct inpcb *inp)
{
struct inpcbinfo *pcbinfo;
struct inpcblbgrouphead *hdr;
struct inpcblbgroup *grp;
int i;
pcbinfo = inp->inp_pcbinfo;
INP_WLOCK_ASSERT(inp);
INP_HASH_WLOCK_ASSERT(pcbinfo);
hdr = &pcbinfo->ipi_lbgrouphashbase[
INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
CK_LIST_FOREACH(grp, hdr, il_list) {
for (i = 0; i < grp->il_inpcnt; ++i) {
if (grp->il_inp[i] != inp)
continue;
if (grp->il_inpcnt == 1) {
/* We are the last, free this local group. */
in_pcblbgroup_free(grp);
} else {
/* Pull up inpcbs, shrink group if possible. */
in_pcblbgroup_reorder(hdr, &grp, i);
}
return;
}
}
}
int
in_pcblbgroup_numa(struct inpcb *inp, int arg)
{
struct inpcbinfo *pcbinfo;
struct inpcblbgrouphead *hdr;
struct inpcblbgroup *grp;
int err, i;
uint8_t numa_domain;
switch (arg) {
case TCP_REUSPORT_LB_NUMA_NODOM:
numa_domain = M_NODOM;
break;
case TCP_REUSPORT_LB_NUMA_CURDOM:
numa_domain = PCPU_GET(domain);
break;
default:
if (arg < 0 || arg >= vm_ndomains)
return (EINVAL);
numa_domain = arg;
}
err = 0;
pcbinfo = inp->inp_pcbinfo;
INP_WLOCK_ASSERT(inp);
INP_HASH_WLOCK(pcbinfo);
hdr = &pcbinfo->ipi_lbgrouphashbase[
INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
CK_LIST_FOREACH(grp, hdr, il_list) {
for (i = 0; i < grp->il_inpcnt; ++i) {
if (grp->il_inp[i] != inp)
continue;
if (grp->il_numa_domain == numa_domain) {
goto abort_with_hash_wlock;
}
/* Remove it from the old group. */
in_pcbremlbgrouphash(inp);
/* Add it to the new group based on numa domain. */
in_pcbinslbgrouphash(inp, numa_domain);
goto abort_with_hash_wlock;
}
}
err = ENOENT;
abort_with_hash_wlock:
INP_HASH_WUNLOCK(pcbinfo);
return (err);
}
/* Make sure it is safe to use hashinit(9) on CK_LIST. */
CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb)));
/*
* Initialize an inpcbinfo - a per-VNET instance of connections db.
*/
void
in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor,
u_int hash_nelements, u_int porthash_nelements)
{
mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF);
mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name,
NULL, MTX_DEF);
#ifdef VIMAGE
pcbinfo->ipi_vnet = curvnet;
#endif
CK_LIST_INIT(&pcbinfo->ipi_listhead);
pcbinfo->ipi_count = 0;
pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
&pcbinfo->ipi_hashmask);
porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
&pcbinfo->ipi_porthashmask);
pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
&pcbinfo->ipi_lbgrouphashmask);
pcbinfo->ipi_zone = pcbstor->ips_zone;
pcbinfo->ipi_portzone = pcbstor->ips_portzone;
pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone);
}
/*
* Destroy an inpcbinfo.
*/
void
in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
{
KASSERT(pcbinfo->ipi_count == 0,
("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
pcbinfo->ipi_porthashmask);
hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
pcbinfo->ipi_lbgrouphashmask);
mtx_destroy(&pcbinfo->ipi_hash_lock);
mtx_destroy(&pcbinfo->ipi_lock);
}
/*
* Initialize a pcbstorage - per protocol zones to allocate inpcbs.
*/
static void inpcb_dtor(void *, int, void *);
static void inpcb_fini(void *, int);
void
in_pcbstorage_init(void *arg)
{
struct inpcbstorage *pcbstor = arg;
pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name,
sizeof(struct inpcb), NULL, inpcb_dtor, pcbstor->ips_pcbinit,
inpcb_fini, UMA_ALIGN_PTR, UMA_ZONE_SMR);
pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name,
sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
uma_zone_set_smr(pcbstor->ips_portzone,
uma_zone_get_smr(pcbstor->ips_zone));
}
/*
* Destroy a pcbstorage - used by unloadable protocols.
*/
void
in_pcbstorage_destroy(void *arg)
{
struct inpcbstorage *pcbstor = arg;
uma_zdestroy(pcbstor->ips_zone);
uma_zdestroy(pcbstor->ips_portzone);
}
/*
* Allocate a PCB and associate it with the socket.
* On success return with the PCB locked.
*/
int
in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
{
struct inpcb *inp;
#if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
int error;
#endif
inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT);
if (inp == NULL)
return (ENOBUFS);
bzero(&inp->inp_start_zero, inp_zero_size);
#ifdef NUMA
inp->inp_numa_domain = M_NODOM;
#endif
inp->inp_pcbinfo = pcbinfo;
inp->inp_socket = so;
inp->inp_cred = crhold(so->so_cred);
inp->inp_inc.inc_fibnum = so->so_fibnum;
#ifdef MAC
error = mac_inpcb_init(inp, M_NOWAIT);
if (error != 0)
goto out;
mac_inpcb_create(so, inp);
#endif
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
error = ipsec_init_pcbpolicy(inp);
if (error != 0) {
#ifdef MAC
mac_inpcb_destroy(inp);
#endif
goto out;
}
#endif /*IPSEC*/
#ifdef INET6
if (INP_SOCKAF(so) == AF_INET6) {
inp->inp_vflag |= INP_IPV6PROTO;
if (V_ip6_v6only)
inp->inp_flags |= IN6P_IPV6_V6ONLY;
}
if (V_ip6_auto_flowlabel)
inp->inp_flags |= IN6P_AUTOFLOWLABEL;
#endif
/*
* Routes in inpcb's can cache L2 as well; they are guaranteed
* to be cleaned up.
*/
inp->inp_route.ro_flags = RT_LLE_CACHE;
#ifdef TCPHPTS
/*
* If using hpts lets drop a random number in so
* not all new connections fall on the same CPU.
*/
inp->inp_hpts_cpu = hpts_random_cpu(inp);
#endif
refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */
INP_WLOCK(inp);
INP_INFO_WLOCK(pcbinfo);
pcbinfo->ipi_count++;
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list);
INP_INFO_WUNLOCK(pcbinfo);
so->so_pcb = inp;
return (0);
#if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
out:
uma_zfree_smr(pcbinfo->ipi_zone, inp);
return (error);
#endif
}
#ifdef INET
int
in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
{
int anonport, error;
KASSERT(nam == NULL || nam->sa_family == AF_INET,
("%s: invalid address family for %p", __func__, nam));
KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in),
("%s: invalid address length for %p", __func__, nam));
INP_WLOCK_ASSERT(inp);
INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
return (EINVAL);
anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
&inp->inp_lport, cred);
if (error)
return (error);
if (in_pcbinshash(inp) != 0) {
inp->inp_laddr.s_addr = INADDR_ANY;
inp->inp_lport = 0;
return (EAGAIN);
}
if (anonport)
inp->inp_flags |= INP_ANONPORT;
return (0);
}
#endif
#if defined(INET) || defined(INET6)
/*
* Assign a local port like in_pcb_lport(), but also used with connect()
* and a foreign address and port. If fsa is non-NULL, choose a local port
* that is unused with those, otherwise one that is completely unused.
* lsa can be NULL for IPv6.
*/
int
in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
{
struct inpcbinfo *pcbinfo;
struct inpcb *tmpinp;
unsigned short *lastport;
int count, dorandom, error;
u_short aux, first, last, lport;
#ifdef INET
struct in_addr laddr, faddr;
#endif
#ifdef INET6
struct in6_addr *laddr6, *faddr6;
#endif
pcbinfo = inp->inp_pcbinfo;
/*
* Because no actual state changes occur here, a global write lock on
* the pcbinfo isn't required.
*/
INP_LOCK_ASSERT(inp);
INP_HASH_LOCK_ASSERT(pcbinfo);
if (inp->inp_flags & INP_HIGHPORT) {
first = V_ipport_hifirstauto; /* sysctl */
last = V_ipport_hilastauto;
lastport = &pcbinfo->ipi_lasthi;
} else if (inp->inp_flags & INP_LOWPORT) {
error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
if (error)
return (error);
first = V_ipport_lowfirstauto; /* 1023 */
last = V_ipport_lowlastauto; /* 600 */
lastport = &pcbinfo->ipi_lastlow;
} else {
first = V_ipport_firstauto; /* sysctl */
last = V_ipport_lastauto;
lastport = &pcbinfo->ipi_lastport;
}
/*
* For UDP(-Lite), use random port allocation as long as the user
* allows it. For TCP (and as of yet unknown) connections,
* use random port allocation only if the user allows it AND
* ipport_tick() allows it.
*/
if (V_ipport_randomized &&
(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
pcbinfo == &V_ulitecbinfo))
dorandom = 1;
else
dorandom = 0;
/*
* It makes no sense to do random port allocation if
* we have the only port available.
