freebsd-nq/sys/dev/cxgbe/t4_sge.c

2868 lines
72 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2011 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include <sys/types.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>
#include <sys/sysctl.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include "common/common.h"
#include "common/t4_regs.h"
#include "common/t4_regs_values.h"
#include "common/t4_msg.h"
#include "common/t4fw_interface.h"
struct fl_buf_info {
int size;
int type;
uma_zone_t zone;
};
/* Filled up by t4_sge_modload */
static struct fl_buf_info fl_buf_info[FL_BUF_SIZES];
#define FL_BUF_SIZE(x) (fl_buf_info[x].size)
#define FL_BUF_TYPE(x) (fl_buf_info[x].type)
#define FL_BUF_ZONE(x) (fl_buf_info[x].zone)
enum {
FL_PKTSHIFT = 2
};
#define FL_ALIGN min(CACHE_LINE_SIZE, 32)
#if CACHE_LINE_SIZE > 64
#define SPG_LEN 128
#else
#define SPG_LEN 64
#endif
/* Used to track coalesced tx work request */
struct txpkts {
uint64_t *flitp; /* ptr to flit where next pkt should start */
uint8_t npkt; /* # of packets in this work request */
uint8_t nflits; /* # of flits used by this work request */
uint16_t plen; /* total payload (sum of all packets) */
};
/* A packet's SGL. This + m_pkthdr has all info needed for tx */
struct sgl {
int nsegs; /* # of segments in the SGL, 0 means imm. tx */
int nflits; /* # of flits needed for the SGL */
bus_dma_segment_t seg[TX_SGL_SEGS];
};
static void t4_evt_rx(void *);
static void t4_eth_rx(void *);
static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
int, iq_intr_handler_t *, char *);
static inline void init_fl(struct sge_fl *, int, char *);
static inline void init_eq(struct sge_eq *, int, char *);
static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
bus_addr_t *, void **);
static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
void *);
static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
int, int);
static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
static int alloc_intrq(struct adapter *, int, int, int);
static int free_intrq(struct sge_iq *);
static int alloc_fwq(struct adapter *, int);
static int free_fwq(struct sge_iq *);
static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int);
static int free_rxq(struct port_info *, struct sge_rxq *);
static int alloc_ctrlq(struct adapter *, struct sge_ctrlq *, int);
static int free_ctrlq(struct adapter *, struct sge_ctrlq *);
static int alloc_txq(struct port_info *, struct sge_txq *, int);
static int free_txq(struct port_info *, struct sge_txq *);
static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **);
static inline void iq_next(struct sge_iq *);
static inline void ring_fl_db(struct adapter *, struct sge_fl *);
static void refill_fl(struct adapter *, struct sge_fl *, int, int);
static int alloc_fl_sdesc(struct sge_fl *);
static void free_fl_sdesc(struct sge_fl *);
static int alloc_tx_maps(struct sge_txq *);
static void free_tx_maps(struct sge_txq *);
static void set_fl_tag_idx(struct sge_fl *, int);
static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
static int free_pkt_sgl(struct sge_txq *, struct sgl *);
static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
struct sgl *);
static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
struct mbuf *, struct sgl *);
static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
struct txpkts *, struct mbuf *, struct sgl *);
static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
static inline void ring_eq_db(struct adapter *, struct sge_eq *);
static inline int reclaimable(struct sge_eq *);
static int reclaim_tx_descs(struct sge_txq *, int, int);
static void write_eqflush_wr(struct sge_eq *);
static __be64 get_flit(bus_dma_segment_t *, int, int);
static int handle_sge_egr_update(struct adapter *,
const struct cpl_sge_egr_update *);
static void handle_cpl(struct adapter *, struct sge_iq *);
static int ctrl_tx(struct adapter *, struct sge_ctrlq *, struct mbuf *);
static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
extern void filter_rpl(struct adapter *, const struct cpl_set_tcb_rpl *);
/*
* Called on MOD_LOAD and fills up fl_buf_info[].
*/
void
t4_sge_modload(void)
{
int i;
int bufsize[FL_BUF_SIZES] = {
MCLBYTES,
#if MJUMPAGESIZE != MCLBYTES
MJUMPAGESIZE,
#endif
MJUM9BYTES,
MJUM16BYTES
};
for (i = 0; i < FL_BUF_SIZES; i++) {
FL_BUF_SIZE(i) = bufsize[i];
FL_BUF_TYPE(i) = m_gettype(bufsize[i]);
FL_BUF_ZONE(i) = m_getzone(bufsize[i]);
}
}
/**
* t4_sge_init - initialize SGE
* @sc: the adapter
*
* Performs SGE initialization needed every time after a chip reset.
* We do not initialize any of the queues here, instead the driver
* top-level must request them individually.
*/
void
t4_sge_init(struct adapter *sc)
{
struct sge *s = &sc->sge;
int i;
t4_set_reg_field(sc, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT) |
V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
F_EGRSTATUSPAGESIZE,
V_INGPADBOUNDARY(ilog2(FL_ALIGN) - 5) |
V_PKTSHIFT(FL_PKTSHIFT) |
F_RXPKTCPLMODE |
V_EGRSTATUSPAGESIZE(SPG_LEN == 128));
t4_set_reg_field(sc, A_SGE_HOST_PAGE_SIZE,
V_HOSTPAGESIZEPF0(M_HOSTPAGESIZEPF0),
V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10));
for (i = 0; i < FL_BUF_SIZES; i++) {
t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
FL_BUF_SIZE(i));
}
i = t4_read_reg(sc, A_SGE_CONM_CTRL);
s->fl_starve_threshold = G_EGRTHRESHOLD(i) * 2 + 1;
t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD,
V_THRESHOLD_0(s->counter_val[0]) |
V_THRESHOLD_1(s->counter_val[1]) |
V_THRESHOLD_2(s->counter_val[2]) |
V_THRESHOLD_3(s->counter_val[3]));
t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1,
V_TIMERVALUE0(us_to_core_ticks(sc, s->timer_val[0])) |
V_TIMERVALUE1(us_to_core_ticks(sc, s->timer_val[1])));
t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3,
V_TIMERVALUE2(us_to_core_ticks(sc, s->timer_val[2])) |
V_TIMERVALUE3(us_to_core_ticks(sc, s->timer_val[3])));
t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5,
V_TIMERVALUE4(us_to_core_ticks(sc, s->timer_val[4])) |
V_TIMERVALUE5(us_to_core_ticks(sc, s->timer_val[5])));
}
int
t4_create_dma_tag(struct adapter *sc)
{
int rc;
rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
NULL, &sc->dmat);
if (rc != 0) {
device_printf(sc->dev,
"failed to create main DMA tag: %d\n", rc);
}
return (rc);
}
int
t4_destroy_dma_tag(struct adapter *sc)
{
if (sc->dmat)
bus_dma_tag_destroy(sc->dmat);
return (0);
}
/*
* Allocate and initialize the firmware event queue, control queues, and the
* interrupt queues. The adapter owns all of these queues.
*
* Returns errno on failure. Resources allocated up to that point may still be
* allocated. Caller is responsible for cleanup in case this function fails.
*/
int
t4_setup_adapter_queues(struct adapter *sc)
{
int i, j, rc, intr_idx, qsize;
struct sge_iq *iq;
struct sge_ctrlq *ctrlq;
iq_intr_handler_t *handler;
char name[16];
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
if (sysctl_ctx_init(&sc->ctx) == 0) {
struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
sc->oid_fwq = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO,
"fwq", CTLFLAG_RD, NULL, "firmware event queue");
sc->oid_ctrlq = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO,
"ctrlq", CTLFLAG_RD, NULL, "ctrl queues");
sc->oid_intrq = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO,
"intrq", CTLFLAG_RD, NULL, "interrupt queues");
}
/*
* Interrupt queues
*/
intr_idx = sc->intr_count - NINTRQ(sc);
if (sc->flags & INTR_SHARED) {
qsize = max((sc->sge.nrxq + 1) * 2, INTR_IQ_QSIZE);
for (i = 0; i < NINTRQ(sc); i++, intr_idx++) {
snprintf(name, sizeof(name), "%s intrq%d",
device_get_nameunit(sc->dev), i);
iq = &sc->sge.intrq[i];
init_iq(iq, sc, 0, 0, qsize, INTR_IQ_ESIZE, NULL, name);
rc = alloc_intrq(sc, i % sc->params.nports, i,
intr_idx);
if (rc != 0) {
device_printf(sc->dev,
"failed to create %s: %d\n", name, rc);
return (rc);
}
}
} else {
int qidx = 0;
struct port_info *pi;
for (i = 0; i < sc->params.nports; i++) {
pi = sc->port[i];
qsize = max((pi->nrxq + 1) * 2, INTR_IQ_QSIZE);
for (j = 0; j < pi->nrxq; j++, qidx++, intr_idx++) {
snprintf(name, sizeof(name), "%s intrq%d",
device_get_nameunit(pi->dev), j);
iq = &sc->sge.intrq[qidx];
init_iq(iq, sc, 0, 0, qsize, INTR_IQ_ESIZE,
NULL, name);
rc = alloc_intrq(sc, i, qidx, intr_idx);
if (rc != 0) {
device_printf(sc->dev,
"failed to create %s: %d\n",
name, rc);
return (rc);
}
}
}
}
/*
* Firmware event queue
*/
snprintf(name, sizeof(name), "%s fwq", device_get_nameunit(sc->dev));
if (sc->intr_count > T4_EXTRA_INTR) {
handler = NULL;
intr_idx = 1;
} else {
handler = t4_evt_rx;
intr_idx = 0;
}
iq = &sc->sge.fwq;
init_iq(iq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE, handler, name);
rc = alloc_fwq(sc, intr_idx);
if (rc != 0) {
device_printf(sc->dev,
"failed to create firmware event queue: %d\n", rc);
return (rc);
}
/*
* Control queues - one per port.
