freebsd-nq/sys/dev/isci/isci_controller.c

825 lines
26 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* BSD LICENSE
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/isci/isci.h>
#include <sys/conf.h>
#include <sys/malloc.h>
#include <cam/cam_periph.h>
#include <cam/cam_xpt_periph.h>
#include <dev/isci/scil/sci_memory_descriptor_list.h>
#include <dev/isci/scil/sci_memory_descriptor_list_decorator.h>
#include <dev/isci/scil/scif_controller.h>
#include <dev/isci/scil/scif_library.h>
#include <dev/isci/scil/scif_io_request.h>
#include <dev/isci/scil/scif_task_request.h>
#include <dev/isci/scil/scif_remote_device.h>
#include <dev/isci/scil/scif_domain.h>
#include <dev/isci/scil/scif_user_callback.h>
#include <dev/isci/scil/scic_sgpio.h>
#include <dev/led/led.h>
void isci_action(struct cam_sim *sim, union ccb *ccb);
void isci_poll(struct cam_sim *sim);
#define ccb_sim_ptr sim_priv.entries[0].ptr
/**
* @brief This user callback will inform the user that the controller has
* had a serious unexpected error. The user should not the error,
* disable interrupts, and wait for current ongoing processing to
* complete. Subsequently, the user should reset the controller.
*
* @param[in] controller This parameter specifies the controller that had
* an error.
*
* @return none
*/
void scif_cb_controller_error(SCI_CONTROLLER_HANDLE_T controller,
SCI_CONTROLLER_ERROR error)
{
isci_log_message(0, "ISCI", "scif_cb_controller_error: 0x%x\n",
error);
}
/**
* @brief This user callback will inform the user that the controller has
* finished the start process.
*
* @param[in] controller This parameter specifies the controller that was
* started.
* @param[in] completion_status This parameter specifies the results of
* the start operation. SCI_SUCCESS indicates successful
* completion.
*
* @return none
*/
void scif_cb_controller_start_complete(SCI_CONTROLLER_HANDLE_T controller,
SCI_STATUS completion_status)
{
uint32_t index;
struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
sci_object_get_association(controller);
isci_controller->is_started = TRUE;
/* Set bits for all domains. We will clear them one-by-one once
* the domains complete discovery, or return error when calling
* scif_domain_discover. Once all bits are clear, we will register
* the controller with CAM.
*/
isci_controller->initial_discovery_mask = (1 << SCI_MAX_DOMAINS) - 1;
for(index = 0; index < SCI_MAX_DOMAINS; index++) {
SCI_STATUS status;
SCI_DOMAIN_HANDLE_T domain =
isci_controller->domain[index].sci_object;
status = scif_domain_discover(
domain,
scif_domain_get_suggested_discover_timeout(domain),
DEVICE_TIMEOUT
);
if (status != SCI_SUCCESS)
{
isci_controller_domain_discovery_complete(
isci_controller, &isci_controller->domain[index]);
}
}
}
/**
* @brief This user callback will inform the user that the controller has
* finished the stop process. Note, after user calls
* scif_controller_stop(), before user receives this controller stop
* complete callback, user should not expect any callback from
* framework, such like scif_cb_domain_change_notification().
*
* @param[in] controller This parameter specifies the controller that was
* stopped.
* @param[in] completion_status This parameter specifies the results of
* the stop operation. SCI_SUCCESS indicates successful
* completion.
*
* @return none
*/
void scif_cb_controller_stop_complete(SCI_CONTROLLER_HANDLE_T controller,
SCI_STATUS completion_status)
{
struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
sci_object_get_association(controller);
isci_controller->is_started = FALSE;
}
static void
isci_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
{
SCI_PHYSICAL_ADDRESS *phys_addr = arg;
*phys_addr = seg[0].ds_addr;
}
/**
* @brief This method will be invoked to allocate memory dynamically.
*
* @param[in] controller This parameter represents the controller
* object for which to allocate memory.
* @param[out] mde This parameter represents the memory descriptor to
* be filled in by the user that will reference the newly
* allocated memory.
*
* @return none
*/
void scif_cb_controller_allocate_memory(SCI_CONTROLLER_HANDLE_T controller,
SCI_PHYSICAL_MEMORY_DESCRIPTOR_T *mde)
{
struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
sci_object_get_association(controller);
/*
* Note this routine is only used for buffers needed to translate
* SCSI UNMAP commands to ATA DSM commands for SATA disks.