*/
if (first == last)
dorandom = 0;
/* Make sure to not include UDP(-Lite) packets in the count. */
if (pcbinfo != &V_udbinfo && pcbinfo != &V_ulitecbinfo)
V_ipport_tcpallocs++;
/*
* Instead of having two loops further down counting up or down
* make sure that first is always <= last and go with only one
* code path implementing all logic.
*/
if (first > last) {
aux = first;
first = last;
last = aux;
}
#ifdef INET
laddr.s_addr = INADDR_ANY;
if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
if (lsa != NULL)
laddr = ((struct sockaddr_in *)lsa)->sin_addr;
if (fsa != NULL)
faddr = ((struct sockaddr_in *)fsa)->sin_addr;
}
#endif
#ifdef INET6
laddr6 = NULL;
if ((inp->inp_vflag & INP_IPV6) != 0) {
if (lsa != NULL)
laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
if (fsa != NULL)
faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
}
#endif
tmpinp = NULL;
lport = *lportp;
if (dorandom)
*lastport = first + (arc4random() % (last - first));
count = last - first;
do {
if (count-- < 0) /* completely used? */
return (EADDRNOTAVAIL);
++*lastport;
if (*lastport < first || *lastport > last)
*lastport = first;
lport = htons(*lastport);
if (fsa != NULL) {
#ifdef INET
if (lsa->sa_family == AF_INET) {
tmpinp = in_pcblookup_hash_locked(pcbinfo,
faddr, fport, laddr, lport, lookupflags,
NULL, M_NODOM);
}
#endif
#ifdef INET6
if (lsa->sa_family == AF_INET6) {
tmpinp = in6_pcblookup_hash_locked(pcbinfo,
faddr6, fport, laddr6, lport, lookupflags,
NULL, M_NODOM);
}
#endif
} else {
#ifdef INET6
if ((inp->inp_vflag & INP_IPV6) != 0)
tmpinp = in6_pcblookup_local(pcbinfo,
&inp->in6p_laddr, lport, lookupflags, cred);
#endif
#if defined(INET) && defined(INET6)
else
#endif
#ifdef INET
tmpinp = in_pcblookup_local(pcbinfo, laddr,
lport, lookupflags, cred);
#endif
}
} while (tmpinp != NULL);
*lportp = lport;
return (0);
}
/*
* Select a local port (number) to use.
*/
int
in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
struct ucred *cred, int lookupflags)
{
struct sockaddr_in laddr;
if (laddrp) {
bzero(&laddr, sizeof(laddr));
laddr.sin_family = AF_INET;
laddr.sin_addr = *laddrp;
}
return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
NULL, lportp, NULL, 0, cred, lookupflags));
}
/*
* Return cached socket options.
*/
int
inp_so_options(const struct inpcb *inp)
{
int so_options;
so_options = 0;
if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
so_options |= SO_REUSEPORT_LB;
if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
so_options |= SO_REUSEPORT;
if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
so_options |= SO_REUSEADDR;
return (so_options);
}
#endif /* INET || INET6 */
/*
* Check if a new BINDMULTI socket is allowed to be created.
*
* ni points to the new inp.
* oi points to the existing inp.
*
* This checks whether the existing inp also has BINDMULTI and
* whether the credentials match.
*/
int
in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
{
/* Check permissions match */
if ((ni->inp_flags2 & INP_BINDMULTI) &&
(ni->inp_cred->cr_uid !=
oi->inp_cred->cr_uid))
return (0);
/* Check the existing inp has BINDMULTI set */
if ((ni->inp_flags2 & INP_BINDMULTI) &&
((oi->inp_flags2 & INP_BINDMULTI) == 0))
return (0);
/*
* We're okay - either INP_BINDMULTI isn't set on ni, or
* it is and it matches the checks.
*/
return (1);
}
#ifdef INET
/*
* Set up a bind operation on a PCB, performing port allocation
* as required, but do not actually modify the PCB. Callers can
* either complete the bind by setting inp_laddr/inp_lport and
* calling in_pcbinshash(), or they can just use the resulting
* port and address to authorise the sending of a once-off packet.
*
* On error, the values of *laddrp and *lportp are not changed.
*/
int
in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
u_short *lportp, struct ucred *cred)
{
struct socket *so = inp->inp_socket;
struct sockaddr_in *sin;
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct in_addr laddr;
u_short lport = 0;
int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
int error;
/*
* XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
* so that we don't have to add to the (already messy) code below.
*/
int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
/*
* No state changes, so read locks are sufficient here.
*/
INP_LOCK_ASSERT(inp);
INP_HASH_LOCK_ASSERT(pcbinfo);
laddr.s_addr = *laddrp;
if (nam != NULL && laddr.s_addr != INADDR_ANY)
return (EINVAL);
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
lookupflags = INPLOOKUP_WILDCARD;
if (nam == NULL) {
if ((error = prison_local_ip4(cred, &laddr)) != 0)
return (error);
} else {
sin = (struct sockaddr_in *)nam;
KASSERT(sin->sin_family == AF_INET,
("%s: invalid family for address %p", __func__, sin));
KASSERT(sin->sin_len == sizeof(*sin),
("%s: invalid length for address %p", __func__, sin));
error = prison_local_ip4(cred, &sin->sin_addr);
if (error)
return (error);
if (sin->sin_port != *lportp) {
/* Don't allow the port to change. */
if (*lportp != 0)
return (EINVAL);
lport = sin->sin_port;
}
/* NB: lport is left as 0 if the port isn't being changed. */
if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
/*
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
* allow complete duplication of binding if
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
* and a multicast address is bound on both
* new and duplicated sockets.
*/
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
reuseport = SO_REUSEADDR|SO_REUSEPORT;
/*
* XXX: How to deal with SO_REUSEPORT_LB here?
* Treat same as SO_REUSEPORT for now.
*/
if ((so->so_options &
(SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
} else if (sin->sin_addr.s_addr != INADDR_ANY) {
sin->sin_port = 0; /* yech... */
bzero(&sin->sin_zero, sizeof(sin->sin_zero));
/*
* Is the address a local IP address?
* If INP_BINDANY is set, then the socket may be bound
* to any endpoint address, local or not.
*/
if ((inp->inp_flags & INP_BINDANY) == 0 &&
ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
return (EADDRNOTAVAIL);
}
laddr = sin->sin_addr;
if (lport) {
struct inpcb *t;
struct tcptw *tw;
/* GROSS */
if (ntohs(lport) <= V_ipport_reservedhigh &&
ntohs(lport) >= V_ipport_reservedlow &&
priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
return (EACCES);
if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
t = in_pcblookup_local(pcbinfo, sin->sin_addr,
lport, INPLOOKUP_WILDCARD, cred);
/*
* XXX
* This entire block sorely needs a rewrite.
*/
if (t &&
((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
((t->inp_flags & INP_TIMEWAIT) == 0) &&
(so->so_type != SOCK_STREAM ||
ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
(ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
(t->inp_flags2 & INP_REUSEPORT) ||
(t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
(inp->inp_cred->cr_uid !=
t->inp_cred->cr_uid))
return (EADDRINUSE);
/*
* If the socket is a BINDMULTI socket, then
* the credentials need to match and the
* original socket also has to have been bound
* with BINDMULTI.
*/
if (t && (! in_pcbbind_check_bindmulti(inp, t)))
return (EADDRINUSE);
}
t = in_pcblookup_local(pcbinfo, sin->sin_addr,
lport, lookupflags, cred);
if (t && (t->inp_flags & INP_TIMEWAIT)) {
/*
* XXXRW: If an incpb has had its timewait
* state recycled, we treat the address as
* being in use (for now). This is better
* than a panic, but not desirable.
*/
tw = intotw(t);
if (tw == NULL ||
((reuseport & tw->tw_so_options) == 0 &&
(reuseport_lb &
tw->tw_so_options) == 0)) {
return (EADDRINUSE);
}
} else if (t &&
((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
(reuseport & inp_so_options(t)) == 0 &&
(reuseport_lb & inp_so_options(t)) == 0) {
#ifdef INET6
if (ntohl(sin->sin_addr.s_addr) !=
INADDR_ANY ||
ntohl(t->inp_laddr.s_addr) !=
INADDR_ANY ||
(inp->inp_vflag & INP_IPV6PROTO) == 0 ||
(t->inp_vflag & INP_IPV6PROTO) == 0)
#endif
return (EADDRINUSE);
if (t && (! in_pcbbind_check_bindmulti(inp, t)))
return (EADDRINUSE);
}
}
}
if (*lportp != 0)
lport = *lportp;
if (lport == 0) {
error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
if (error != 0)
return (error);
}
*laddrp = laddr.s_addr;
*lportp = lport;
return (0);
}
/*
* Connect from a socket to a specified address.
* Both address and port must be specified in argument sin.
* If don't have a local address for this socket yet,
* then pick one.