*/
ctrlq = &sc->sge.ctrlq[0];
for (i = 0; i < sc->params.nports; i++, ctrlq++) {
snprintf(name, sizeof(name), "%s ctrlq%d",
device_get_nameunit(sc->dev), i);
init_eq(&ctrlq->eq, CTRL_EQ_QSIZE, name);
rc = alloc_ctrlq(sc, ctrlq, i);
if (rc != 0) {
device_printf(sc->dev,
"failed to create control queue %d: %d\n", i, rc);
return (rc);
}
}
return (rc);
}
/*
* Idempotent
*/
int
t4_teardown_adapter_queues(struct adapter *sc)
{
int i;
struct sge_iq *iq;
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
/* Do this before freeing the queues */
if (sc->oid_fwq || sc->oid_ctrlq || sc->oid_intrq) {
sysctl_ctx_free(&sc->ctx);
sc->oid_fwq = NULL;
sc->oid_ctrlq = NULL;
sc->oid_intrq = NULL;
}
for (i = 0; i < sc->params.nports; i++)
free_ctrlq(sc, &sc->sge.ctrlq[i]);
iq = &sc->sge.fwq;
free_fwq(iq);
for (i = 0; i < NINTRQ(sc); i++) {
iq = &sc->sge.intrq[i];
free_intrq(iq);
}
return (0);
}
int
t4_setup_eth_queues(struct port_info *pi)
{
int rc = 0, i, intr_idx;
struct sge_rxq *rxq;
struct sge_txq *txq;
char name[16];
struct adapter *sc = pi->adapter;
if (sysctl_ctx_init(&pi->ctx) == 0) {
struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
pi->oid_rxq = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO,
"rxq", CTLFLAG_RD, NULL, "rx queues");
pi->oid_txq = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO,
"txq", CTLFLAG_RD, NULL, "tx queues");
}
for_each_rxq(pi, i, rxq) {
snprintf(name, sizeof(name), "%s rxq%d-iq",
device_get_nameunit(pi->dev), i);
init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
pi->qsize_rxq, RX_IQ_ESIZE, t4_eth_rx, name);
snprintf(name, sizeof(name), "%s rxq%d-fl",
device_get_nameunit(pi->dev), i);
init_fl(&rxq->fl, pi->qsize_rxq / 8, name);
intr_idx = pi->first_rxq + i;
if (sc->flags & INTR_SHARED)
intr_idx %= NINTRQ(sc);
rc = alloc_rxq(pi, rxq, intr_idx, i);
if (rc != 0)
goto done;
}
for_each_txq(pi, i, txq) {
snprintf(name, sizeof(name), "%s txq%d",
device_get_nameunit(pi->dev), i);
init_eq(&txq->eq, pi->qsize_txq, name);
rc = alloc_txq(pi, txq, i);
if (rc != 0)
goto done;
}
done:
if (rc)
t4_teardown_eth_queues(pi);
return (rc);
}
/*
* Idempotent
*/
int
t4_teardown_eth_queues(struct port_info *pi)
{
int i;
struct sge_rxq *rxq;
struct sge_txq *txq;
/* Do this before freeing the queues */
if (pi->oid_txq || pi->oid_rxq) {
sysctl_ctx_free(&pi->ctx);
pi->oid_txq = pi->oid_rxq = NULL;
}
for_each_txq(pi, i, txq) {
free_txq(pi, txq);
}
for_each_rxq(pi, i, rxq) {
free_rxq(pi, rxq);
}
return (0);
}
/* Deals with errors and the first (and only) interrupt queue */
void
t4_intr_all(void *arg)
{
struct adapter *sc = arg;
t4_intr_err(arg);
t4_intr(&sc->sge.intrq[0]);
}
/* Deals with interrupts, and a few CPLs, on the given interrupt queue */
void
t4_intr(void *arg)
{
struct sge_iq *iq = arg, *q;
struct adapter *sc = iq->adapter;
struct rsp_ctrl *ctrl;
const struct rss_header *rss;
int ndesc_pending = 0, ndesc_total = 0;
int qid, rsp_type;
if (!atomic_cmpset_32(&iq->state, IQS_IDLE, IQS_BUSY))
return;
while (is_new_response(iq, &ctrl)) {
rmb();
rss = (const void *)iq->cdesc;
rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
if (__predict_false(rsp_type == X_RSPD_TYPE_CPL)) {
handle_cpl(sc, iq);
goto nextdesc;
}
qid = ntohl(ctrl->pldbuflen_qid) - sc->sge.iq_start;
q = sc->sge.iqmap[qid];
if (atomic_cmpset_32(&q->state, IQS_IDLE, IQS_BUSY)) {
q->handler(q);
atomic_cmpset_32(&q->state, IQS_BUSY, IQS_IDLE);
}
nextdesc: ndesc_total++;
if (++ndesc_pending >= iq->qsize / 4) {
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
V_CIDXINC(ndesc_pending) |
V_INGRESSQID(iq->cntxt_id) |
V_SEINTARM(
V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
ndesc_pending = 0;
}
iq_next(iq);
}
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndesc_pending) |
V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
atomic_cmpset_32(&iq->state, IQS_BUSY, IQS_IDLE);
}
/* Deals with error interrupts */
void
t4_intr_err(void *arg)
{
struct adapter *sc = arg;
t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
t4_slow_intr_handler(sc);
}
/* Deals with the firmware event queue */
void
t4_intr_evt(void *arg)
{
struct sge_iq *iq = arg;
if (atomic_cmpset_32(&iq->state, IQS_IDLE, IQS_BUSY)) {
t4_evt_rx(arg);
atomic_cmpset_32(&iq->state, IQS_BUSY, IQS_IDLE);
}
}
static void
t4_evt_rx(void *arg)
{
struct sge_iq *iq = arg;
struct adapter *sc = iq->adapter;
struct rsp_ctrl *ctrl;
int ndesc_pending = 0, ndesc_total = 0;
KASSERT(iq == &sc->sge.fwq, ("%s: unexpected ingress queue", __func__));
while (is_new_response(iq, &ctrl)) {
int rsp_type;
rmb();
rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
if (__predict_false(rsp_type != X_RSPD_TYPE_CPL))
panic("%s: unexpected rsp_type %d", __func__, rsp_type);
handle_cpl(sc, iq);
ndesc_total++;
if (++ndesc_pending >= iq->qsize / 4) {
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
V_CIDXINC(ndesc_pending) |
V_INGRESSQID(iq->cntxt_id) |
V_SEINTARM(
V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
ndesc_pending = 0;
}
iq_next(iq);
}
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndesc_pending) |
V_INGRESSQID(iq->cntxt_id) | V_SEINTARM(iq->intr_params));
}
#ifdef T4_PKT_TIMESTAMP
#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
#else
#define RX_COPY_THRESHOLD MINCLSIZE
#endif
static void
t4_eth_rx(void *arg)
{
struct sge_rxq *rxq = arg;
struct sge_iq *iq = arg;
struct adapter *sc = iq->adapter;
struct rsp_ctrl *ctrl;
struct ifnet *ifp = rxq->ifp;
struct sge_fl *fl = &rxq->fl;
struct fl_sdesc *sd = &fl->sdesc[fl->cidx], *sd_next;
const struct rss_header *rss;
const struct cpl_rx_pkt *cpl;
uint32_t len;
int ndescs = 0, i;
struct mbuf *m0, *m;
#ifdef INET
struct lro_ctrl *lro = &rxq->lro;
struct lro_entry *l;
#endif
prefetch(sd->m);
prefetch(sd->cl);
iq->intr_next = iq->intr_params;
while (is_new_response(iq, &ctrl)) {
rmb();
rss = (const void *)iq->cdesc;
i = G_RSPD_TYPE(ctrl->u.type_gen);
KASSERT(i == X_RSPD_TYPE_FLBUF && rss->opcode == CPL_RX_PKT,
("%s: unexpected type %d CPL opcode 0x%x",
__func__, i, rss->opcode));
sd_next = sd + 1;
if (__predict_false(fl->cidx + 1 == fl->cap))
sd_next = fl->sdesc;
prefetch(sd_next->m);
prefetch(sd_next->cl);
cpl = (const void *)(rss + 1);
m0 = sd->m;
sd->m = NULL; /* consumed */
len = be32toh(ctrl->pldbuflen_qid);
if (__predict_false((len & F_RSPD_NEWBUF) == 0))
panic("%s: cannot handle packed frames", __func__);
len = G_RSPD_LEN(len);
bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map,
BUS_DMASYNC_POSTREAD);
m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR);
#ifdef T4_PKT_TIMESTAMP
*mtod(m0, uint64_t *) =
be64toh(ctrl->u.last_flit & 0xfffffffffffffff);
m0->m_data += 8;
/*
* 60 bit timestamp value is *(uint64_t *)m0->m_pktdat. Note
* that it is in the leading free-space (see M_LEADINGSPACE) in
* the mbuf. The kernel can clobber it during a pullup,
* m_copymdata, etc. You need to make sure that the mbuf
* reaches you unmolested if you care about the timestamp.