*
* We first try to pull a buffer from the controller's pool, and only
* call contigmalloc if one isn't there.
*/
if (!sci_pool_empty(isci_controller->unmap_buffer_pool)) {
sci_pool_get(isci_controller->unmap_buffer_pool,
mde->virtual_address);
} else
mde->virtual_address = contigmalloc(PAGE_SIZE,
M_ISCI, M_NOWAIT, 0, BUS_SPACE_MAXADDR,
mde->constant_memory_alignment, 0);
if (mde->virtual_address != NULL)
bus_dmamap_load(isci_controller->buffer_dma_tag,
NULL, mde->virtual_address, PAGE_SIZE,
isci_single_map, &mde->physical_address,
BUS_DMA_NOWAIT);
}
/**
* @brief This method will be invoked to allocate memory dynamically.
*
* @param[in] controller This parameter represents the controller
* object for which to allocate memory.
* @param[out] mde This parameter represents the memory descriptor to
* be filled in by the user that will reference the newly
* allocated memory.
*
* @return none
*/
void scif_cb_controller_free_memory(SCI_CONTROLLER_HANDLE_T controller,
SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde)
{
struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
sci_object_get_association(controller);
/*
* Put the buffer back into the controller's buffer pool, rather
* than invoking configfree. This helps reduce chance we won't
* have buffers available when system is under memory pressure.
*/
sci_pool_put(isci_controller->unmap_buffer_pool,
mde->virtual_address);
}
void isci_controller_construct(struct ISCI_CONTROLLER *controller,
struct isci_softc *isci)
{
SCI_CONTROLLER_HANDLE_T scif_controller_handle;
scif_library_allocate_controller(isci->sci_library_handle,
&scif_controller_handle);
scif_controller_construct(isci->sci_library_handle,
scif_controller_handle, NULL);
controller->isci = isci;
controller->scif_controller_handle = scif_controller_handle;
/* This allows us to later use
* sci_object_get_association(scif_controller_handle)
* inside of a callback routine to get our struct ISCI_CONTROLLER object
*/
sci_object_set_association(scif_controller_handle, (void *)controller);
controller->is_started = FALSE;
controller->is_frozen = FALSE;
controller->release_queued_ccbs = FALSE;
controller->sim = NULL;
controller->initial_discovery_mask = 0;
sci_fast_list_init(&controller->pending_device_reset_list);
mtx_init(&controller->lock, "isci", NULL, MTX_DEF);
uint32_t domain_index;
for(domain_index = 0; domain_index < SCI_MAX_DOMAINS; domain_index++) {
isci_domain_construct( &controller->domain[domain_index],
domain_index, controller);
}
controller->timer_memory = malloc(
sizeof(struct ISCI_TIMER) * SCI_MAX_TIMERS, M_ISCI,
M_NOWAIT | M_ZERO);
sci_pool_initialize(controller->timer_pool);
struct ISCI_TIMER *timer = (struct ISCI_TIMER *)
controller->timer_memory;
for ( int i = 0; i < SCI_MAX_TIMERS; i++ ) {
sci_pool_put(controller->timer_pool, timer++);
}
sci_pool_initialize(controller->unmap_buffer_pool);
}
static void isci_led_fault_func(void *priv, int onoff)
{
struct ISCI_PHY *phy = priv;
/* map onoff to the fault LED */
phy->led_fault = onoff;
scic_sgpio_update_led_state(phy->handle, 1 << phy->index,
phy->led_fault, phy->led_locate, 0);
}
static void isci_led_locate_func(void *priv, int onoff)