*/
int
in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred,
bool rehash)
{
u_short lport, fport;
in_addr_t laddr, faddr;
int anonport, error;
INP_WLOCK_ASSERT(inp);
INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
lport = inp->inp_lport;
laddr = inp->inp_laddr.s_addr;
anonport = (lport == 0);
error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
NULL, cred);
if (error)
return (error);
/* Do the initial binding of the local address if required. */
if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
KASSERT(rehash == true,
("Rehashing required for unbound inps"));
inp->inp_lport = lport;
inp->inp_laddr.s_addr = laddr;
if (in_pcbinshash(inp) != 0) {
inp->inp_laddr.s_addr = INADDR_ANY;
inp->inp_lport = 0;
return (EAGAIN);
}
}
/* Commit the remaining changes. */
inp->inp_lport = lport;
inp->inp_laddr.s_addr = laddr;
inp->inp_faddr.s_addr = faddr;
inp->inp_fport = fport;
if (rehash) {
in_pcbrehash(inp);
} else {
in_pcbinshash(inp);
}
if (anonport)
inp->inp_flags |= INP_ANONPORT;
return (0);
}
/*
* Do proper source address selection on an unbound socket in case
* of connect. Take jails into account as well.
*/
int
in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
struct ucred *cred)
{
struct ifaddr *ifa;
struct sockaddr *sa;
struct sockaddr_in *sin, dst;
struct nhop_object *nh;
int error;
NET_EPOCH_ASSERT();
KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
/*
* Bypass source address selection and use the primary jail IP
* if requested.
*/
if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
return (0);
error = 0;
nh = NULL;
bzero(&dst, sizeof(dst));
sin = &dst;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(struct sockaddr_in);
sin->sin_addr.s_addr = faddr->s_addr;
/*
* If route is known our src addr is taken from the i/f,
* else punt.
*
* Find out route to destination.
*/
if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
0, NHR_NONE, 0);
/*
* If we found a route, use the address corresponding to
* the outgoing interface.
*
* Otherwise assume faddr is reachable on a directly connected
* network and try to find a corresponding interface to take
* the source address from.
*/
if (nh == NULL || nh->nh_ifp == NULL) {
struct in_ifaddr *ia;
struct ifnet *ifp;
ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
inp->inp_socket->so_fibnum));
if (ia == NULL) {
ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
inp->inp_socket->so_fibnum));
}
if (ia == NULL) {
error = ENETUNREACH;
goto done;
}
if (cred == NULL || !prison_flag(cred, PR_IP4)) {
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
goto done;
}
ifp = ia->ia_ifp;
ia = NULL;
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
sa = ifa->ifa_addr;
if (sa->sa_family != AF_INET)
continue;
sin = (struct sockaddr_in *)sa;
if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
ia = (struct in_ifaddr *)ifa;
break;
}
}
if (ia != NULL) {
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
goto done;
}
/* 3. As a last resort return the 'default' jail address. */
error = prison_get_ip4(cred, laddr);
goto done;
}
/*
* If the outgoing interface on the route found is not
* a loopback interface, use the address from that interface.
* In case of jails do those three steps:
* 1. check if the interface address belongs to the jail. If so use it.
* 2. check if we have any address on the outgoing interface
* belonging to this jail. If so use it.
* 3. as a last resort return the 'default' jail address.
*/
if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
struct in_ifaddr *ia;
struct ifnet *ifp;
/* If not jailed, use the default returned. */
if (cred == NULL || !prison_flag(cred, PR_IP4)) {
ia = (struct in_ifaddr *)nh->nh_ifa;
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
goto done;
}
/* Jailed. */
/* 1. Check if the iface address belongs to the jail. */
sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
ia = (struct in_ifaddr *)nh->nh_ifa;
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
goto done;
}
/*
* 2. Check if we have any address on the outgoing interface
* belonging to this jail.
*/
ia = NULL;
ifp = nh->nh_ifp;
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
sa = ifa->ifa_addr;
if (sa->sa_family != AF_INET)
continue;
sin = (struct sockaddr_in *)sa;
if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
ia = (struct in_ifaddr *)ifa;
break;
}
}
if (ia != NULL) {
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
goto done;
}
/* 3. As a last resort return the 'default' jail address. */
error = prison_get_ip4(cred, laddr);
goto done;
}
/*
* The outgoing interface is marked with 'loopback net', so a route
* to ourselves is here.
* Try to find the interface of the destination address and then
* take the address from there. That interface is not necessarily
* a loopback interface.
* In case of jails, check that it is an address of the jail
* and if we cannot find, fall back to the 'default' jail address.
*/
if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
struct in_ifaddr *ia;
ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
inp->inp_socket->so_fibnum));
if (ia == NULL)
ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
inp->inp_socket->so_fibnum));
if (ia == NULL)
ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
if (cred == NULL || !prison_flag(cred, PR_IP4)) {
if (ia == NULL) {
error = ENETUNREACH;
goto done;
}
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
goto done;
}
/* Jailed. */
if (ia != NULL) {
struct ifnet *ifp;
ifp = ia->ia_ifp;
ia = NULL;
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
sa = ifa->ifa_addr;
if (sa->sa_family != AF_INET)
continue;
sin = (struct sockaddr_in *)sa;
if (prison_check_ip4(cred,
&sin->sin_addr) == 0) {
ia = (struct in_ifaddr *)ifa;
break;
}
}
if (ia != NULL) {
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
goto done;
}
}
/* 3. As a last resort return the 'default' jail address. */
error = prison_get_ip4(cred, laddr);
goto done;
}
done:
return (error);
}
/*
* Set up for a connect from a socket to the specified address.
* On entry, *laddrp and *lportp should contain the current local
* address and port for the PCB; these are updated to the values
* that should be placed in inp_laddr and inp_lport to complete
* the connect.
*
* On success, *faddrp and *fportp will be set to the remote address
* and port. These are not updated in the error case.
*
* If the operation fails because the connection already exists,
* *oinpp will be set to the PCB of that connection so that the
* caller can decide to override it. In all other cases, *oinpp
* is set to NULL.
*/
int
in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
struct inpcb **oinpp, struct ucred *cred)
{
struct sockaddr_in *sin = (struct sockaddr_in *)nam;
struct in_ifaddr *ia;
struct inpcb *oinp;
struct in_addr laddr, faddr;
u_short lport, fport;
int error;
KASSERT(sin->sin_family == AF_INET,
("%s: invalid address family for %p", __func__, sin));
KASSERT(sin->sin_len == sizeof(*sin),
("%s: invalid address length for %p", __func__, sin));
/*
* Because a global state change doesn't actually occur here, a read
* lock is sufficient.
*/
NET_EPOCH_ASSERT();
INP_LOCK_ASSERT(inp);
INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
if (oinpp != NULL)
*oinpp = NULL;
if (sin->sin_port == 0)
return (EADDRNOTAVAIL);
laddr.s_addr = *laddrp;
lport = *lportp;
faddr = sin->sin_addr;
fport = sin->sin_port;
#ifdef ROUTE_MPATH
if (CALC_FLOWID_OUTBOUND) {
uint32_t hash_val, hash_type;
hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport,
inp->inp_socket->so_proto->pr_protocol, &hash_type);
inp->inp_flowid = hash_val;
inp->inp_flowtype = hash_type;
}
#endif
if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
/*
* If the destination address is INADDR_ANY,
* use the primary local address.
* If the supplied address is INADDR_BROADCAST,
* and the primary interface supports broadcast,
* choose the broadcast address for that interface.
*/
if (faddr.s_addr == INADDR_ANY) {
faddr =
IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
if (cred != NULL &&
(error = prison_get_ip4(cred, &faddr)) != 0)
return (error);
} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
IFF_BROADCAST)
faddr = satosin(&CK_STAILQ_FIRST(
&V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
}
}
if (laddr.s_addr == INADDR_ANY) {
error = in_pcbladdr(inp, &faddr, &laddr, cred);
/*
* If the destination address is multicast and an outgoing
* interface has been set as a multicast option, prefer the
* address of that interface as our source address.
*/
if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
inp->inp_moptions != NULL) {
struct ip_moptions *imo;
struct ifnet *ifp;
imo = inp->inp_moptions;
if (imo->imo_multicast_ifp != NULL) {
ifp = imo->imo_multicast_ifp;
CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
if ((ia->ia_ifp == ifp) &&
(cred == NULL ||
prison_check_ip4(cred,
&ia->ia_addr.sin_addr) == 0))
break;
}
if (ia == NULL)
error = EADDRNOTAVAIL;
else {
laddr = ia->ia_addr.sin_addr;
error = 0;
}
}
}
if (error)
return (error);
}
if (lport != 0) {
oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
fport, laddr, lport, 0, NULL, M_NODOM);
if (oinp != NULL) {
if (oinpp != NULL)
*oinpp = oinp;
return (EADDRINUSE);
}
} else {
struct sockaddr_in lsin, fsin;
bzero(&lsin, sizeof(lsin));
bzero(&fsin, sizeof(fsin));
lsin.sin_family = AF_INET;
lsin.sin_addr = laddr;
fsin.sin_family = AF_INET;
fsin.sin_addr = faddr;
error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
&lport, (struct sockaddr *)& fsin, fport, cred,
INPLOOKUP_WILDCARD);
if (error)
return (error);
}
*laddrp = laddr.s_addr;
*lportp = lport;
*faddrp = faddr.s_addr;
*fportp = fport;
return (0);
}
void
in_pcbdisconnect(struct inpcb *inp)
{
INP_WLOCK_ASSERT(inp);
INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
inp->inp_faddr.s_addr = INADDR_ANY;
inp->inp_fport = 0;
in_pcbrehash(inp);
}
#endif /* INET */
/*
* in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
* For most protocols, this will be invoked immediately prior to calling
* in_pcbfree(). However, with TCP the inpcb may significantly outlive the
* socket, in which case in_pcbfree() is deferred.