*/
#endif
if (len < RX_COPY_THRESHOLD) {
/* copy data to mbuf, buffer will be recycled */
bcopy(sd->cl, mtod(m0, caddr_t), len);
m0->m_len = len;
} else {
bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
m_cljset(m0, sd->cl, FL_BUF_TYPE(sd->tag_idx));
sd->cl = NULL; /* consumed */
m0->m_len = min(len, FL_BUF_SIZE(sd->tag_idx));
}
len -= FL_PKTSHIFT;
m0->m_len -= FL_PKTSHIFT;
m0->m_data += FL_PKTSHIFT;
m0->m_pkthdr.len = len;
m0->m_pkthdr.rcvif = ifp;
m0->m_flags |= M_FLOWID;
m0->m_pkthdr.flowid = rss->hash_val;
if (cpl->csum_calc && !cpl->err_vec &&
ifp->if_capenable & IFCAP_RXCSUM) {
m0->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
if (cpl->ip_frag)
m0->m_pkthdr.csum_data = be16toh(cpl->csum);
else
m0->m_pkthdr.csum_data = 0xffff;
rxq->rxcsum++;
}
if (cpl->vlan_ex) {
m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
m0->m_flags |= M_VLANTAG;
rxq->vlan_extraction++;
}
i = 1; /* # of fl sdesc used */
sd = sd_next;
if (__predict_false(++fl->cidx == fl->cap))
fl->cidx = 0;
len -= m0->m_len;
m = m0;
while (len) {
i++;
sd_next = sd + 1;
if (__predict_false(fl->cidx + 1 == fl->cap))
sd_next = fl->sdesc;
prefetch(sd_next->m);
prefetch(sd_next->cl);
m->m_next = sd->m;
sd->m = NULL; /* consumed */
m = m->m_next;
bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map,
BUS_DMASYNC_POSTREAD);
m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0);
if (len <= MLEN) {
bcopy(sd->cl, mtod(m, caddr_t), len);
m->m_len = len;
} else {
bus_dmamap_unload(fl->tag[sd->tag_idx],
sd->map);
m_cljset(m, sd->cl, FL_BUF_TYPE(sd->tag_idx));
sd->cl = NULL; /* consumed */
m->m_len = min(len, FL_BUF_SIZE(sd->tag_idx));
}
i++;
sd = sd_next;
if (__predict_false(++fl->cidx == fl->cap))
fl->cidx = 0;
len -= m->m_len;
}
#ifdef INET
if (cpl->l2info & htobe32(F_RXF_LRO) &&
rxq->flags & RXQ_LRO_ENABLED &&
tcp_lro_rx(lro, m0, 0) == 0) {
/* queued for LRO */
} else
#endif
ifp->if_input(ifp, m0);
FL_LOCK(fl);
fl->needed += i;
if (fl->needed >= 32)
refill_fl(sc, fl, 64, 32);
FL_UNLOCK(fl);
if (++ndescs > 32) {
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
V_CIDXINC(ndescs) |
V_INGRESSQID((u32)iq->cntxt_id) |
V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
ndescs = 0;
}
iq_next(iq);
}
#ifdef INET
while (!SLIST_EMPTY(&lro->lro_active)) {
l = SLIST_FIRST(&lro->lro_active);
SLIST_REMOVE_HEAD(&lro->lro_active, next);
tcp_lro_flush(lro, l);
}
#endif
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next));
FL_LOCK(fl);
if (fl->needed >= 32)
refill_fl(sc, fl, 128, 8);
FL_UNLOCK(fl);
}
int
t4_mgmt_tx(struct adapter *sc, struct mbuf *m)
{
return ctrl_tx(sc, &sc->sge.ctrlq[0], m);
}
/* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
#define TXPKTS_PKT_HDR ((\
sizeof(struct ulp_txpkt) + \
sizeof(struct ulptx_idata) + \
sizeof(struct cpl_tx_pkt_core) \
) / 8)
/* Header of a coalesced tx WR, before SGL of first packet (in flits) */
#define TXPKTS_WR_HDR (\
sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
TXPKTS_PKT_HDR)
/* Header of a tx WR, before SGL of first packet (in flits) */
#define TXPKT_WR_HDR ((\
sizeof(struct fw_eth_tx_pkt_wr) + \
sizeof(struct cpl_tx_pkt_core) \
) / 8 )
/* Header of a tx LSO WR, before SGL of first packet (in flits) */
#define TXPKT_LSO_WR_HDR ((\
sizeof(struct fw_eth_tx_pkt_wr) + \
sizeof(struct cpl_tx_pkt_lso) + \
sizeof(struct cpl_tx_pkt_core) \
) / 8 )
int
t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
{
struct port_info *pi = (void *)ifp->if_softc;
struct adapter *sc = pi->adapter;
struct sge_eq *eq = &txq->eq;
struct buf_ring *br = txq->br;
struct mbuf *next;
int rc, coalescing, can_reclaim;
struct txpkts txpkts;
struct sgl sgl;
TXQ_LOCK_ASSERT_OWNED(txq);
KASSERT(m, ("%s: called with nothing to do.", __func__));
prefetch(&eq->desc[eq->pidx]);
prefetch(&txq->sdesc[eq->pidx]);
txpkts.npkt = 0;/* indicates there's nothing in txpkts */
coalescing = 0;
if (eq->avail < 8)
reclaim_tx_descs(txq, 0, 8);
for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
if (eq->avail < 8)
break;
next = m->m_nextpkt;
m->m_nextpkt = NULL;
if (next || buf_ring_peek(br))
coalescing = 1;
rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
if (rc != 0) {
if (rc == ENOMEM) {
/* Short of resources, suspend tx */
m->m_nextpkt = next;
break;
}
/*
* Unrecoverable error for this packet, throw it away
* and move on to the next. get_pkt_sgl may already
* have freed m (it will be NULL in that case and the
* m_freem here is still safe).
*/
m_freem(m);
continue;
}
if (coalescing &&
add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
/* Successfully absorbed into txpkts */
write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
goto doorbell;
}
/*
* We weren't coalescing to begin with, or current frame could
* not be coalesced (add_to_txpkts flushes txpkts if a frame
* given to it can't be coalesced). Either way there should be
* nothing in txpkts.
*/
KASSERT(txpkts.npkt == 0,
("%s: txpkts not empty: %d", __func__, txpkts.npkt));
/* We're sending out individual packets now */
coalescing = 0;
if (eq->avail < 8)
reclaim_tx_descs(txq, 0, 8);
rc = write_txpkt_wr(pi, txq, m, &sgl);
if (rc != 0) {
/* Short of hardware descriptors, suspend tx */
/*
* This is an unlikely but expensive failure. We've
* done all the hard work (DMA mappings etc.) and now we
* can't send out the packet. What's worse, we have to
* spend even more time freeing up everything in sgl.
*/
txq->no_desc++;
free_pkt_sgl(txq, &sgl);
m->m_nextpkt = next;
break;
}
ETHER_BPF_MTAP(ifp, m);
if (sgl.nsegs == 0)
m_freem(m);
doorbell:
/* Fewer and fewer doorbells as the queue fills up */
if (eq->pending >= (1 << (fls(eq->qsize - eq->avail) / 2)))
ring_eq_db(sc, eq);
can_reclaim = reclaimable(eq);
if (can_reclaim >= 32)
reclaim_tx_descs(txq, can_reclaim, 32);
}
if (txpkts.npkt > 0)
write_txpkts_wr(txq, &txpkts);
/*
* m not NULL means there was an error but we haven't thrown it away.
* This can happen when we're short of tx descriptors (no_desc) or maybe
* even DMA maps (no_dmamap). Either way, a credit flush and reclaim
* will get things going again.
*
* If eq->avail is already 0 we know a credit flush was requested in the
* WR that reduced it to 0 so we don't need another flush (we don't have
* any descriptor for a flush WR anyway, duh).
*/
if (m && eq->avail > 0 && !(eq->flags & EQ_CRFLUSHED)) {
struct tx_sdesc *txsd = &txq->sdesc[eq->pidx];
txsd->desc_used = 1;
txsd->credits = 0;
write_eqflush_wr(eq);
}
txq->m = m;
if (eq->pending)
ring_eq_db(sc, eq);
can_reclaim = reclaimable(eq);
if (can_reclaim >= 32)
reclaim_tx_descs(txq, can_reclaim, 128);
return (0);
}
void
t4_update_fl_bufsize(struct ifnet *ifp)
{
struct port_info *pi = ifp->if_softc;
struct sge_rxq *rxq;
struct sge_fl *fl;
int i;
for_each_rxq(pi, i, rxq) {
fl = &rxq->fl;
FL_LOCK(fl);
set_fl_tag_idx(fl, ifp->if_mtu);
FL_UNLOCK(fl);
}
}
/*
* A non-NULL handler indicates this iq will not receive direct interrupts, the
* handler will be invoked by an interrupt queue.