{
struct ISCI_PHY *phy = priv;
/* map onoff to the locate LED */
phy->led_locate = onoff;
scic_sgpio_update_led_state(phy->handle, 1 << phy->index,
phy->led_fault, phy->led_locate, 0);
}
SCI_STATUS isci_controller_initialize(struct ISCI_CONTROLLER *controller)
{
SCIC_USER_PARAMETERS_T scic_user_parameters;
SCI_CONTROLLER_HANDLE_T scic_controller_handle;
char led_name[64];
unsigned long tunable;
uint32_t io_shortage;
uint32_t fail_on_timeout;
int i;
scic_controller_handle =
scif_controller_get_scic_handle(controller->scif_controller_handle);
if (controller->isci->oem_parameters_found == TRUE)
{
scic_oem_parameters_set(
scic_controller_handle,
&controller->oem_parameters,
(uint8_t)(controller->oem_parameters_version));
}
scic_user_parameters_get(scic_controller_handle, &scic_user_parameters);
if (TUNABLE_ULONG_FETCH("hw.isci.no_outbound_task_timeout", &tunable))
scic_user_parameters.sds1.no_outbound_task_timeout =
(uint8_t)tunable;
if (TUNABLE_ULONG_FETCH("hw.isci.ssp_max_occupancy_timeout", &tunable))
scic_user_parameters.sds1.ssp_max_occupancy_timeout =
(uint16_t)tunable;
if (TUNABLE_ULONG_FETCH("hw.isci.stp_max_occupancy_timeout", &tunable))
scic_user_parameters.sds1.stp_max_occupancy_timeout =
(uint16_t)tunable;
if (TUNABLE_ULONG_FETCH("hw.isci.ssp_inactivity_timeout", &tunable))
scic_user_parameters.sds1.ssp_inactivity_timeout =
(uint16_t)tunable;
if (TUNABLE_ULONG_FETCH("hw.isci.stp_inactivity_timeout", &tunable))
scic_user_parameters.sds1.stp_inactivity_timeout =
(uint16_t)tunable;
if (TUNABLE_ULONG_FETCH("hw.isci.max_speed_generation", &tunable))
for (i = 0; i < SCI_MAX_PHYS; i++)
scic_user_parameters.sds1.phys[i].max_speed_generation =
(uint8_t)tunable;
scic_user_parameters_set(scic_controller_handle, &scic_user_parameters);
/* Scheduler bug in SCU requires SCIL to reserve some task contexts as a
* a workaround - one per domain.
*/
controller->queue_depth = SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS;
if (TUNABLE_INT_FETCH("hw.isci.controller_queue_depth",
&controller->queue_depth)) {
controller->queue_depth = max(1, min(controller->queue_depth,
SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS));
}
/* Reserve one request so that we can ensure we have one available TC
* to do internal device resets.
*/
controller->sim_queue_depth = controller->queue_depth - 1;
/* Although we save one TC to do internal device resets, it is possible
* we could end up using several TCs for simultaneous device resets
* while at the same time having CAM fill our controller queue. To
* simulate this condition, and how our driver handles it, we can set
* this io_shortage parameter, which will tell CAM that we have a
* large queue depth than we really do.
*/
io_shortage = 0;
TUNABLE_INT_FETCH("hw.isci.io_shortage", &io_shortage);
controller->sim_queue_depth += io_shortage;
fail_on_timeout = 1;
TUNABLE_INT_FETCH("hw.isci.fail_on_task_timeout", &fail_on_timeout);
controller->fail_on_task_timeout = fail_on_timeout;
/* Attach to CAM using xpt_bus_register now, then immediately freeze
* the simq. It will get released later when initial domain discovery
* is complete.