*/
void
in_pcbdetach(struct inpcb *inp)
{
KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
#ifdef RATELIMIT
if (inp->inp_snd_tag != NULL)
in_pcbdetach_txrtlmt(inp);
#endif
inp->inp_socket->so_pcb = NULL;
inp->inp_socket = NULL;
}
/*
* inpcb hash lookups are protected by SMR section.
*
* Once desired pcb has been found, switching from SMR section to a pcb
* lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK
* here because SMR is a critical section.
* In 99%+ cases inp_smr_lock() would obtain the lock immediately.
*/
static inline void
inp_lock(struct inpcb *inp, const inp_lookup_t lock)
{
lock == INPLOOKUP_RLOCKPCB ?
rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock);
}
static inline void
inp_unlock(struct inpcb *inp, const inp_lookup_t lock)
{
lock == INPLOOKUP_RLOCKPCB ?
rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock);
}
static inline int
inp_trylock(struct inpcb *inp, const inp_lookup_t lock)
{
return (lock == INPLOOKUP_RLOCKPCB ?
rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock));
}
static inline bool
in_pcbrele(struct inpcb *inp, const inp_lookup_t lock)
{
return (lock == INPLOOKUP_RLOCKPCB ?
in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp));
}
bool
inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock)
{
MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB);
SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr);
if (__predict_true(inp_trylock(inp, lock))) {
if (__predict_false(inp->inp_flags & INP_FREED)) {
smr_exit(inp->inp_pcbinfo->ipi_smr);
inp_unlock(inp, lock);
return (false);
}
smr_exit(inp->inp_pcbinfo->ipi_smr);
return (true);
}
if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
smr_exit(inp->inp_pcbinfo->ipi_smr);
inp_lock(inp, lock);
if (__predict_false(in_pcbrele(inp, lock)))
return (false);
/*
* inp acquired through refcount & lock for sure didn't went
* through uma_zfree(). However, it may have already went
* through in_pcbfree() and has another reference, that
* prevented its release by our in_pcbrele().
*/
if (__predict_false(inp->inp_flags & INP_FREED)) {
inp_unlock(inp, lock);
return (false);
}
return (true);
} else {
smr_exit(inp->inp_pcbinfo->ipi_smr);
return (false);
}
}
/*
* inp_next() - inpcb hash/list traversal iterator
*
* Requires initialized struct inpcb_iterator for context.
* The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR().
*
* - Iterator can have either write-lock or read-lock semantics, that can not
* be changed later.
* - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through
* a single hash slot. Note: only rip_input() does the latter.
* - Iterator may have optional bool matching function. The matching function
* will be executed for each inpcb in the SMR context, so it can not acquire
* locks and can safely access only immutable fields of inpcb.
*
* A fresh initialized iterator has NULL inpcb in its context and that
* means that inp_next() call would return the very first inpcb on the list
* locked with desired semantic. In all following calls the context pointer
* shall hold the current inpcb pointer. The KPI user is not supposed to
* unlock the current inpcb! Upon end of traversal inp_next() will return NULL
* and write NULL to its context. After end of traversal an iterator can be
* reused.
*
* List traversals have the following features/constraints:
* - New entries won't be seen, as they are always added to the head of a list.
* - Removed entries won't stop traversal as long as they are not added to
* a different list. This is violated by in_pcbrehash().
*/
#define II_LIST_FIRST(ipi, hash) \
(((hash) == INP_ALL_LIST) ? \
CK_LIST_FIRST(&(ipi)->ipi_listhead) : \
CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)]))
#define II_LIST_NEXT(inp, hash) \
(((hash) == INP_ALL_LIST) ? \
CK_LIST_NEXT((inp), inp_list) : \
CK_LIST_NEXT((inp), inp_hash))
#define II_LOCK_ASSERT(inp, lock) \
rw_assert(&(inp)->inp_lock, \
(lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED )
struct inpcb *
inp_next(struct inpcb_iterator *ii)
{
const struct inpcbinfo *ipi = ii->ipi;
inp_match_t *match = ii->match;
void *ctx = ii->ctx;
inp_lookup_t lock = ii->lock;
int hash = ii->hash;
struct inpcb *inp;
if (ii->inp == NULL) { /* First call. */
smr_enter(ipi->ipi_smr);
/* This is unrolled CK_LIST_FOREACH(). */
for (inp = II_LIST_FIRST(ipi, hash);
inp != NULL;
inp = II_LIST_NEXT(inp, hash)) {
if (match != NULL && (match)(inp, ctx) == false)
continue;
if (__predict_true(inp_smr_lock(inp, lock)))
break;
else {
smr_enter(ipi->ipi_smr);
MPASS(inp != II_LIST_FIRST(ipi, hash));
inp = II_LIST_FIRST(ipi, hash);
if (inp == NULL)
break;
}
}
if (inp == NULL)
smr_exit(ipi->ipi_smr);
else
ii->inp = inp;
return (inp);
}
/* Not a first call. */
smr_enter(ipi->ipi_smr);
restart:
inp = ii->inp;
II_LOCK_ASSERT(inp, lock);
next:
inp = II_LIST_NEXT(inp, hash);
if (inp == NULL) {
smr_exit(ipi->ipi_smr);
goto found;
}
if (match != NULL && (match)(inp, ctx) == false)
goto next;
if (__predict_true(inp_trylock(inp, lock))) {
if (__predict_false(inp->inp_flags & INP_FREED)) {
/*
* Entries are never inserted in middle of a list, thus
* as long as we are in SMR, we can continue traversal.
* Jump to 'restart' should yield in the same result,
* but could produce unnecessary looping. Could this
* looping be unbound?
*/
inp_unlock(inp, lock);
goto next;
} else {
smr_exit(ipi->ipi_smr);
goto found;
}
}
/*
* Can't obtain lock immediately, thus going hard. Once we exit the
* SMR section we can no longer jump to 'next', and our only stable
* anchoring point is ii->inp, which we keep locked for this case, so
* we jump to 'restart'.
*/
if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
smr_exit(ipi->ipi_smr);
inp_lock(inp, lock);
if (__predict_false(in_pcbrele(inp, lock))) {
smr_enter(ipi->ipi_smr);
goto restart;
}
/*
* See comment in inp_smr_lock().
*/
if (__predict_false(inp->inp_flags & INP_FREED)) {
inp_unlock(inp, lock);
smr_enter(ipi->ipi_smr);
goto restart;
}
} else
goto next;
found:
inp_unlock(ii->inp, lock);
ii->inp = inp;
return (ii->inp);
}
/*
* in_pcbref() bumps the reference count on an inpcb in order to maintain
* stability of an inpcb pointer despite the inpcb lock being released or
* SMR section exited.
*
* To free a reference later in_pcbrele_(r|w)locked() must be performed.
*/
void
in_pcbref(struct inpcb *inp)
{
u_int old __diagused;
old = refcount_acquire(&inp->inp_refcount);
KASSERT(old > 0, ("%s: refcount 0", __func__));
}
/*
* Drop a refcount on an inpcb elevated using in_pcbref(), potentially
* freeing the pcb, if the reference was very last.
*/
bool
in_pcbrele_rlocked(struct inpcb *inp)
{
INP_RLOCK_ASSERT(inp);
if (refcount_release(&inp->inp_refcount) == 0)
return (false);
MPASS(inp->inp_flags & INP_FREED);
MPASS(inp->inp_socket == NULL);
MPASS(inp->inp_in_hpts == 0);
INP_RUNLOCK(inp);
uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
return (true);
}
bool
in_pcbrele_wlocked(struct inpcb *inp)
{
INP_WLOCK_ASSERT(inp);
if (refcount_release(&inp->inp_refcount) == 0)
return (false);
MPASS(inp->inp_flags & INP_FREED);
MPASS(inp->inp_socket == NULL);
MPASS(inp->inp_in_hpts == 0);
INP_WUNLOCK(inp);
uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
return (true);
}
/*
* Unconditionally schedule an inpcb to be freed by decrementing its
* reference count, which should occur only after the inpcb has been detached
* from its socket. If another thread holds a temporary reference (acquired
* using in_pcbref()) then the free is deferred until that reference is
* released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked.
* Almost all work, including removal from global lists, is done in this
* context, where the pcbinfo lock is held.