*/
static inline void
init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
int qsize, int esize, iq_intr_handler_t *handler, char *name)
{
KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
("%s: bad tmr_idx %d", __func__, tmr_idx));
KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */
("%s: bad pktc_idx %d", __func__, pktc_idx));
iq->flags = 0;
iq->adapter = sc;
iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx) |
V_QINTR_CNT_EN(pktc_idx >= 0);
iq->intr_pktc_idx = pktc_idx;
iq->qsize = roundup(qsize, 16); /* See FW_IQ_CMD/iqsize */
iq->esize = max(esize, 16); /* See FW_IQ_CMD/iqesize */
iq->handler = handler;
strlcpy(iq->lockname, name, sizeof(iq->lockname));
}
static inline void
init_fl(struct sge_fl *fl, int qsize, char *name)
{
fl->qsize = qsize;
strlcpy(fl->lockname, name, sizeof(fl->lockname));
}
static inline void
init_eq(struct sge_eq *eq, int qsize, char *name)
{
eq->qsize = qsize;
strlcpy(eq->lockname, name, sizeof(eq->lockname));
}
static int
alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
bus_dmamap_t *map, bus_addr_t *pa, void **va)
{
int rc;
rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
if (rc != 0) {
device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
goto done;
}
rc = bus_dmamem_alloc(*tag, va,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
if (rc != 0) {
device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
goto done;
}
rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
if (rc != 0) {
device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
goto done;
}
done:
if (rc)
free_ring(sc, *tag, *map, *pa, *va);
return (rc);
}
static int
free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
bus_addr_t pa, void *va)
{
if (pa)
bus_dmamap_unload(tag, map);
if (va)
bus_dmamem_free(tag, va, map);
if (tag)
bus_dma_tag_destroy(tag);
return (0);
}
/*
* Allocates the ring for an ingress queue and an optional freelist. If the
* freelist is specified it will be allocated and then associated with the
* ingress queue.
*
* Returns errno on failure. Resources allocated up to that point may still be
* allocated. Caller is responsible for cleanup in case this function fails.
*
* If the ingress queue will take interrupts directly (iq->handler == NULL) then
* the intr_idx specifies the vector, starting from 0. Otherwise it specifies
* the index of the interrupt queue to which its interrupts will be forwarded.
*/
static int
alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
int intr_idx, int cong)
{
int rc, i, cntxt_id;
size_t len;
struct fw_iq_cmd c;
struct adapter *sc = iq->adapter;
__be32 v = 0;
len = iq->qsize * iq->esize;
rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
(void **)&iq->desc);
if (rc != 0)
return (rc);
bzero(&c, sizeof(c));
c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
V_FW_IQ_CMD_VFN(0));
c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
FW_LEN16(c));
/* Special handling for firmware event queue */
if (iq == &sc->sge.fwq)
v |= F_FW_IQ_CMD_IQASYNCH;
if (iq->handler) {
KASSERT(intr_idx < NINTRQ(sc),
("%s: invalid indirect intr_idx %d", __func__, intr_idx));
v |= F_FW_IQ_CMD_IQANDST;
v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.intrq[intr_idx].abs_id);
} else {
KASSERT(intr_idx < sc->intr_count,
("%s: invalid direct intr_idx %d", __func__, intr_idx));
v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
}
c.type_to_iqandstindex = htobe32(v |
V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
V_FW_IQ_CMD_VIID(pi->viid) |
V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
F_FW_IQ_CMD_IQGTSMODE |
V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
c.iqsize = htobe16(iq->qsize);
c.iqaddr = htobe64(iq->ba);
if (cong >= 0)
c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
if (fl) {
mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
for (i = 0; i < FL_BUF_SIZES; i++) {
/*
* A freelist buffer must be 16 byte aligned as the SGE
* uses the low 4 bits of the bus addr to figure out the
* buffer size.
*/
rc = bus_dma_tag_create(sc->dmat, 16, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
FL_BUF_SIZE(i), 1, FL_BUF_SIZE(i), BUS_DMA_ALLOCNOW,
NULL, NULL, &fl->tag[i]);
if (rc != 0) {
device_printf(sc->dev,
"failed to create fl DMA tag[%d]: %d\n",
i, rc);
return (rc);
}
}
len = fl->qsize * RX_FL_ESIZE;
rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
&fl->ba, (void **)&fl->desc);
if (rc)
return (rc);
/* Allocate space for one software descriptor per buffer. */
fl->cap = (fl->qsize - SPG_LEN / RX_FL_ESIZE) * 8;
FL_LOCK(fl);
set_fl_tag_idx(fl, pi->ifp->if_mtu);
rc = alloc_fl_sdesc(fl);
FL_UNLOCK(fl);
if (rc != 0) {
device_printf(sc->dev,
"failed to setup fl software descriptors: %d\n",
rc);
return (rc);
}
fl->needed = fl->cap;
c.iqns_to_fl0congen =
htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
F_FW_IQ_CMD_FL0PADEN);
if (cong >= 0) {
c.iqns_to_fl0congen |=
htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
F_FW_IQ_CMD_FL0CONGCIF |
F_FW_IQ_CMD_FL0CONGEN);
}
c.fl0dcaen_to_fl0cidxfthresh =
htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
c.fl0size = htobe16(fl->qsize);
c.fl0addr = htobe64(fl->ba);
}
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(sc->dev,
"failed to create ingress queue: %d\n", rc);
return (rc);
}
iq->cdesc = iq->desc;
iq->cidx = 0;
iq->gen = 1;
iq->intr_next = iq->intr_params;
iq->cntxt_id = be16toh(c.iqid);
iq->abs_id = be16toh(c.physiqid);
iq->flags |= (IQ_ALLOCATED | IQ_STARTED);
cntxt_id = iq->cntxt_id - sc->sge.iq_start;
KASSERT(cntxt_id < sc->sge.niq,
("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.niq - 1));
sc->sge.iqmap[cntxt_id] = iq;
if (fl) {
fl->cntxt_id = be16toh(c.fl0id);
fl->pidx = fl->cidx = 0;
cntxt_id = fl->cntxt_id - sc->sge.eq_start;
KASSERT(cntxt_id < sc->sge.neq,
("%s: fl->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.neq - 1));
sc->sge.eqmap[cntxt_id] = (void *)fl;
FL_LOCK(fl);
/* Just enough to make sure it doesn't starve right away. */
refill_fl(sc, fl, roundup(sc->sge.fl_starve_threshold, 8), 8);
FL_UNLOCK(fl);
}
/* Enable IQ interrupts */
atomic_store_rel_32(&iq->state, IQS_IDLE);
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
V_INGRESSQID(iq->cntxt_id));
return (0);
}
/*
* This can be called with the iq/fl in any state - fully allocated and
* functional, partially allocated, even all-zeroed out.