*/
controller->has_been_scanned = FALSE;
mtx_lock(&controller->lock);
isci_controller_attach_to_cam(controller);
xpt_freeze_simq(controller->sim, 1);
mtx_unlock(&controller->lock);
for (i = 0; i < SCI_MAX_PHYS; i++) {
controller->phys[i].handle = scic_controller_handle;
controller->phys[i].index = i;
/* fault */
controller->phys[i].led_fault = 0;
sprintf(led_name, "isci.bus%d.port%d.fault", controller->index, i);
controller->phys[i].cdev_fault = led_create(isci_led_fault_func,
&controller->phys[i], led_name);
/* locate */
controller->phys[i].led_locate = 0;
sprintf(led_name, "isci.bus%d.port%d.locate", controller->index, i);
controller->phys[i].cdev_locate = led_create(isci_led_locate_func,
&controller->phys[i], led_name);
}
return (scif_controller_initialize(controller->scif_controller_handle));
}
int isci_controller_allocate_memory(struct ISCI_CONTROLLER *controller)
{
int error;
device_t device = controller->isci->device;
uint32_t max_segment_size = isci_io_request_get_max_io_size();
uint32_t status = 0;
struct ISCI_MEMORY *uncached_controller_memory =
&controller->uncached_controller_memory;
struct ISCI_MEMORY *cached_controller_memory =
&controller->cached_controller_memory;
struct ISCI_MEMORY *request_memory =
&controller->request_memory;
POINTER_UINT virtual_address;
bus_addr_t physical_address;
controller->mdl = sci_controller_get_memory_descriptor_list_handle(
controller->scif_controller_handle);
uncached_controller_memory->size = sci_mdl_decorator_get_memory_size(
controller->mdl, SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS);
error = isci_allocate_dma_buffer(device, controller,
uncached_controller_memory);
if (error != 0)
return (error);
sci_mdl_decorator_assign_memory( controller->mdl,
SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
uncached_controller_memory->virtual_address,
uncached_controller_memory->physical_address);
cached_controller_memory->size = sci_mdl_decorator_get_memory_size(
controller->mdl,
SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
);
error = isci_allocate_dma_buffer(device, controller,
cached_controller_memory);
if (error != 0)
return (error);
sci_mdl_decorator_assign_memory(controller->mdl,
SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
cached_controller_memory->virtual_address,
cached_controller_memory->physical_address);
request_memory->size =
controller->queue_depth * isci_io_request_get_object_size();
error = isci_allocate_dma_buffer(device, controller, request_memory);
if (error != 0)
return (error);
/* For STP PIO testing, we want to ensure we can force multiple SGLs
* since this has been a problem area in SCIL. This tunable parameter
* will allow us to force DMA segments to a smaller size, ensuring
* that even if a physically contiguous buffer is attached to this
* I/O, the DMA subsystem will pass us multiple segments in our DMA
* load callback.
*/
TUNABLE_INT_FETCH("hw.isci.max_segment_size", &max_segment_size);
/* Create DMA tag for our I/O requests. Then we can create DMA maps based off
* of this tag and store them in each of our ISCI_IO_REQUEST objects. This
* will enable better performance than creating the DMA maps every time we get
* an I/O.
*/
status = bus_dma_tag_create(bus_get_dma_tag(device), 0x1,
ISCI_DMA_BOUNDARY, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
NULL, NULL, isci_io_request_get_max_io_size(),
SCI_MAX_SCATTER_GATHER_ELEMENTS, max_segment_size, 0,
busdma_lock_mutex, &controller->lock,
&controller->buffer_dma_tag);
sci_pool_initialize(controller->request_pool);
virtual_address = request_memory->virtual_address;
physical_address = request_memory->physical_address;
for (int i = 0; i < controller->queue_depth; i++) {
struct ISCI_REQUEST *request =
(struct ISCI_REQUEST *)virtual_address;
isci_request_construct(request,
controller->scif_controller_handle,
controller->buffer_dma_tag, physical_address);
sci_pool_put(controller->request_pool, request);
virtual_address += isci_request_get_object_size();
physical_address += isci_request_get_object_size();
}
uint32_t remote_device_size = sizeof(struct ISCI_REMOTE_DEVICE) +
scif_remote_device_get_object_size();
controller->remote_device_memory = (uint8_t *) malloc(
remote_device_size * SCI_MAX_REMOTE_DEVICES, M_ISCI,
M_NOWAIT | M_ZERO);
sci_pool_initialize(controller->remote_device_pool);
uint8_t *remote_device_memory_ptr = controller->remote_device_memory;
for (int i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
struct ISCI_REMOTE_DEVICE *remote_device =
(struct ISCI_REMOTE_DEVICE *)remote_device_memory_ptr;
controller->remote_device[i] = NULL;
remote_device->index = i;
remote_device->is_resetting = FALSE;
remote_device->frozen_lun_mask = 0;
sci_fast_list_element_init(remote_device,
&remote_device->pending_device_reset_element);
TAILQ_INIT(&remote_device->queued_ccbs);
remote_device->release_queued_ccb = FALSE;
remote_device->queued_ccb_in_progress = NULL;
/*
* For the first SCI_MAX_DOMAINS device objects, do not put
* them in the pool, rather assign them to each domain. This
* ensures that any device attached directly to port "i" will
* always get CAM target id "i".
