Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
/*-
|
2004-02-22 00:33:12 +00:00
|
|
|
* Copyright (c) 1999-2002 Robert N. M. Watson
|
2005-01-22 20:11:16 +00:00
|
|
|
* Copyright (c) 2001-2005 McAfee, Inc.
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This software was developed by Robert Watson for the TrustedBSD Project.
|
|
|
|
*
|
2005-01-22 20:11:16 +00:00
|
|
|
* This software was developed for the FreeBSD Project in part by McAfee
|
|
|
|
* Research, the Security Research Division of McAfee, Inc. under
|
|
|
|
* DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
|
|
|
|
* CHATS research program.
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* $FreeBSD$
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Developed by the TrustedBSD Project.
|
2007-04-23 13:36:54 +00:00
|
|
|
*
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
* MLS fixed label mandatory confidentiality policy.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/acl.h>
|
|
|
|
#include <sys/conf.h>
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
#include <sys/extattr.h>
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
#include <sys/kernel.h>
|
2006-11-11 16:26:58 +00:00
|
|
|
#include <sys/ksem.h>
|
2005-04-14 16:03:30 +00:00
|
|
|
#include <sys/mman.h>
|
2002-09-10 12:45:02 +00:00
|
|
|
#include <sys/malloc.h>
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
#include <sys/mount.h>
|
|
|
|
#include <sys/proc.h>
|
2003-05-31 19:01:44 +00:00
|
|
|
#include <sys/sbuf.h>
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/sysproto.h>
|
|
|
|
#include <sys/sysent.h>
|
2002-10-22 14:31:34 +00:00
|
|
|
#include <sys/systm.h>
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
#include <sys/vnode.h>
|
|
|
|
#include <sys/file.h>
|
|
|
|
#include <sys/socket.h>
|
|
|
|
#include <sys/socketvar.h>
|
|
|
|
#include <sys/pipe.h>
|
2005-09-19 18:52:51 +00:00
|
|
|
#include <sys/sx.h>
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
#include <sys/sysctl.h>
|
2005-01-22 20:11:16 +00:00
|
|
|
#include <sys/msg.h>
|
|
|
|
#include <sys/sem.h>
|
|
|
|
#include <sys/shm.h>
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
#include <fs/devfs/devfs.h>
|
|
|
|
|
|
|
|
#include <net/bpfdesc.h>
|
|
|
|
#include <net/if.h>
|
|
|
|
#include <net/if_types.h>
|
|
|
|
#include <net/if_var.h>
|
|
|
|
|
|
|
|
#include <netinet/in.h>
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
#include <netinet/in_pcb.h>
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
#include <netinet/ip_var.h>
|
|
|
|
|
2003-11-18 04:11:52 +00:00
|
|
|
#include <vm/uma.h>
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
#include <vm/vm.h>
|
|
|
|
|
2006-12-22 23:34:47 +00:00
|
|
|
#include <security/mac/mac_policy.h>
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
#include <security/mac_mls/mac_mls.h>
|
|
|
|
|
|
|
|
SYSCTL_DECL(_security_mac);
|
|
|
|
|
|
|
|
SYSCTL_NODE(_security_mac, OID_AUTO, mls, CTLFLAG_RW, 0,
|
|
|
|
"TrustedBSD mac_mls policy controls");
|
|
|
|
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
static int mac_mls_label_size = sizeof(struct mac_mls);
|
|
|
|
SYSCTL_INT(_security_mac_mls, OID_AUTO, label_size, CTLFLAG_RD,
|
|
|
|
&mac_mls_label_size, 0, "Size of struct mac_mls");
|
|
|
|
|
2002-12-10 16:20:34 +00:00
|
|
|
static int mac_mls_enabled = 1;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
SYSCTL_INT(_security_mac_mls, OID_AUTO, enabled, CTLFLAG_RW,
|
|
|
|
&mac_mls_enabled, 0, "Enforce MAC/MLS policy");
|
2002-09-05 18:52:52 +00:00
|
|
|
TUNABLE_INT("security.mac.mls.enabled", &mac_mls_enabled);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
static int destroyed_not_inited;
|
|
|
|
SYSCTL_INT(_security_mac_mls, OID_AUTO, destroyed_not_inited, CTLFLAG_RD,
|
|
|
|
&destroyed_not_inited, 0, "Count of labels destroyed but not inited");
|
|
|
|
|
2002-10-21 04:15:40 +00:00
|
|
|
static int ptys_equal = 0;
|
|
|
|
SYSCTL_INT(_security_mac_mls, OID_AUTO, ptys_equal, CTLFLAG_RW,
|
|
|
|
&ptys_equal, 0, "Label pty devices as mls/equal on create");
|
|
|
|
TUNABLE_INT("security.mac.mls.ptys_equal", &ptys_equal);
|
|
|
|
|
2002-10-21 18:14:30 +00:00
|
|
|
static int revocation_enabled = 0;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
SYSCTL_INT(_security_mac_mls, OID_AUTO, revocation_enabled, CTLFLAG_RW,
|
2002-10-21 18:14:30 +00:00
|
|
|
&revocation_enabled, 0, "Revoke access to objects on relabel");
|
|
|
|
TUNABLE_INT("security.mac.mls.revocation_enabled", &revocation_enabled);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2002-10-21 18:42:01 +00:00
|
|
|
static int max_compartments = MAC_MLS_MAX_COMPARTMENTS;
|
|
|
|
SYSCTL_INT(_security_mac_mls, OID_AUTO, max_compartments, CTLFLAG_RD,
|
|
|
|
&max_compartments, 0, "Maximum compartments the policy supports");
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static int mac_mls_slot;
|
2007-02-06 14:19:25 +00:00
|
|
|
#define SLOT(l) ((struct mac_mls *)mac_label_get((l), mac_mls_slot))
|
|
|
|
#define SLOT_SET(l, val) mac_label_set((l), mac_mls_slot, (uintptr_t)(val))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2003-11-18 04:11:52 +00:00
|
|
|
static uma_zone_t zone_mls;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2002-10-21 18:42:01 +00:00
|
|
|
static __inline int
|
|
|
|
mls_bit_set_empty(u_char *set) {
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < MAC_MLS_MAX_COMPARTMENTS >> 3; i++)
|
|
|
|
if (set[i] != 0)
|
|
|
|
return (0);
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static struct mac_mls *
|
Begin another merge from the TrustedBSD MAC branch:
- Change mpo_init_foo(obj, label) and mpo_destroy_foo(obj, label) policy
entry points to mpo_init_foo_label(label) and
mpo_destroy_foo_label(label). This will permit the use of the same
entry points for holding temporary type-specific label during
internalization and externalization, as well as for caching purposes.