*/
static int
free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
{
int i, rc;
struct adapter *sc = iq->adapter;
device_t dev;
if (sc == NULL)
return (0); /* nothing to do */
dev = pi ? pi->dev : sc->dev;
if (iq->flags & IQ_STARTED) {
rc = -t4_iq_start_stop(sc, sc->mbox, 0, sc->pf, 0,
iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
if (rc != 0) {
device_printf(dev,
"failed to stop queue %p: %d\n", iq, rc);
return (rc);
}
iq->flags &= ~IQ_STARTED;
/* Synchronize with the interrupt handler */
while (!atomic_cmpset_32(&iq->state, IQS_IDLE, IQS_DISABLED))
pause("iqfree", hz / 1000);
}
if (iq->flags & IQ_ALLOCATED) {
rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
fl ? fl->cntxt_id : 0xffff, 0xffff);
if (rc != 0) {
device_printf(dev,
"failed to free queue %p: %d\n", iq, rc);
return (rc);
}
iq->flags &= ~IQ_ALLOCATED;
}
free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
bzero(iq, sizeof(*iq));
if (fl) {
free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
fl->desc);
if (fl->sdesc) {
FL_LOCK(fl);
free_fl_sdesc(fl);
FL_UNLOCK(fl);
}
if (mtx_initialized(&fl->fl_lock))
mtx_destroy(&fl->fl_lock);
for (i = 0; i < FL_BUF_SIZES; i++) {
if (fl->tag[i])
bus_dma_tag_destroy(fl->tag[i]);
}
bzero(fl, sizeof(*fl));
}
return (0);
}
static int
alloc_intrq(struct adapter *sc, int port_idx, int intrq_idx, int intr_idx)
{
int rc;
struct sysctl_oid *oid;
struct sysctl_oid_list *children;
char name[16];
struct sge_iq *intrq = &sc->sge.intrq[intrq_idx];
rc = alloc_iq_fl(sc->port[port_idx], intrq, NULL, intr_idx, -1);
if (rc != 0)
return (rc);
children = SYSCTL_CHILDREN(sc->oid_intrq);
snprintf(name, sizeof(name), "%d", intrq_idx);
oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, name, CTLFLAG_RD,
NULL, "interrupt queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &intrq->cidx, 0, sysctl_uint16, "I",
"consumer index");
return (rc);
}
static int
free_intrq(struct sge_iq *iq)
{
return free_iq_fl(NULL, iq, NULL);
}
static int
alloc_fwq(struct adapter *sc, int intr_idx)
{
int rc;
struct sysctl_oid_list *children;
struct sge_iq *fwq = &sc->sge.fwq;
rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
if (rc != 0)
return (rc);
children = SYSCTL_CHILDREN(sc->oid_fwq);
SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
"absolute id of the queue");
SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
"SGE context id of the queue");
SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
"consumer index");
return (rc);
}
static int
free_fwq(struct sge_iq *iq)
{
return free_iq_fl(NULL, iq, NULL);
}
static int
alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx)
{
int rc;
struct sysctl_oid *oid;
struct sysctl_oid_list *children;
char name[16];
rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, 1 << pi->tx_chan);
if (rc != 0)
return (rc);
FL_LOCK(&rxq->fl);
refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8, 8);
FL_UNLOCK(&rxq->fl);
#ifdef INET
rc = tcp_lro_init(&rxq->lro);
if (rc != 0)
return (rc);
rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
if (pi->ifp->if_capenable & IFCAP_LRO)
rxq->flags |= RXQ_LRO_ENABLED;
#endif
rxq->ifp = pi->ifp;
children = SYSCTL_CHILDREN(pi->oid_rxq);
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
NULL, "rx queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
"absolute id of the queue");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
"SGE context id of the queue");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
"consumer index");
#ifdef INET
SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
&rxq->lro.lro_queued, 0, NULL);
SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
&rxq->lro.lro_flushed, 0, NULL);
#endif
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
&rxq->rxcsum, "# of times hardware assisted with checksum");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
CTLFLAG_RD, &rxq->vlan_extraction,
"# of times hardware extracted 802.1Q tag");
children = SYSCTL_CHILDREN(oid);
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD,
NULL, "freelist");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &rxq->fl.cntxt_id, 0, sysctl_uint16, "I",
"SGE context id of the queue");
SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
&rxq->fl.cidx, 0, "consumer index");
SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
&rxq->fl.pidx, 0, "producer index");
return (rc);
}
static int
free_rxq(struct port_info *pi, struct sge_rxq *rxq)
{
int rc;
#ifdef INET
if (rxq->lro.ifp) {
tcp_lro_free(&rxq->lro);
rxq->lro.ifp = NULL;
}
#endif
rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
if (rc == 0)
bzero(rxq, sizeof(*rxq));
return (rc);
}
static int
alloc_ctrlq(struct adapter *sc, struct sge_ctrlq *ctrlq, int idx)
{
int rc, cntxt_id;
size_t len;
struct fw_eq_ctrl_cmd c;
struct sge_eq *eq = &ctrlq->eq;
char name[16];
struct sysctl_oid *oid;
struct sysctl_oid_list *children;
mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
len = eq->qsize * CTRL_EQ_ESIZE;
rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
&eq->ba, (void **)&eq->desc);
if (rc)
return (rc);
eq->cap = eq->qsize - SPG_LEN / CTRL_EQ_ESIZE;
eq->spg = (void *)&eq->desc[eq->cap];
eq->avail = eq->cap - 1; /* one less to avoid cidx = pidx */
if (sc->flags & INTR_SHARED)
eq->iqid = sc->sge.intrq[idx % NINTRQ(sc)].cntxt_id;
else
eq->iqid = sc->sge.intrq[sc->port[idx]->first_rxq].cntxt_id;
bzero(&c, sizeof(c));
c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
V_FW_EQ_CTRL_CMD_VFN(0));
c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */
c.physeqid_pkd = htobe32(0);
c.fetchszm_to_iqid =
htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
V_FW_EQ_CTRL_CMD_PCIECHN(sc->port[idx]->tx_chan) |
F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
c.dcaen_to_eqsize =
htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
c.eqaddr = htobe64(eq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(sc->dev,
"failed to create control queue %d: %d\n", idx, rc);
return (rc);
}
eq->pidx = eq->cidx = 0;
eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
eq->flags |= (EQ_ALLOCATED | EQ_STARTED);
cntxt_id = eq->cntxt_id - sc->sge.eq_start;
KASSERT(cntxt_id < sc->sge.neq,
("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.neq - 1));
sc->sge.eqmap[cntxt_id] = eq;
children = SYSCTL_CHILDREN(sc->oid_ctrlq);
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, name, CTLFLAG_RD,
NULL, "ctrl queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "pidx",
CTLTYPE_INT | CTLFLAG_RD, &ctrlq->eq.pidx, 0, sysctl_uint16, "I",
"producer index");
SYSCTL_ADD_UINT(&sc->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
&ctrlq->no_desc, 0,
"# of times ctrlq ran out of hardware descriptors");
return (rc);
}
static int
free_ctrlq(struct adapter *sc, struct sge_ctrlq *ctrlq)
{
int rc;
struct sge_eq *eq = &ctrlq->eq;
if (eq->flags & (EQ_ALLOCATED | EQ_STARTED)) {
rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
if (rc != 0) {
device_printf(sc->dev,
"failed to free ctrl queue %p: %d\n", eq, rc);
return (rc);
}
eq->flags &= ~(EQ_ALLOCATED | EQ_STARTED);
}
free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
if (mtx_initialized(&eq->eq_lock))
mtx_destroy(&eq->eq_lock);
bzero(ctrlq, sizeof(*ctrlq));
return (0);
}
static int
alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx)
{
int rc, cntxt_id;
size_t len;
struct adapter *sc = pi->adapter;
struct fw_eq_eth_cmd c;
struct sge_eq *eq = &txq->eq;
char name[16];
struct sysctl_oid *oid;
struct sysctl_oid_list *children;
struct sge_iq *intrq;
txq->ifp = pi->ifp;
TASK_INIT(&txq->resume_tx, 0, cxgbe_txq_start, txq);
mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
len = eq->qsize * TX_EQ_ESIZE;
rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
&eq->ba, (void **)&eq->desc);
if (rc)
return (rc);
eq->cap = eq->qsize - SPG_LEN / TX_EQ_ESIZE;
eq->spg = (void *)&eq->desc[eq->cap];
eq->avail = eq->cap - 1; /* one less to avoid cidx = pidx */
txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
M_ZERO | M_WAITOK);
txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
intrq = &sc->sge.intrq[0];
if (sc->flags & INTR_SHARED)
eq->iqid = intrq[(pi->first_txq + idx) % NINTRQ(sc)].cntxt_id;
else
eq->iqid = intrq[pi->first_rxq + (idx % pi->nrxq)].cntxt_id;
rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag);
if (rc != 0) {
device_printf(sc->dev,
"failed to create tx DMA tag: %d\n", rc);
return (rc);
}
rc = alloc_tx_maps(txq);
if (rc != 0) {
device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
return (rc);
}
bzero(&c, sizeof(c));
c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
V_FW_EQ_ETH_CMD_VFN(0));
c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
c.fetchszm_to_iqid =
htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
V_FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
V_FW_EQ_ETH_CMD_IQID(eq->iqid));
c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
c.eqaddr = htobe64(eq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(pi->dev,
"failed to create egress queue: %d\n", rc);
return (rc);
}
eq->pidx = eq->cidx = 0;
eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
eq->flags |= (EQ_ALLOCATED | EQ_STARTED);
cntxt_id = eq->cntxt_id - sc->sge.eq_start;
KASSERT(cntxt_id < sc->sge.neq,
("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.neq - 1));
sc->sge.eqmap[cntxt_id] = eq;
children = SYSCTL_CHILDREN(pi->oid_txq);
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
NULL, "tx queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
&eq->cntxt_id, 0, "SGE context id of the queue");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
"consumer index");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
"producer index");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
&txq->txcsum, "# of times hardware assisted with checksum");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
CTLFLAG_RD, &txq->vlan_insertion,
"# of times hardware inserted 802.1Q tag");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
&txq->tso_wrs, "# of IPv4 TSO work requests");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
&txq->imm_wrs, "# of work requests with immediate data");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
&txq->sgl_wrs, "# of work requests with direct SGL");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
&txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
&txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
&txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
&txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
&txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
&txq->egr_update, 0, "egress update notifications from the SGE");
return (rc);
}
static int
free_txq(struct port_info *pi, struct sge_txq *txq)
{
int rc;
struct adapter *sc = pi->adapter;
struct sge_eq *eq = &txq->eq;
if (eq->flags & (EQ_ALLOCATED | EQ_STARTED)) {
/*
* Wait for the response to a credit flush if there's one
* pending. Clearing the flag tells handle_sge_egr_update or
* cxgbe_txq_start (depending on how far the response has made
* it) that they should ignore the response and wake up free_txq
* instead.
*
* The interface has been marked down by the time we get here
* (both IFF_UP and IFF_DRV_RUNNING cleared). qflush has
* emptied the tx buf_rings and we know nothing new is being
* queued for tx so we don't have to worry about a new credit
* flush request.