*/
if (i < SCI_MAX_DOMAINS)
controller->domain[i].da_remote_device = remote_device;
else
sci_pool_put(controller->remote_device_pool,
remote_device);
remote_device_memory_ptr += remote_device_size;
}
return (0);
}
void isci_controller_start(void *controller_handle)
{
struct ISCI_CONTROLLER *controller =
(struct ISCI_CONTROLLER *)controller_handle;
SCI_CONTROLLER_HANDLE_T scif_controller_handle =
controller->scif_controller_handle;
scif_controller_start(scif_controller_handle,
scif_controller_get_suggested_start_timeout(scif_controller_handle));
scic_controller_enable_interrupts(
scif_controller_get_scic_handle(controller->scif_controller_handle));
}
void isci_controller_domain_discovery_complete(
struct ISCI_CONTROLLER *isci_controller, struct ISCI_DOMAIN *isci_domain)
{
if (!isci_controller->has_been_scanned)
{
/* Controller has not been scanned yet. We'll clear
* the discovery bit for this domain, then check if all bits
* are now clear. That would indicate that all domains are
* done with discovery and we can then proceed with initial
* scan.
*/
isci_controller->initial_discovery_mask &=
~(1 << isci_domain->index);
if (isci_controller->initial_discovery_mask == 0) {
struct isci_softc *driver = isci_controller->isci;
uint8_t next_index = isci_controller->index + 1;
isci_controller->has_been_scanned = TRUE;
/* Unfreeze simq to allow initial scan to proceed. */
xpt_release_simq(isci_controller->sim, TRUE);
if (next_index < driver->controller_count) {
/* There are more controllers that need to
* start. So start the next one.
*/
isci_controller_start(
&driver->controllers[next_index]);
}
else
{
/* All controllers have been started and completed discovery.
* Disestablish the config hook while will signal to the
* kernel during boot that it is safe to try to find and
* mount the root partition.
*/
config_intrhook_disestablish(
&driver->config_hook);
}
}
}
}
int isci_controller_attach_to_cam(struct ISCI_CONTROLLER *controller)
{
struct isci_softc *isci = controller->isci;
device_t parent = device_get_parent(isci->device);
int unit = device_get_unit(isci->device);
struct cam_devq *isci_devq = cam_simq_alloc(controller->sim_queue_depth);
if(isci_devq == NULL) {
isci_log_message(0, "ISCI", "isci_devq is NULL \n");
return (-1);
}
controller->sim = cam_sim_alloc(isci_action, isci_poll, "isci",
controller, unit, &controller->lock, controller->sim_queue_depth,
controller->sim_queue_depth, isci_devq);
if(controller->sim == NULL) {
isci_log_message(0, "ISCI", "cam_sim_alloc... fails\n");
cam_simq_free(isci_devq);
return (-1);
}
if(xpt_bus_register(controller->sim, parent, controller->index)
!= CAM_SUCCESS) {
isci_log_message(0, "ISCI", "xpt_bus_register...fails \n");
cam_sim_free(controller->sim, TRUE);
mtx_unlock(&controller->lock);
return (-1);
}
if(xpt_create_path(&controller->path, NULL,
cam_sim_path(controller->sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
isci_log_message(0, "ISCI", "xpt_create_path....fails\n");
xpt_bus_deregister(cam_sim_path(controller->sim));
cam_sim_free(controller->sim, TRUE);
mtx_unlock(&controller->lock);
return (-1);
}
return (0);
}
void isci_poll(struct cam_sim *sim)
{
struct ISCI_CONTROLLER *controller =
(struct ISCI_CONTROLLER *)cam_sim_softc(sim);
isci_interrupt_poll_handler(controller);
}
void isci_action(struct cam_sim *sim, union ccb *ccb)
{
struct ISCI_CONTROLLER *controller =
(struct ISCI_CONTROLLER *)cam_sim_softc(sim);
switch ( ccb->ccb_h.func_code ) {
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
int bus = cam_sim_bus(sim);
ccb->ccb_h.ccb_sim_ptr = sim;
cpi->version_num = 1;
cpi->hba_inquiry = PI_TAG_ABLE;
cpi->target_sprt = 0;
cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN |
PIM_UNMAPPED;
cpi->hba_eng_cnt = 0;
cpi->max_target = SCI_MAX_REMOTE_DEVICES - 1;
cpi->max_lun = ISCI_MAX_LUN;
cpi->maxio = isci_io_request_get_max_io_size();