*/
void
in_pcbfree(struct inpcb *inp)
{
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
#ifdef INET
struct ip_moptions *imo;
#endif
#ifdef INET6
struct ip6_moptions *im6o;
#endif
INP_WLOCK_ASSERT(inp);
KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
KASSERT((inp->inp_flags & INP_FREED) == 0,
("%s: called twice for pcb %p", __func__, inp));
inp->inp_flags |= INP_FREED;
INP_INFO_WLOCK(pcbinfo);
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
pcbinfo->ipi_count--;
CK_LIST_REMOVE(inp, inp_list);
INP_INFO_WUNLOCK(pcbinfo);
if (inp->inp_flags & INP_INHASHLIST) {
struct inpcbport *phd = inp->inp_phd;
INP_HASH_WLOCK(pcbinfo);
/* XXX: Only do if SO_REUSEPORT_LB set? */
in_pcbremlbgrouphash(inp);
CK_LIST_REMOVE(inp, inp_hash);
CK_LIST_REMOVE(inp, inp_portlist);
if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
CK_LIST_REMOVE(phd, phd_hash);
uma_zfree_smr(pcbinfo->ipi_portzone, phd);
}
INP_HASH_WUNLOCK(pcbinfo);
inp->inp_flags &= ~INP_INHASHLIST;
}
RO_INVALIDATE_CACHE(&inp->inp_route);
#ifdef MAC
mac_inpcb_destroy(inp);
#endif
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
if (inp->inp_sp != NULL)
ipsec_delete_pcbpolicy(inp);
#endif
#ifdef INET
if (inp->inp_options)
(void)m_free(inp->inp_options);
imo = inp->inp_moptions;
#endif
#ifdef INET6
if (inp->inp_vflag & INP_IPV6PROTO) {
ip6_freepcbopts(inp->in6p_outputopts);
im6o = inp->in6p_moptions;
} else
im6o = NULL;
#endif
if (__predict_false(in_pcbrele_wlocked(inp) == false)) {
INP_WUNLOCK(inp);
}
#ifdef INET6
ip6_freemoptions(im6o);
#endif
#ifdef INET
inp_freemoptions(imo);
#endif
/* Destruction is finalized in inpcb_dtor(). */
}
static void
inpcb_dtor(void *mem, int size, void *arg)
{
struct inpcb *inp = mem;
crfree(inp->inp_cred);
#ifdef INVARIANTS
inp->inp_cred = NULL;
#endif
}
/*
* Different protocols initialize their inpcbs differently - giving
* different name to the lock. But they all are disposed the same.
*/
static void
inpcb_fini(void *mem, int size)
{
struct inpcb *inp = mem;
INP_LOCK_DESTROY(inp);
}
/*
* in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
* port reservation, and preventing it from being returned by inpcb lookups.
*
* It is used by TCP to mark an inpcb as unused and avoid future packet
* delivery or event notification when a socket remains open but TCP has
* closed. This might occur as a result of a shutdown()-initiated TCP close
* or a RST on the wire, and allows the port binding to be reused while still
* maintaining the invariant that so_pcb always points to a valid inpcb until
* in_pcbdetach().
*
* XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
* in_pcbnotifyall() and in_pcbpurgeif0()?
*/
void
in_pcbdrop(struct inpcb *inp)
{
INP_WLOCK_ASSERT(inp);
#ifdef INVARIANTS
if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
MPASS(inp->inp_refcount > 1);
#endif
/*
* XXXRW: Possibly we should protect the setting of INP_DROPPED with
* the hash lock...?
*/
inp->inp_flags |= INP_DROPPED;
if (inp->inp_flags & INP_INHASHLIST) {
struct inpcbport *phd = inp->inp_phd;
INP_HASH_WLOCK(inp->inp_pcbinfo);
in_pcbremlbgrouphash(inp);
CK_LIST_REMOVE(inp, inp_hash);
CK_LIST_REMOVE(inp, inp_portlist);
if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
CK_LIST_REMOVE(phd, phd_hash);
uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd);
}
INP_HASH_WUNLOCK(inp->inp_pcbinfo);
inp->inp_flags &= ~INP_INHASHLIST;
}
}
#ifdef INET
/*
* Common routines to return the socket addresses associated with inpcbs.
*/
struct sockaddr *
in_sockaddr(in_port_t port, struct in_addr *addr_p)
{
struct sockaddr_in *sin;
sin = malloc(sizeof *sin, M_SONAME,
M_WAITOK | M_ZERO);
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_addr = *addr_p;
sin->sin_port = port;
return (struct sockaddr *)sin;
}
int
in_getsockaddr(struct socket *so, struct sockaddr **nam)
{
struct inpcb *inp;
struct in_addr addr;
in_port_t port;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
INP_RLOCK(inp);
port = inp->inp_lport;
addr = inp->inp_laddr;
INP_RUNLOCK(inp);
*nam = in_sockaddr(port, &addr);
return 0;
}
int
in_getpeeraddr(struct socket *so, struct sockaddr **nam)
{
struct inpcb *inp;
struct in_addr addr;
in_port_t port;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
INP_RLOCK(inp);
port = inp->inp_fport;
addr = inp->inp_faddr;
INP_RUNLOCK(inp);
*nam = in_sockaddr(port, &addr);
return 0;
}
void
in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
struct inpcb *(*notify)(struct inpcb *, int))
{
struct inpcb *inp, *inp_temp;
INP_INFO_WLOCK(pcbinfo);
CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) {
INP_WLOCK(inp);
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0) {
INP_WUNLOCK(inp);
continue;
}
#endif
if (inp->inp_faddr.s_addr != faddr.s_addr ||
inp->inp_socket == NULL) {
INP_WUNLOCK(inp);
continue;
}
if ((*notify)(inp, errno))
INP_WUNLOCK(inp);
}
INP_INFO_WUNLOCK(pcbinfo);
}
static bool
inp_v4_multi_match(const struct inpcb *inp, void *v __unused)
{
if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL)
return (true);
else
return (false);
}
void
in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
{
struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB,
inp_v4_multi_match, NULL);
struct inpcb *inp;
struct in_multi *inm;
struct in_mfilter *imf;
struct ip_moptions *imo;
IN_MULTI_LOCK_ASSERT();
while ((inp = inp_next(&inpi)) != NULL) {
INP_WLOCK_ASSERT(inp);
imo = inp->inp_moptions;
/*
* Unselect the outgoing interface if it is being
* detached.
*/
if (imo->imo_multicast_ifp == ifp)
imo->imo_multicast_ifp = NULL;
/*
* Drop multicast group membership if we joined
* through the interface being detached.
*
* XXX This can all be deferred to an epoch_call
*/
restart:
IP_MFILTER_FOREACH(imf, &imo->imo_head) {
if ((inm = imf->imf_inm) == NULL)
continue;
if (inm->inm_ifp != ifp)
continue;
ip_mfilter_remove(&imo->imo_head, imf);
in_leavegroup_locked(inm, NULL);
ip_mfilter_free(imf);
goto restart;
}
}
}
/*
* Lookup a PCB based on the local address and port. Caller must hold the
* hash lock. No inpcb locks or references are acquired.
*/
#define INP_LOOKUP_MAPPED_PCB_COST 3
struct inpcb *
in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
u_short lport, int lookupflags, struct ucred *cred)
{
struct inpcb *inp;
#ifdef INET6
int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
#else
int matchwild = 3;
#endif
int wildcard;
KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
("%s: invalid lookup flags %d", __func__, lookupflags));
INP_HASH_LOCK_ASSERT(pcbinfo);
if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
struct inpcbhead *head;
/*
* Look for an unconnected (wildcard foreign addr) PCB that
* matches the local address and port we're looking for.
*/
head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport,
pcbinfo->ipi_hashmask)];
CK_LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
/* XXX inp locking */
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr == INADDR_ANY &&
inp->inp_laddr.s_addr == laddr.s_addr &&
inp->inp_lport == lport) {
/*
* Found?
*/
if (cred == NULL ||
prison_equal_ip4(cred->cr_prison,
inp->inp_cred->cr_prison))
return (inp);
}
}
/*
* Not found.
*/
return (NULL);
} else {
struct inpcbporthead *porthash;
struct inpcbport *phd;
struct inpcb *match = NULL;
/*
* Best fit PCB lookup.
*
* First see if this local port is in use by looking on the
* port hash list.
*/
porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
pcbinfo->ipi_porthashmask)];
CK_LIST_FOREACH(phd, porthash, phd_hash) {
if (phd->phd_port == lport)
break;
}
if (phd != NULL) {
/*
* Port is in use by one or more PCBs. Look for best
* fit.
*/
CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
wildcard = 0;
if (cred != NULL &&
!prison_equal_ip4(inp->inp_cred->cr_prison,
cred->cr_prison))
continue;
#ifdef INET6
/* XXX inp locking */
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
/*
* We never select the PCB that has
* INP_IPV6 flag and is bound to :: if
* we have another PCB which is bound
* to 0.0.0.0. If a PCB has the
* INP_IPV6 flag, then we set its cost
* higher than IPv4 only PCBs.
*
* Note that the case only happens
* when a socket is bound to ::, under
* the condition that the use of the
* mapped address is allowed.
*/
if ((inp->inp_vflag & INP_IPV6) != 0)
wildcard += INP_LOOKUP_MAPPED_PCB_COST;
#endif
if (inp->inp_faddr.s_addr != INADDR_ANY)
wildcard++;
if (inp->inp_laddr.s_addr != INADDR_ANY) {
if (laddr.s_addr == INADDR_ANY)
wildcard++;
else if (inp->inp_laddr.s_addr != laddr.s_addr)
continue;
} else {
if (laddr.s_addr != INADDR_ANY)
wildcard++;
}
if (wildcard < matchwild) {
match = inp;
matchwild = wildcard;
if (matchwild == 0)
break;
}
}
}
return (match);
}
}
#undef INP_LOOKUP_MAPPED_PCB_COST
static struct inpcb *
in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
uint16_t fport, int lookupflags, int numa_domain)
{
struct inpcb *local_wild, *numa_wild;
const struct inpcblbgrouphead *hdr;
struct inpcblbgroup *grp;
uint32_t idx;
INP_HASH_LOCK_ASSERT(pcbinfo);
hdr = &pcbinfo->ipi_lbgrouphashbase[
INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
/*
* Order of socket selection:
* 1. non-wild.