*/
TXQ_LOCK(txq);
if (eq->flags & EQ_CRFLUSHED) {
eq->flags &= ~EQ_CRFLUSHED;
msleep(txq, &eq->eq_lock, 0, "crflush", 0);
}
TXQ_UNLOCK(txq);
rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
if (rc != 0) {
device_printf(pi->dev,
"failed to free egress queue %p: %d\n", eq, rc);
return (rc);
}
eq->flags &= ~(EQ_ALLOCATED | EQ_STARTED);
}
free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
free(txq->sdesc, M_CXGBE);
if (txq->maps)
free_tx_maps(txq);
buf_ring_free(txq->br, M_CXGBE);
if (txq->tx_tag)
bus_dma_tag_destroy(txq->tx_tag);
if (mtx_initialized(&eq->eq_lock))
mtx_destroy(&eq->eq_lock);
bzero(txq, sizeof(*txq));
return (0);
}
static void
oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *ba = arg;
KASSERT(nseg == 1,
("%s meant for single segment mappings only.", __func__));
*ba = error ? 0 : segs->ds_addr;
}
static inline bool
is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
{
*ctrl = (void *)((uintptr_t)iq->cdesc +
(iq->esize - sizeof(struct rsp_ctrl)));
return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen);
}
static inline void
iq_next(struct sge_iq *iq)
{
iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
if (__predict_false(++iq->cidx == iq->qsize - 1)) {
iq->cidx = 0;
iq->gen ^= 1;
iq->cdesc = iq->desc;
}
}
#define FL_HW_IDX(x) ((x) >> 3)
static inline void
ring_fl_db(struct adapter *sc, struct sge_fl *fl)
{
int ndesc = fl->pending / 8;
if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
ndesc--; /* hold back one credit */
if (ndesc <= 0)
return; /* nothing to do */
wmb();
t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), F_DBPRIO |
V_QID(fl->cntxt_id) | V_PIDX(ndesc));
fl->pending -= ndesc * 8;
}
/*
* Fill up the freelist by upto nbufs and ring its doorbell if the number of
* buffers ready to be handed to the hardware >= dbthresh.
*/
static void
refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs, int dbthresh)
{
__be64 *d = &fl->desc[fl->pidx];
struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
bus_dma_tag_t tag;
bus_addr_t pa;
caddr_t cl;
int rc;
FL_LOCK_ASSERT_OWNED(fl);
if (nbufs < 0 || nbufs > fl->needed)
nbufs = fl->needed;
while (nbufs--) {
if (sd->cl != NULL) {
/*
* This happens when a frame small enough to fit
* entirely in an mbuf was received in cl last time.
* We'd held on to cl and can reuse it now. Note that
* we reuse a cluster of the old size if fl->tag_idx is
* no longer the same as sd->tag_idx.
*/
KASSERT(*d == sd->ba_tag,
("%s: recyling problem at pidx %d",
__func__, fl->pidx));
d++;
goto recycled;
}
if (fl->tag_idx != sd->tag_idx) {
bus_dmamap_t map;
bus_dma_tag_t newtag = fl->tag[fl->tag_idx];
bus_dma_tag_t oldtag = fl->tag[sd->tag_idx];
/*
* An MTU change can get us here. Discard the old map
* which was created with the old tag, but only if
* we're able to get a new one.
*/
rc = bus_dmamap_create(newtag, 0, &map);
if (rc == 0) {
bus_dmamap_destroy(oldtag, sd->map);
sd->map = map;
sd->tag_idx = fl->tag_idx;
}
}
tag = fl->tag[sd->tag_idx];
cl = m_cljget(NULL, M_NOWAIT, FL_BUF_SIZE(sd->tag_idx));
if (cl == NULL)
break;
rc = bus_dmamap_load(tag, sd->map, cl, FL_BUF_SIZE(sd->tag_idx),
oneseg_dma_callback, &pa, 0);
if (rc != 0 || pa == 0) {
fl->dmamap_failed++;
uma_zfree(FL_BUF_ZONE(sd->tag_idx), cl);
break;
}
sd->cl = cl;
*d++ = htobe64(pa | sd->tag_idx);
#ifdef INVARIANTS
sd->ba_tag = htobe64(pa | sd->tag_idx);
#endif
recycled:
/* sd->m is never recycled, should always be NULL */
KASSERT(sd->m == NULL, ("%s: stray mbuf", __func__));
sd->m = m_gethdr(M_NOWAIT, MT_NOINIT);
if (sd->m == NULL)
break;
fl->pending++;
fl->needed--;
sd++;
if (++fl->pidx == fl->cap) {
fl->pidx = 0;
sd = fl->sdesc;
d = fl->desc;
}
}
if (fl->pending >= dbthresh)
ring_fl_db(sc, fl);
}
static int
alloc_fl_sdesc(struct sge_fl *fl)
{
struct fl_sdesc *sd;
bus_dma_tag_t tag;
int i, rc;
FL_LOCK_ASSERT_OWNED(fl);
fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
M_ZERO | M_WAITOK);
tag = fl->tag[fl->tag_idx];
sd = fl->sdesc;
for (i = 0; i < fl->cap; i++, sd++) {
sd->tag_idx = fl->tag_idx;
rc = bus_dmamap_create(tag, 0, &sd->map);
if (rc != 0)
goto failed;
}
return (0);
failed:
while (--i >= 0) {
sd--;
bus_dmamap_destroy(tag, sd->map);
if (sd->m) {
m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0);
m_free(sd->m);
sd->m = NULL;
}
}
KASSERT(sd == fl->sdesc, ("%s: EDOOFUS", __func__));
free(fl->sdesc, M_CXGBE);
fl->sdesc = NULL;
return (rc);
}
static void
free_fl_sdesc(struct sge_fl *fl)
{
struct fl_sdesc *sd;
int i;
FL_LOCK_ASSERT_OWNED(fl);
sd = fl->sdesc;
for (i = 0; i < fl->cap; i++, sd++) {
if (sd->m) {
m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0);
m_free(sd->m);
sd->m = NULL;
}
if (sd->cl) {
bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
uma_zfree(FL_BUF_ZONE(sd->tag_idx), sd->cl);
sd->cl = NULL;
}
bus_dmamap_destroy(fl->tag[sd->tag_idx], sd->map);
}
free(fl->sdesc, M_CXGBE);
fl->sdesc = NULL;
}
static int
alloc_tx_maps(struct sge_txq *txq)
{
struct tx_map *txm;
int i, rc, count;
/*
* We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
* limit for any WR). txq->no_dmamap events shouldn't occur if maps is
* sized for the worst case.
*/
count = txq->eq.qsize * 10 / 8;
txq->map_total = txq->map_avail = count;
txq->map_cidx = txq->map_pidx = 0;
txq->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
M_ZERO | M_WAITOK);
txm = txq->maps;
for (i = 0; i < count; i++, txm++) {
rc = bus_dmamap_create(txq->tx_tag, 0, &txm->map);
if (rc != 0)
goto failed;
}
return (0);
failed:
while (--i >= 0) {
txm--;
bus_dmamap_destroy(txq->tx_tag, txm->map);
}
KASSERT(txm == txq->maps, ("%s: EDOOFUS", __func__));
free(txq->maps, M_CXGBE);
txq->maps = NULL;
return (rc);
}
static void
free_tx_maps(struct sge_txq *txq)
{
struct tx_map *txm;
int i;
txm = txq->maps;
for (i = 0; i < txq->map_total; i++, txm++) {
if (txm->m) {
bus_dmamap_unload(txq->tx_tag, txm->map);
m_freem(txm->m);
txm->m = NULL;
}
bus_dmamap_destroy(txq->tx_tag, txm->map);
}
free(txq->maps, M_CXGBE);
txq->maps = NULL;
}
/*
* We'll do immediate data tx for non-TSO, but only when not coalescing. We're
* willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
* of immediate data.
*/
#define IMM_LEN ( \
2 * TX_EQ_ESIZE \
- sizeof(struct fw_eth_tx_pkt_wr) \
- sizeof(struct cpl_tx_pkt_core))
/*
* Returns non-zero on failure, no need to cleanup anything in that case.
*
* Note 1: We always try to defrag the mbuf if required and return EFBIG only
* if the resulting chain still won't fit in a tx descriptor.
*
* Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
* does not have the TCP header in it.
*/
static int
get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
int sgl_only)
{
struct mbuf *m = *fp;
struct tx_map *txm;
int rc, defragged = 0, n;
TXQ_LOCK_ASSERT_OWNED(txq);
if (m->m_pkthdr.tso_segsz)
sgl_only = 1; /* Do not allow immediate data with LSO */
start: sgl->nsegs = 0;
if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
return (0); /* nsegs = 0 tells caller to use imm. tx */
if (txq->map_avail == 0) {
txq->no_dmamap++;
return (ENOMEM);
}
txm = &txq->maps[txq->map_pidx];
if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
*fp = m_pullup(m, 50);
m = *fp;
if (m == NULL)
return (ENOBUFS);
}
rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg,
&sgl->nsegs, BUS_DMA_NOWAIT);
if (rc == EFBIG && defragged == 0) {
m = m_defrag(m, M_DONTWAIT);
if (m == NULL)
return (EFBIG);
defragged = 1;
*fp = m;
goto start;
}
if (rc != 0)
return (rc);
txm->m = m;
txq->map_avail--;
if (++txq->map_pidx == txq->map_total)
txq->map_pidx = 0;
KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
/*
* Store the # of flits required to hold this frame's SGL in nflits. An
* SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
* multiple (len0 + len1, addr0, addr1) tuples. If addr1 is not used
* then len1 must be set to 0.
*/
n = sgl->nsegs - 1;
sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
return (0);
}
/*
* Releases all the txq resources used up in the specified sgl.