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = bus;
cpi->initiator_id = SCI_MAX_REMOTE_DEVICES;
cpi->base_transfer_speed = 300000;
strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strlcpy(cpi->hba_vid, "Intel Corp.", HBA_IDLEN);
strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->transport = XPORT_SAS;
cpi->transport_version = 0;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_SPC2;
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
}
break;
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *general_settings = &ccb->cts;
struct ccb_trans_settings_sas *sas_settings =
&general_settings->xport_specific.sas;
struct ccb_trans_settings_scsi *scsi_settings =
&general_settings->proto_specific.scsi;
struct ISCI_REMOTE_DEVICE *remote_device;
remote_device = controller->remote_device[ccb->ccb_h.target_id];
if (remote_device == NULL) {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
xpt_done(ccb);
break;
}
general_settings->protocol = PROTO_SCSI;
general_settings->transport = XPORT_SAS;
general_settings->protocol_version = SCSI_REV_SPC2;
general_settings->transport_version = 0;
scsi_settings->valid = CTS_SCSI_VALID_TQ;
scsi_settings->flags = CTS_SCSI_FLAGS_TAG_ENB;
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_REQ_CMP;
sas_settings->bitrate =
isci_remote_device_get_bitrate(remote_device);
if (sas_settings->bitrate != 0)
sas_settings->valid = CTS_SAS_VALID_SPEED;
xpt_done(ccb);
}
break;
case XPT_SCSI_IO:
if (ccb->ccb_h.flags & CAM_CDB_PHYS) {
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
isci_io_request_execute_scsi_io(ccb, controller);
break;
case XPT_SMP_IO:
isci_io_request_execute_smp_io(ccb, controller);
break;
case XPT_SET_TRAN_SETTINGS:
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_REQ_CMP;
xpt_done(ccb);
break;
case XPT_CALC_GEOMETRY:
cam_calc_geometry(&ccb->ccg, /*extended*/1);
xpt_done(ccb);
break;
case XPT_RESET_DEV:
{
struct ISCI_REMOTE_DEVICE *remote_device =
controller->remote_device[ccb->ccb_h.target_id];
if (remote_device != NULL)
isci_remote_device_reset(remote_device, ccb);
else {
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
xpt_done(ccb);
}
}
break;
case XPT_RESET_BUS:
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
default:
isci_log_message(0, "ISCI", "Unhandled func_code 0x%x\n",
ccb->ccb_h.func_code);
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
/*
* Unfortunately, SCIL doesn't cleanly handle retry conditions.
* CAM_REQUEUE_REQ works only when no one is using the pass(4) interface. So
* when SCIL denotes an I/O needs to be retried (typically because of mixing
* tagged/non-tagged ATA commands, or running out of NCQ slots), we queue
* these I/O internally. Once SCIL completes an I/O to this device, or we get
* a ready notification, we will retry the first I/O on the queue.
* Unfortunately, SCIL also doesn't cleanly handle starting the new I/O within
* the context of the completion handler, so we need to retry these I/O after
* the completion handler is done executing.
*/
void
isci_controller_release_queued_ccbs(struct ISCI_CONTROLLER *controller)
{
struct ISCI_REMOTE_DEVICE *dev;
struct ccb_hdr *ccb_h;
uint8_t *ptr;
int dev_idx;
KASSERT(mtx_owned(&controller->lock), ("controller lock not owned"));
controller->release_queued_ccbs = FALSE;
for (dev_idx = 0;
dev_idx < SCI_MAX_REMOTE_DEVICES;
dev_idx++) {
dev = controller->remote_device[dev_idx];
if (dev != NULL &&
dev->release_queued_ccb == TRUE &&
dev->queued_ccb_in_progress == NULL) {
dev->release_queued_ccb = FALSE;
ccb_h = TAILQ_FIRST(&dev->queued_ccbs);
if (ccb_h == NULL)
continue;
ptr = scsiio_cdb_ptr(&((union ccb *)ccb_h)->csio);
isci_log_message(1, "ISCI", "release %p %x\n", ccb_h, *ptr);
dev->queued_ccb_in_progress = (union ccb *)ccb_h;
isci_io_request_execute_scsi_io(
(union ccb *)ccb_h, controller);
}
}
}