* 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
*
* NOTE:
* - Load balanced group does not contain jailed sockets
* - Load balanced group does not contain IPv4 mapped INET6 wild sockets
*/
local_wild = NULL;
numa_wild = NULL;
CK_LIST_FOREACH(grp, hdr, il_list) {
#ifdef INET6
if (!(grp->il_vflag & INP_IPV4))
continue;
#endif
if (grp->il_lport != lport)
continue;
idx = INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) %
grp->il_inpcnt;
if (grp->il_laddr.s_addr == laddr->s_addr) {
if (numa_domain == M_NODOM ||
grp->il_numa_domain == numa_domain) {
return (grp->il_inp[idx]);
} else {
numa_wild = grp->il_inp[idx];
}
}
if (grp->il_laddr.s_addr == INADDR_ANY &&
(lookupflags & INPLOOKUP_WILDCARD) != 0 &&
(local_wild == NULL || numa_domain == M_NODOM ||
grp->il_numa_domain == numa_domain)) {
local_wild = grp->il_inp[idx];
}
}
if (numa_wild != NULL)
return (numa_wild);
return (local_wild);
}
/*
* Lookup PCB in hash list, using pcbinfo tables. This variation assumes
* that the caller has either locked the hash list, which usually happens
* for bind(2) operations, or is in SMR section, which happens when sorting
* out incoming packets.
*/
static struct inpcb *
in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
struct ifnet *ifp, uint8_t numa_domain)
{
struct inpcbhead *head;
struct inpcb *inp, *tmpinp;
u_short fport = fport_arg, lport = lport_arg;
KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
("%s: invalid lookup flags %d", __func__, lookupflags));
INP_HASH_LOCK_ASSERT(pcbinfo);
/*
* First look for an exact match.
*/
tmpinp = NULL;
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport,
pcbinfo->ipi_hashmask)];
CK_LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
/* XXX inp locking */
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr == faddr.s_addr &&
inp->inp_laddr.s_addr == laddr.s_addr &&
inp->inp_fport == fport &&
inp->inp_lport == lport) {
/*
* XXX We should be able to directly return
* the inp here, without any checks.
* Well unless both bound with SO_REUSEPORT?
*/
if (prison_flag(inp->inp_cred, PR_IP4))
return (inp);
if (tmpinp == NULL)
tmpinp = inp;
}
}
if (tmpinp != NULL)
return (tmpinp);
/*
* Then look in lb group (for wildcard match).
*/
if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
fport, lookupflags, numa_domain);
if (inp != NULL)
return (inp);
}
/*
* Then look for a wildcard match, if requested.
*/
if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
struct inpcb *local_wild = NULL, *local_exact = NULL;
#ifdef INET6
struct inpcb *local_wild_mapped = NULL;
#endif
struct inpcb *jail_wild = NULL;
int injail;
/*
* Order of socket selection - we always prefer jails.
* 1. jailed, non-wild.
* 2. jailed, wild.
* 3. non-jailed, non-wild.
* 4. non-jailed, wild.
*/
head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport,
pcbinfo->ipi_hashmask)];
CK_LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
/* XXX inp locking */
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr != INADDR_ANY ||
inp->inp_lport != lport)
continue;
injail = prison_flag(inp->inp_cred, PR_IP4);
if (injail) {
if (prison_check_ip4_locked(
inp->inp_cred->cr_prison, &laddr) != 0)
continue;
} else {
if (local_exact != NULL)
continue;
}
if (inp->inp_laddr.s_addr == laddr.s_addr) {
if (injail)
return (inp);
else
local_exact = inp;
} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
#ifdef INET6
/* XXX inp locking, NULL check */
if (inp->inp_vflag & INP_IPV6PROTO)
local_wild_mapped = inp;
else
#endif
if (injail)
jail_wild = inp;
else
local_wild = inp;
}
} /* LIST_FOREACH */
if (jail_wild != NULL)
return (jail_wild);
if (local_exact != NULL)
return (local_exact);
if (local_wild != NULL)
return (local_wild);
#ifdef INET6
if (local_wild_mapped != NULL)
return (local_wild_mapped);
#endif
} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
return (NULL);
}
/*
* Lookup PCB in hash list, using pcbinfo tables. This variation locks the
* hash list lock, and will return the inpcb locked (i.e., requires
* INPLOOKUP_LOCKPCB).
*/
static struct inpcb *
in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
struct ifnet *ifp, uint8_t numa_domain)
{
struct inpcb *inp;
smr_enter(pcbinfo->ipi_smr);
inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain);
if (inp != NULL) {
if (__predict_false(inp_smr_lock(inp,
(lookupflags & INPLOOKUP_LOCKMASK)) == false))
inp = NULL;
} else
smr_exit(pcbinfo->ipi_smr);
return (inp);
}
/*
* Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
* from which a pre-calculated hash value may be extracted.
*/
struct inpcb *
in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
{
KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
("%s: invalid lookup flags %d", __func__, lookupflags));
KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
("%s: LOCKPCB not set", __func__));
return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
lookupflags, ifp, M_NODOM));
}
struct inpcb *
in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
struct ifnet *ifp, struct mbuf *m)
{
KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
("%s: invalid lookup flags %d", __func__, lookupflags));
KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
("%s: LOCKPCB not set", __func__));
return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
lookupflags, ifp, m->m_pkthdr.numa_domain));
}
#endif /* INET */
/*
* Insert PCB onto various hash lists.
*/
int
in_pcbinshash(struct inpcb *inp)
{
struct inpcbhead *pcbhash;
struct inpcbporthead *pcbporthash;
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct inpcbport *phd;
int so_options;
INP_WLOCK_ASSERT(inp);
INP_HASH_WLOCK_ASSERT(pcbinfo);
KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
("in_pcbinshash: INP_INHASHLIST"));
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr,
inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
else
#endif
pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr,
inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
pcbporthash = &pcbinfo->ipi_porthashbase[
INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
/*
* Add entry to load balance group.
* Only do this if SO_REUSEPORT_LB is set.
*/
so_options = inp_so_options(inp);
if (so_options & SO_REUSEPORT_LB) {
int ret = in_pcbinslbgrouphash(inp, M_NODOM);
if (ret) {
/* pcb lb group malloc fail (ret=ENOBUFS). */
return (ret);
}
}
/*
* Go through port list and look for a head for this lport.
*/
CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
if (phd->phd_port == inp->inp_lport)
break;
}
/*
* If none exists, malloc one and tack it on.
*/
if (phd == NULL) {
phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT);
if (phd == NULL) {
return (ENOBUFS); /* XXX */
}
phd->phd_port = inp->inp_lport;
CK_LIST_INIT(&phd->phd_pcblist);
CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
}
inp->inp_phd = phd;
CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
inp->inp_flags |= INP_INHASHLIST;
return (0);
}
/*
* Move PCB to the proper hash bucket when { faddr, fport } have been
* changed. NOTE: This does not handle the case of the lport changing (the
* hashed port list would have to be updated as well), so the lport must
* not change after in_pcbinshash() has been called.
*
* XXXGL: a race between this function and SMR-protected hash iterator
* will lead to iterator traversing a possibly wrong hash list. However,
* this race should have been here since change from rwlock to epoch.
*/
void
in_pcbrehash(struct inpcb *inp)
{
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct inpcbhead *head;
INP_WLOCK_ASSERT(inp);
INP_HASH_WLOCK_ASSERT(pcbinfo);
KASSERT(inp->inp_flags & INP_INHASHLIST,
("in_pcbrehash: !INP_INHASHLIST"));
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr,
inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
else
#endif
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr,
inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
CK_LIST_REMOVE(inp, inp_hash);
CK_LIST_INSERT_HEAD(head, inp, inp_hash);
}
/*
* Check for alternatives when higher level complains
* about service problems. For now, invalidate cached
* routing information. If the route was created dynamically
* (by a redirect), time to try a default gateway again.
*/
void
in_losing(struct inpcb *inp)
{
RO_INVALIDATE_CACHE(&inp->inp_route);
return;
}
/*
* A set label operation has occurred at the socket layer, propagate the
* label change into the in_pcb for the socket.
*/
void
in_pcbsosetlabel(struct socket *so)
{
#ifdef MAC
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
INP_WLOCK(inp);
SOCK_LOCK(so);
mac_inpcb_sosetlabel(so, inp);
SOCK_UNLOCK(so);
INP_WUNLOCK(inp);
#endif
}
/*
* ipport_tick runs once per second, determining if random port allocation
* should be continued. If more than ipport_randomcps ports have been
* allocated in the last second, then we return to sequential port
* allocation. We return to random allocation only once we drop below
* ipport_randomcps for at least ipport_randomtime seconds.