*/
static int
free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
{
struct tx_map *txm;
TXQ_LOCK_ASSERT_OWNED(txq);
if (sgl->nsegs == 0)
return (0); /* didn't use any map */
/* 1 pkt uses exactly 1 map, back it out */
txq->map_avail++;
if (txq->map_pidx > 0)
txq->map_pidx--;
else
txq->map_pidx = txq->map_total - 1;
txm = &txq->maps[txq->map_pidx];
bus_dmamap_unload(txq->tx_tag, txm->map);
txm->m = NULL;
return (0);
}
static int
write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
struct sgl *sgl)
{
struct sge_eq *eq = &txq->eq;
struct fw_eth_tx_pkt_wr *wr;
struct cpl_tx_pkt_core *cpl;
uint32_t ctrl; /* used in many unrelated places */
uint64_t ctrl1;
int nflits, ndesc, pktlen;
struct tx_sdesc *txsd;
caddr_t dst;
TXQ_LOCK_ASSERT_OWNED(txq);
pktlen = m->m_pkthdr.len;
/*
* Do we have enough flits to send this frame out?
*/
ctrl = sizeof(struct cpl_tx_pkt_core);
if (m->m_pkthdr.tso_segsz) {
nflits = TXPKT_LSO_WR_HDR;
ctrl += sizeof(struct cpl_tx_pkt_lso);
} else
nflits = TXPKT_WR_HDR;
if (sgl->nsegs > 0)
nflits += sgl->nflits;
else {
nflits += howmany(pktlen, 8);
ctrl += pktlen;
}
ndesc = howmany(nflits, 8);
if (ndesc > eq->avail)
return (ENOMEM);
/* Firmware work request header */
wr = (void *)&eq->desc[eq->pidx];
wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
V_FW_WR_IMMDLEN(ctrl));
ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
if (eq->avail == ndesc && !(eq->flags & EQ_CRFLUSHED)) {
ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
eq->flags |= EQ_CRFLUSHED;
}
wr->equiq_to_len16 = htobe32(ctrl);
wr->r3 = 0;
if (m->m_pkthdr.tso_segsz) {
struct cpl_tx_pkt_lso *lso = (void *)(wr + 1);
struct ether_header *eh;
struct ip *ip;
struct tcphdr *tcp;
ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
F_LSO_LAST_SLICE;
eh = mtod(m, struct ether_header *);
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
ctrl |= V_LSO_ETHHDR_LEN(1);
ip = (void *)((struct ether_vlan_header *)eh + 1);
} else
ip = (void *)(eh + 1);
tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
V_LSO_TCPHDR_LEN(tcp->th_off);
lso->lso_ctrl = htobe32(ctrl);
lso->ipid_ofst = htobe16(0);
lso->mss = htobe16(m->m_pkthdr.tso_segsz);
lso->seqno_offset = htobe32(0);
lso->len = htobe32(pktlen);
cpl = (void *)(lso + 1);
txq->tso_wrs++;
} else
cpl = (void *)(wr + 1);
/* Checksum offload */
ctrl1 = 0;
if (!(m->m_pkthdr.csum_flags & CSUM_IP))
ctrl1 |= F_TXPKT_IPCSUM_DIS;
if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)))
ctrl1 |= F_TXPKT_L4CSUM_DIS;
if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP))
txq->txcsum++; /* some hardware assistance provided */
/* VLAN tag insertion */
if (m->m_flags & M_VLANTAG) {
ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
txq->vlan_insertion++;
}
/* CPL header */
cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
cpl->pack = 0;
cpl->len = htobe16(pktlen);
cpl->ctrl1 = htobe64(ctrl1);
/* Software descriptor */
txsd = &txq->sdesc[eq->pidx];
txsd->desc_used = ndesc;
eq->pending += ndesc;
eq->avail -= ndesc;
eq->pidx += ndesc;
if (eq->pidx >= eq->cap)
eq->pidx -= eq->cap;
/* SGL */
dst = (void *)(cpl + 1);
if (sgl->nsegs > 0) {
txsd->credits = 1;
txq->sgl_wrs++;
write_sgl_to_txd(eq, sgl, &dst);
} else {
txsd->credits = 0;
txq->imm_wrs++;
for (; m; m = m->m_next) {
copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
#ifdef INVARIANTS
pktlen -= m->m_len;
#endif
}
#ifdef INVARIANTS
KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
#endif
}
txq->txpkt_wrs++;
return (0);
}
/*
* Returns 0 to indicate that m has been accepted into a coalesced tx work
* request. It has either been folded into txpkts or txpkts was flushed and m
* has started a new coalesced work request (as the first frame in a fresh
* txpkts).
*
* Returns non-zero to indicate a failure - caller is responsible for
* transmitting m, if there was anything in txpkts it has been flushed.
*/
static int
add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
struct mbuf *m, struct sgl *sgl)
{
struct sge_eq *eq = &txq->eq;
int can_coalesce;
struct tx_sdesc *txsd;
int flits;
TXQ_LOCK_ASSERT_OWNED(txq);
if (txpkts->npkt > 0) {
flits = TXPKTS_PKT_HDR + sgl->nflits;
can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
txpkts->nflits + flits <= TX_WR_FLITS &&
txpkts->nflits + flits <= eq->avail * 8 &&
txpkts->plen + m->m_pkthdr.len < 65536;
if (can_coalesce) {
txpkts->npkt++;
txpkts->nflits += flits;
txpkts->plen += m->m_pkthdr.len;
txsd = &txq->sdesc[eq->pidx];
txsd->credits++;
return (0);
}
/*
* Couldn't coalesce m into txpkts. The first order of business
* is to send txpkts on its way. Then we'll revisit m.
*/
write_txpkts_wr(txq, txpkts);
}
/*
* Check if we can start a new coalesced tx work request with m as
* the first packet in it.
*/
KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
flits = TXPKTS_WR_HDR + sgl->nflits;
can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
if (can_coalesce == 0)
return (EINVAL);
/*
* Start a fresh coalesced tx WR with m as the first frame in it.
*/
txpkts->npkt = 1;
txpkts->nflits = flits;
txpkts->flitp = &eq->desc[eq->pidx].flit[2];
txpkts->plen = m->m_pkthdr.len;
txsd = &txq->sdesc[eq->pidx];
txsd->credits = 1;
return (0);
}
/*
* Note that write_txpkts_wr can never run out of hardware descriptors (but
* write_txpkt_wr can). add_to_txpkts ensures that a frame is accepted for
* coalescing only if sufficient hardware descriptors are available.
*/
static void
write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
{
struct sge_eq *eq = &txq->eq;
struct fw_eth_tx_pkts_wr *wr;
struct tx_sdesc *txsd;
uint32_t ctrl;
int ndesc;
TXQ_LOCK_ASSERT_OWNED(txq);
ndesc = howmany(txpkts->nflits, 8);
wr = (void *)&eq->desc[eq->pidx];
wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR) |
V_FW_WR_IMMDLEN(0)); /* immdlen does not matter in this WR */
ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
if (eq->avail == ndesc && !(eq->flags & EQ_CRFLUSHED)) {
ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
eq->flags |= EQ_CRFLUSHED;
}
wr->equiq_to_len16 = htobe32(ctrl);
wr->plen = htobe16(txpkts->plen);
wr->npkt = txpkts->npkt;
wr->r3 = wr->type = 0;
/* Everything else already written */
txsd = &txq->sdesc[eq->pidx];
txsd->desc_used = ndesc;
KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
eq->pending += ndesc;
eq->avail -= ndesc;
eq->pidx += ndesc;
if (eq->pidx >= eq->cap)
eq->pidx -= eq->cap;
txq->txpkts_pkts += txpkts->npkt;
txq->txpkts_wrs++;
txpkts->npkt = 0; /* emptied */
}
static inline void
write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
{
struct ulp_txpkt *ulpmc;
struct ulptx_idata *ulpsc;
struct cpl_tx_pkt_core *cpl;
struct sge_eq *eq = &txq->eq;
uintptr_t flitp, start, end;
uint64_t ctrl;
caddr_t dst;
KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
start = (uintptr_t)eq->desc;
end = (uintptr_t)eq->spg;
/* Checksum offload */
ctrl = 0;
if (!(m->m_pkthdr.csum_flags & CSUM_IP))
ctrl |= F_TXPKT_IPCSUM_DIS;
if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)))
ctrl |= F_TXPKT_L4CSUM_DIS;
if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP))
txq->txcsum++; /* some hardware assistance provided */
/* VLAN tag insertion */
if (m->m_flags & M_VLANTAG) {
ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
txq->vlan_insertion++;
}
/*
* The previous packet's SGL must have ended at a 16 byte boundary (this
* is required by the firmware/hardware). It follows that flitp cannot
* wrap around between the ULPTX master command and ULPTX subcommand (8
* bytes each), and that it can not wrap around in the middle of the
* cpl_tx_pkt_core either.
*/
flitp = (uintptr_t)txpkts->flitp;
KASSERT((flitp & 0xf) == 0,
("%s: last SGL did not end at 16 byte boundary: %p",
__func__, txpkts->flitp));
/* ULP master command */
ulpmc = (void *)flitp;
ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
V_ULP_TXPKT_FID(eq->iqid));
ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
sizeof(*cpl) + 8 * sgl->nflits, 16));
/* ULP subcommand */
ulpsc = (void *)(ulpmc + 1);
ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
F_ULP_TX_SC_MORE);
ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
if (flitp == end)
flitp = start;
/* CPL_TX_PKT */
cpl = (void *)flitp;
cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
cpl->pack = 0;
cpl->len = htobe16(m->m_pkthdr.len);
cpl->ctrl1 = htobe64(ctrl);
flitp += sizeof(*cpl);
if (flitp == end)
flitp = start;
/* SGL for this frame */
dst = (caddr_t)flitp;
txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
txpkts->flitp = (void *)dst;
KASSERT(((uintptr_t)dst & 0xf) == 0,
("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
}
/*
* If the SGL ends on an address that is not 16 byte aligned, this function will
* add a 0 filled flit at the end. It returns 1 in that case.
*/
static int
write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
{
__be64 *flitp, *end;
struct ulptx_sgl *usgl;
bus_dma_segment_t *seg;
int i, padded;
KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
("%s: bad SGL - nsegs=%d, nflits=%d",
__func__, sgl->nsegs, sgl->nflits));
KASSERT(((uintptr_t)(*to) & 0xf) == 0,
("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
flitp = (__be64 *)(*to);
end = flitp + sgl->nflits;
seg = &sgl->seg[0];
usgl = (void *)flitp;
/*
* We start at a 16 byte boundary somewhere inside the tx descriptor
* ring, so we're at least 16 bytes away from the status page. There is
* no chance of a wrap around in the middle of usgl (which is 16 bytes).
*/
usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
V_ULPTX_NSGE(sgl->nsegs));
usgl->len0 = htobe32(seg->ds_len);
usgl->addr0 = htobe64(seg->ds_addr);
seg++;
if ((uintptr_t)end <= (uintptr_t)eq->spg) {
/* Won't wrap around at all */
for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
}
if (i & 1)
usgl->sge[i / 2].len[1] = htobe32(0);
} else {
/* Will wrap somewhere in the rest of the SGL */
/* 2 flits already written, write the rest flit by flit */
flitp = (void *)(usgl + 1);
for (i = 0; i < sgl->nflits - 2; i++) {
if ((uintptr_t)flitp == (uintptr_t)eq->spg)
flitp = (void *)eq->desc;
*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
}
end = flitp;
}
if ((uintptr_t)end & 0xf) {
*(uint64_t *)end = 0;
end++;
padded = 1;
} else
padded = 0;
if ((uintptr_t)end == (uintptr_t)eq->spg)
*to = (void *)eq->desc;
else
*to = (void *)end;
return (padded);
}
static inline void
copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
{
if ((uintptr_t)(*to) + len <= (uintptr_t)eq->spg) {
bcopy(from, *to, len);
(*to) += len;
} else {
int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
bcopy(from, *to, portion);
from += portion;
portion = len - portion; /* remaining */
bcopy(from, (void *)eq->desc, portion);
(*to) = (caddr_t)eq->desc + portion;
}
}
static inline void
ring_eq_db(struct adapter *sc, struct sge_eq *eq)
{
wmb();
t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
V_QID(eq->cntxt_id) | V_PIDX(eq->pending));
eq->pending = 0;
}
static inline int
reclaimable(struct sge_eq *eq)
{
unsigned int cidx;
cidx = eq->spg->cidx; /* stable snapshot */
cidx = be16_to_cpu(cidx);
if (cidx >= eq->cidx)
return (cidx - eq->cidx);
else
return (cidx + eq->cap - eq->cidx);
}
/*
* There are "can_reclaim" tx descriptors ready to be reclaimed. Reclaim as
* many as possible but stop when there are around "n" mbufs to free.
*
* The actual number reclaimed is provided as the return value.
*/
static int
reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n)
{
struct tx_sdesc *txsd;
struct tx_map *txm;
unsigned int reclaimed, maps;
struct sge_eq *eq = &txq->eq;
EQ_LOCK_ASSERT_OWNED(eq);
if (can_reclaim == 0)
can_reclaim = reclaimable(eq);
maps = reclaimed = 0;
while (can_reclaim && maps < n) {
int ndesc;
txsd = &txq->sdesc[eq->cidx];
ndesc = txsd->desc_used;
/* Firmware doesn't return "partial" credits. */
KASSERT(can_reclaim >= ndesc,
("%s: unexpected number of credits: %d, %d",
__func__, can_reclaim, ndesc));
maps += txsd->credits;
reclaimed += ndesc;
can_reclaim -= ndesc;
eq->cidx += ndesc;
if (__predict_false(eq->cidx >= eq->cap))
eq->cidx -= eq->cap;
}
txm = &txq->maps[txq->map_cidx];
if (maps)
prefetch(txm->m);
eq->avail += reclaimed;
KASSERT(eq->avail < eq->cap, /* avail tops out at (cap - 1) */
("%s: too many descriptors available", __func__));
txq->map_avail += maps;
KASSERT(txq->map_avail <= txq->map_total,
("%s: too many maps available", __func__));
while (maps--) {
struct tx_map *next;
next = txm + 1;
if (__predict_false(txq->map_cidx + 1 == txq->map_total))
next = txq->maps;
prefetch(next->m);
bus_dmamap_unload(txq->tx_tag, txm->map);
m_freem(txm->m);
txm->m = NULL;
txm = next;
if (__predict_false(++txq->map_cidx == txq->map_total))
txq->map_cidx = 0;
}
return (reclaimed);
}
static void
write_eqflush_wr(struct sge_eq *eq)
{
struct fw_eq_flush_wr *wr;
EQ_LOCK_ASSERT_OWNED(eq);
KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
wr = (void *)&eq->desc[eq->pidx];
bzero(wr, sizeof(*wr));
wr->opcode = FW_EQ_FLUSH_WR;
wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
eq->flags |= EQ_CRFLUSHED;
eq->pending++;
eq->avail--;
if (++eq->pidx == eq->cap)
eq->pidx = 0;
}
static __be64
get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
{
int i = (idx / 3) * 2;
switch (idx % 3) {
case 0: {
__be64 rc;
rc = htobe32(sgl[i].ds_len);
if (i + 1 < nsegs)
rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
return (rc);
}
case 1:
return htobe64(sgl[i].ds_addr);
case 2:
return htobe64(sgl[i + 1].ds_addr);
}
return (0);
}
static void
set_fl_tag_idx(struct sge_fl *fl, int mtu)
{
int i;
FL_LOCK_ASSERT_OWNED(fl);
for (i = 0; i < FL_BUF_SIZES - 1; i++) {
if (FL_BUF_SIZE(i) >= (mtu + FL_PKTSHIFT))
break;
}
fl->tag_idx = i;
}
static int
handle_sge_egr_update(struct adapter *sc, const struct cpl_sge_egr_update *cpl)
{
unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
struct sge *s = &sc->sge;
struct sge_txq *txq;
struct port_info *pi;
txq = (void *)s->eqmap[qid - s->eq_start];
TXQ_LOCK(txq);
if (txq->eq.flags & EQ_CRFLUSHED) {
pi = txq->ifp->if_softc;
taskqueue_enqueue(pi->tq, &txq->resume_tx);
txq->egr_update++;
} else
wakeup_one(txq); /* txq is going away, wakeup free_txq */
TXQ_UNLOCK(txq);
return (0);
}
static void
handle_cpl(struct adapter *sc, struct sge_iq *iq)
{
const struct rss_header *rss = (const void *)iq->cdesc;
const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
switch (rss->opcode) {
case CPL_FW4_MSG:
case CPL_FW6_MSG:
if (cpl->type == FW6_TYPE_CMD_RPL)
t4_handle_fw_rpl(sc, cpl->data);
break;
case CPL_SGE_EGR_UPDATE:
handle_sge_egr_update(sc, (const void *)cpl);
break;
case CPL_SET_TCB_RPL:
filter_rpl(sc, (const void *)cpl);
break;
default:
panic("%s: unexpected CPL opcode 0x%x", __func__, rss->opcode);
}
}
/*
* m0 is freed on successful transmission.
*/
static int
ctrl_tx(struct adapter *sc, struct sge_ctrlq *ctrlq, struct mbuf *m0)
{
struct sge_eq *eq = &ctrlq->eq;
int rc = 0, ndesc;
int can_reclaim;
caddr_t dst;
struct mbuf *m;
M_ASSERTPKTHDR(m0);
if (m0->m_pkthdr.len > SGE_MAX_WR_LEN) {
log(LOG_ERR, "%s: %s work request too long (%d)",
device_get_nameunit(sc->dev), __func__, m0->m_pkthdr.len);
return (EMSGSIZE);
}
ndesc = howmany(m0->m_pkthdr.len, CTRL_EQ_ESIZE);
EQ_LOCK(eq);
can_reclaim = reclaimable(eq);
eq->cidx += can_reclaim;
eq->avail += can_reclaim;
if (__predict_false(eq->cidx >= eq->cap))
eq->cidx -= eq->cap;
if (eq->avail < ndesc) {
rc = EAGAIN;
ctrlq->no_desc++;
goto failed;
}
dst = (void *)&eq->desc[eq->pidx];
for (m = m0; m; m = m->m_next)
copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
eq->pidx += ndesc;
if (__predict_false(eq->pidx >= eq->cap))
eq->pidx -= eq->cap;
eq->pending += ndesc;
ring_eq_db(sc, eq);
failed:
EQ_UNLOCK(eq);
if (rc == 0)
m_freem(m0);
return (rc);
}
static int
sysctl_uint16(SYSCTL_HANDLER_ARGS)
{
uint16_t *id = arg1;
int i = *id;
return sysctl_handle_int(oidp, &i, 0, req);
}