*/
static void
ipport_tick(void *xtp)
{
VNET_ITERATOR_DECL(vnet_iter);
VNET_LIST_RLOCK_NOSLEEP();
VNET_FOREACH(vnet_iter) {
CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
if (V_ipport_tcpallocs - V_ipport_tcplastcount <=
V_ipport_randomcps) {
if (V_ipport_stoprandom > 0)
V_ipport_stoprandom--;
} else
V_ipport_stoprandom = V_ipport_randomtime;
V_ipport_tcplastcount = V_ipport_tcpallocs;
CURVNET_RESTORE();
}
VNET_LIST_RUNLOCK_NOSLEEP();
callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
}
static void
ip_fini(void *xtp)
{
callout_stop(&ipport_tick_callout);
}
/*
* The ipport_callout should start running at about the time we attach the
* inet or inet6 domains.
*/
static void
ipport_tick_init(const void *unused __unused)
{
/* Start ipport_tick. */
callout_init(&ipport_tick_callout, 1);
callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
SHUTDOWN_PRI_DEFAULT);
}
SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
ipport_tick_init, NULL);
void
inp_wlock(struct inpcb *inp)
{
INP_WLOCK(inp);
}
void
inp_wunlock(struct inpcb *inp)
{
INP_WUNLOCK(inp);
}
void
inp_rlock(struct inpcb *inp)
{
INP_RLOCK(inp);
}
void
inp_runlock(struct inpcb *inp)
{
INP_RUNLOCK(inp);
}
#ifdef INVARIANT_SUPPORT
void
inp_lock_assert(struct inpcb *inp)
{
INP_WLOCK_ASSERT(inp);
}
void
inp_unlock_assert(struct inpcb *inp)
{
INP_UNLOCK_ASSERT(inp);
}
#endif
void
inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
{
struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo,
INPLOOKUP_WLOCKPCB);
struct inpcb *inp;
while ((inp = inp_next(&inpi)) != NULL)
func(inp, arg);
}
struct socket *
inp_inpcbtosocket(struct inpcb *inp)
{
INP_WLOCK_ASSERT(inp);
return (inp->inp_socket);
}
struct tcpcb *
inp_inpcbtotcpcb(struct inpcb *inp)
{
INP_WLOCK_ASSERT(inp);
return ((struct tcpcb *)inp->inp_ppcb);
}
int
inp_ip_tos_get(const struct inpcb *inp)
{
return (inp->inp_ip_tos);
}
void
inp_ip_tos_set(struct inpcb *inp, int val)
{
inp->inp_ip_tos = val;
}
void
inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
uint32_t *faddr, uint16_t *fp)
{
INP_LOCK_ASSERT(inp);
*laddr = inp->inp_laddr.s_addr;
*faddr = inp->inp_faddr.s_addr;
*lp = inp->inp_lport;
*fp = inp->inp_fport;
}
struct inpcb *
so_sotoinpcb(struct socket *so)
{
return (sotoinpcb(so));
}
struct tcpcb *
so_sototcpcb(struct socket *so)
{
return (sototcpcb(so));
}
/*
* Create an external-format (``xinpcb'') structure using the information in
* the kernel-format in_pcb structure pointed to by inp. This is done to
* reduce the spew of irrelevant information over this interface, to isolate
* user code from changes in the kernel structure, and potentially to provide
* information-hiding if we decide that some of this information should be
* hidden from users.
*/
void
in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
{
bzero(xi, sizeof(*xi));
xi->xi_len = sizeof(struct xinpcb);
if (inp->inp_socket)
sotoxsocket(inp->inp_socket, &xi->xi_socket);
bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
xi->inp_gencnt = inp->inp_gencnt;
xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
xi->inp_flow = inp->inp_flow;
xi->inp_flowid = inp->inp_flowid;
xi->inp_flowtype = inp->inp_flowtype;
xi->inp_flags = inp->inp_flags;
xi->inp_flags2 = inp->inp_flags2;
xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
xi->in6p_cksum = inp->in6p_cksum;
xi->in6p_hops = inp->in6p_hops;
xi->inp_ip_tos = inp->inp_ip_tos;
xi->inp_vflag = inp->inp_vflag;
xi->inp_ip_ttl = inp->inp_ip_ttl;
xi->inp_ip_p = inp->inp_ip_p;
xi->inp_ip_minttl = inp->inp_ip_minttl;
}
int
sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo,
int (*ctloutput_set)(struct inpcb *, struct sockopt *))
{
struct sockopt sopt;
struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
INPLOOKUP_WLOCKPCB);
struct inpcb *inp;
struct sockopt_parameters *params;
struct socket *so;
int error;
char buf[1024];
if (req->oldptr != NULL || req->oldlen != 0)
return (EINVAL);
if (req->newptr == NULL)
return (EPERM);
if (req->newlen > sizeof(buf))
return (ENOMEM);
error = SYSCTL_IN(req, buf, req->newlen);
if (error != 0)
return (error);
if (req->newlen < sizeof(struct sockopt_parameters))
return (EINVAL);
params = (struct sockopt_parameters *)buf;
sopt.sopt_level = params->sop_level;
sopt.sopt_name = params->sop_optname;
sopt.sopt_dir = SOPT_SET;
sopt.sopt_val = params->sop_optval;
sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters);
sopt.sopt_td = NULL;
#ifdef INET6
if (params->sop_inc.inc_flags & INC_ISIPV6) {
if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_laddr))
params->sop_inc.inc6_laddr.s6_addr16[1] =
htons(params->sop_inc.inc6_zoneid & 0xffff);
if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_faddr))
params->sop_inc.inc6_faddr.s6_addr16[1] =
htons(params->sop_inc.inc6_zoneid & 0xffff);
}
#endif
if (params->sop_inc.inc_lport != htons(0)) {
if (params->sop_inc.inc_fport == htons(0))
inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport,
pcbinfo->ipi_hashmask);
else
#ifdef INET6
if (params->sop_inc.inc_flags & INC_ISIPV6)
inpi.hash = INP6_PCBHASH(
&params->sop_inc.inc6_faddr,
params->sop_inc.inc_lport,
params->sop_inc.inc_fport,
pcbinfo->ipi_hashmask);
else
#endif
inpi.hash = INP_PCBHASH(
&params->sop_inc.inc_faddr,
params->sop_inc.inc_lport,
params->sop_inc.inc_fport,
pcbinfo->ipi_hashmask);
}
while ((inp = inp_next(&inpi)) != NULL)
if (inp->inp_gencnt == params->sop_id) {
if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
INP_WUNLOCK(inp);
return (ECONNRESET);
}
so = inp->inp_socket;
KASSERT(so != NULL, ("inp_socket == NULL"));
soref(so);
error = (*ctloutput_set)(inp, &sopt);
sorele(so);
break;
}
if (inp == NULL)
error = ESRCH;
return (error);
}
#ifdef DDB
static void
db_print_indent(int indent)
{
int i;
for (i = 0; i < indent; i++)
db_printf(" ");
}
static void
db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
{
char faddr_str[48], laddr_str[48];
db_print_indent(indent);
db_printf("%s at %p\n", name, inc);
indent += 2;
#ifdef INET6
if (inc->inc_flags & INC_ISIPV6) {
/* IPv6. */
ip6_sprintf(laddr_str, &inc->inc6_laddr);
ip6_sprintf(faddr_str, &inc->inc6_faddr);
} else
#endif
{
/* IPv4. */
inet_ntoa_r(inc->inc_laddr, laddr_str);
inet_ntoa_r(inc->inc_faddr, faddr_str);
}
db_print_indent(indent);
db_printf("inc_laddr %s inc_lport %u\n", laddr_str,
ntohs(inc->inc_lport));
db_print_indent(indent);
db_printf("inc_faddr %s inc_fport %u\n", faddr_str,
ntohs(inc->inc_fport));
}
static void
db_print_inpflags(int inp_flags)
{
int comma;
comma = 0;
if (inp_flags & INP_RECVOPTS) {
db_printf("%sINP_RECVOPTS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_RECVRETOPTS) {
db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_RECVDSTADDR) {
db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_ORIGDSTADDR) {
db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_HDRINCL) {
db_printf("%sINP_HDRINCL", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_HIGHPORT) {
db_printf("%sINP_HIGHPORT", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_LOWPORT) {
db_printf("%sINP_LOWPORT", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_ANONPORT) {
db_printf("%sINP_ANONPORT", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_RECVIF) {
db_printf("%sINP_RECVIF", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_MTUDISC) {
db_printf("%sINP_MTUDISC", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_RECVTTL) {
db_printf("%sINP_RECVTTL", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_DONTFRAG) {
db_printf("%sINP_DONTFRAG", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_RECVTOS) {
db_printf("%sINP_RECVTOS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_IPV6_V6ONLY) {
db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_PKTINFO) {
db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_HOPLIMIT) {
db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_HOPOPTS) {
db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_DSTOPTS) {
db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_RTHDR) {
db_printf("%sIN6P_RTHDR", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_RTHDRDSTOPTS) {
db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_TCLASS) {
db_printf("%sIN6P_TCLASS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_AUTOFLOWLABEL) {
db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_TIMEWAIT) {
db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_ONESBCAST) {
db_printf("%sINP_ONESBCAST", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_DROPPED) {
db_printf("%sINP_DROPPED", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_SOCKREF) {
db_printf("%sINP_SOCKREF", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_RFC2292) {
db_printf("%sIN6P_RFC2292", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_MTU) {
db_printf("IN6P_MTU%s", comma ? ", " : "");
comma = 1;
}
}
static void
db_print_inpvflag(u_char inp_vflag)
{
int comma;
comma = 0;
if (inp_vflag & INP_IPV4) {
db_printf("%sINP_IPV4", comma ? ", " : "");
comma = 1;
}
if (inp_vflag & INP_IPV6) {
db_printf("%sINP_IPV6", comma ? ", " : "");
comma = 1;
}
if (inp_vflag & INP_IPV6PROTO) {
db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
comma = 1;
}
}
static void
db_print_inpcb(struct inpcb *inp, const char *name, int indent)
{
db_print_indent(indent);
db_printf("%s at %p\n", name, inp);
indent += 2;
db_print_indent(indent);
db_printf("inp_flow: 0x%x\n", inp->inp_flow);
db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
db_print_indent(indent);
db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n",
inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
db_print_indent(indent);
db_printf("inp_label: %p inp_flags: 0x%x (",
inp->inp_label, inp->inp_flags);
db_print_inpflags(inp->inp_flags);
db_printf(")\n");
db_print_indent(indent);
db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp,
inp->inp_vflag);
db_print_inpvflag(inp->inp_vflag);
db_printf(")\n");
db_print_indent(indent);
db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n",
inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
db_print_indent(indent);
#ifdef INET6
if (inp->inp_vflag & INP_IPV6) {
db_printf("in6p_options: %p in6p_outputopts: %p "
"in6p_moptions: %p\n", inp->in6p_options,
inp->in6p_outputopts, inp->in6p_moptions);
db_printf("in6p_icmp6filt: %p in6p_cksum %d "
"in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
inp->in6p_hops);
} else
#endif
{
db_printf("inp_ip_tos: %d inp_ip_options: %p "
"inp_ip_moptions: %p\n", inp->inp_ip_tos,
inp->inp_options, inp->inp_moptions);
}
db_print_indent(indent);
db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd,
(uintmax_t)inp->inp_gencnt);
}
DB_SHOW_COMMAND(inpcb, db_show_inpcb)
{
struct inpcb *inp;
if (!have_addr) {
db_printf("usage: show inpcb <addr>\n");
return;
}
inp = (struct inpcb *)addr;
db_print_inpcb(inp, "inpcb", 0);
}
#endif /* DDB */
#ifdef RATELIMIT
/*
* Modify TX rate limit based on the existing "inp->inp_snd_tag",
* if any.
*/
int
in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
{
union if_snd_tag_modify_params params = {
.rate_limit.max_rate = max_pacing_rate,
.rate_limit.flags = M_NOWAIT,
};
struct m_snd_tag *mst;
int error;
mst = inp->inp_snd_tag;
if (mst == NULL)
return (EINVAL);
if (mst->sw->snd_tag_modify == NULL) {
error = EOPNOTSUPP;
} else {
error = mst->sw->snd_tag_modify(mst, &params);
}
return (error);
}
/*
* Query existing TX rate limit based on the existing
* "inp->inp_snd_tag", if any.
*/
int
in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
{
union if_snd_tag_query_params params = { };
struct m_snd_tag *mst;
int error;
mst = inp->inp_snd_tag;
if (mst == NULL)
return (EINVAL);
if (mst->sw->snd_tag_query == NULL) {
error = EOPNOTSUPP;
} else {
error = mst->sw->snd_tag_query(mst, &params);
if (error == 0 && p_max_pacing_rate != NULL)
*p_max_pacing_rate = params.rate_limit.max_rate;
}
return (error);
}
/*
* Query existing TX queue level based on the existing
* "inp->inp_snd_tag", if any.
*/
int
in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
{
union if_snd_tag_query_params params = { };
struct m_snd_tag *mst;
int error;
mst = inp->inp_snd_tag;
if (mst == NULL)
return (EINVAL);
if (mst->sw->snd_tag_query == NULL)
return (EOPNOTSUPP);
error = mst->sw->snd_tag_query(mst, &params);
if (error == 0 && p_txqueue_level != NULL)
*p_txqueue_level = params.rate_limit.queue_level;
return (error);
}
/*
* Allocate a new TX rate limit send tag from the network interface
* given by the "ifp" argument and save it in "inp->inp_snd_tag":
*/
int
in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
{
union if_snd_tag_alloc_params params = {
.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
.rate_limit.hdr.flowid = flowid,
.rate_limit.hdr.flowtype = flowtype,
.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
.rate_limit.max_rate = max_pacing_rate,
.rate_limit.flags = M_NOWAIT,
};
int error;
INP_WLOCK_ASSERT(inp);
/*
* If there is already a send tag, or the INP is being torn
* down, allocating a new send tag is not allowed. Else send
* tags may leak.
*/
if (*st != NULL || (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) != 0)
return (EINVAL);
error = m_snd_tag_alloc(ifp, &params, st);
#ifdef INET
if (error == 0) {
counter_u64_add(rate_limit_set_ok, 1);
counter_u64_add(rate_limit_active, 1);
} else if (error != EOPNOTSUPP)
counter_u64_add(rate_limit_alloc_fail, 1);
#endif
return (error);
}
void
in_pcbdetach_tag(struct m_snd_tag *mst)
{
m_snd_tag_rele(mst);
#ifdef INET
counter_u64_add(rate_limit_active, -1);
#endif
}
/*
* Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
* if any:
*/
void
in_pcbdetach_txrtlmt(struct inpcb *inp)
{
struct m_snd_tag *mst;
INP_WLOCK_ASSERT(inp);
mst = inp->inp_snd_tag;
inp->inp_snd_tag = NULL;
if (mst == NULL)
return;
m_snd_tag_rele(mst);
#ifdef INET
counter_u64_add(rate_limit_active, -1);
#endif
}
int
in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
{
int error;
/*
* If the existing send tag is for the wrong interface due to
* a route change, first drop the existing tag. Set the
* CHANGED flag so that we will keep trying to allocate a new
* tag if we fail to allocate one this time.
*/
if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
in_pcbdetach_txrtlmt(inp);
inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
}
/*
* NOTE: When attaching to a network interface a reference is
* made to ensure the network interface doesn't go away until
* all ratelimit connections are gone. The network interface
* pointers compared below represent valid network interfaces,
* except when comparing towards NULL.
*/
if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
error = 0;
} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
if (inp->inp_snd_tag != NULL)
in_pcbdetach_txrtlmt(inp);
error = 0;
} else if (inp->inp_snd_tag == NULL) {
/*
* In order to utilize packet pacing with RSS, we need
* to wait until there is a valid RSS hash before we
* can proceed:
*/
if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
error = EAGAIN;
} else {
error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
}
} else {
error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
}
if (error == 0 || error == EOPNOTSUPP)
inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
return (error);
}
/*
* This function should be called when the INP_RATE_LIMIT_CHANGED flag
* is set in the fast path and will attach/detach/modify the TX rate
* limit send tag based on the socket's so_max_pacing_rate value.
*/
void
in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
{
struct socket *socket;
uint32_t max_pacing_rate;
bool did_upgrade;
if (inp == NULL)
return;
socket = inp->inp_socket;
if (socket == NULL)
return;
if (!INP_WLOCKED(inp)) {
/*
* NOTE: If the write locking fails, we need to bail
* out and use the non-ratelimited ring for the
* transmit until there is a new chance to get the
* write lock.
*/
if (!INP_TRY_UPGRADE(inp))
return;
did_upgrade = 1;
} else {
did_upgrade = 0;
}
/*
* NOTE: The so_max_pacing_rate value is read unlocked,
* because atomic updates are not required since the variable
* is checked at every mbuf we send. It is assumed that the
* variable read itself will be atomic.
*/
max_pacing_rate = socket->so_max_pacing_rate;
in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
if (did_upgrade)
INP_DOWNGRADE(inp);
}
/*
* Track route changes for TX rate limiting.
*/
void
in_pcboutput_eagain(struct inpcb *inp)
{
bool did_upgrade;
if (inp == NULL)
return;
if (inp->inp_snd_tag == NULL)
return;
if (!INP_WLOCKED(inp)) {
/*
* NOTE: If the write locking fails, we need to bail
* out and use the non-ratelimited ring for the
* transmit until there is a new chance to get the
* write lock.
*/
if (!INP_TRY_UPGRADE(inp))
return;
did_upgrade = 1;
} else {
did_upgrade = 0;
}
/* detach rate limiting */
in_pcbdetach_txrtlmt(inp);
/* make sure new mbuf send tag allocation is made */
inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
if (did_upgrade)
INP_DOWNGRADE(inp);
}
#ifdef INET
static void
rl_init(void *st)
{
rate_limit_new = counter_u64_alloc(M_WAITOK);
rate_limit_chg = counter_u64_alloc(M_WAITOK);
rate_limit_active = counter_u64_alloc(M_WAITOK);
rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
}
SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
#endif
#endif /* RATELIMIT */