- Because of this, break out mpo_{init,destroy}_socket() and
mpo_{init,destroy}_mount() into seperate entry points for socket
main/peer labels and mount main/fs labels.
- Since the prototype for label initialization is the same across almost
all entry points, implement these entry points using common
implementations for Biba, MLS, and Test, reducing the number of
almost identical looking functions.
This simplifies policy implementation, as well as preparing us for the
merge of the new flexible userland API for managing labels on objects.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-05 15:10:00 +00:00
|
|
|
mls_alloc(int flag)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
|
2003-11-18 04:11:52 +00:00
|
|
|
return (uma_zalloc(zone_mls, flag | M_ZERO));
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mls_free(struct mac_mls *mac_mls)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (mac_mls != NULL)
|
2003-11-18 04:11:52 +00:00
|
|
|
uma_zfree(zone_mls, mac_mls);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
else
|
|
|
|
atomic_add_int(&destroyed_not_inited, 1);
|
|
|
|
}
|
|
|
|
|
2002-10-21 16:35:54 +00:00
|
|
|
static int
|
|
|
|
mls_atmostflags(struct mac_mls *mac_mls, int flags)
|
|
|
|
{
|
|
|
|
|
|
|
|
if ((mac_mls->mm_flags & flags) != mac_mls->mm_flags)
|
|
|
|
return (EINVAL);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static int
|
|
|
|
mac_mls_dominate_element(struct mac_mls_element *a,
|
|
|
|
struct mac_mls_element *b)
|
|
|
|
{
|
2002-10-21 18:42:01 +00:00
|
|
|
int bit;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2002-10-22 19:01:49 +00:00
|
|
|
switch (a->mme_type) {
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
case MAC_MLS_TYPE_EQUAL:
|
|
|
|
case MAC_MLS_TYPE_HIGH:
|
|
|
|
return (1);
|
|
|
|
|
|
|
|
case MAC_MLS_TYPE_LOW:
|
|
|
|
switch (b->mme_type) {
|
|
|
|
case MAC_MLS_TYPE_LEVEL:
|
|
|
|
case MAC_MLS_TYPE_HIGH:
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
case MAC_MLS_TYPE_EQUAL:
|
|
|
|
case MAC_MLS_TYPE_LOW:
|
|
|
|
return (1);
|
|
|
|
|
|
|
|
default:
|
|
|
|
panic("mac_mls_dominate_element: b->mme_type invalid");
|
|
|
|
}
|
|
|
|
|
|
|
|
case MAC_MLS_TYPE_LEVEL:
|
|
|
|
switch (b->mme_type) {
|
|
|
|
case MAC_MLS_TYPE_EQUAL:
|
|
|
|
case MAC_MLS_TYPE_LOW:
|
|
|
|
return (1);
|
|
|
|
|
|
|
|
case MAC_MLS_TYPE_HIGH:
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
case MAC_MLS_TYPE_LEVEL:
|
2002-10-21 18:42:01 +00:00
|
|
|
for (bit = 1; bit <= MAC_MLS_MAX_COMPARTMENTS; bit++)
|
|
|
|
if (!MAC_MLS_BIT_TEST(bit,
|
|
|
|
a->mme_compartments) &&
|
|
|
|
MAC_MLS_BIT_TEST(bit, b->mme_compartments))
|
|
|
|
return (0);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (a->mme_level >= b->mme_level);
|
|
|
|
|
|
|
|
default:
|
|
|
|
panic("mac_mls_dominate_element: b->mme_type invalid");
|
|
|
|
}
|
|
|
|
|
|
|
|
default:
|
|
|
|
panic("mac_mls_dominate_element: a->mme_type invalid");
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_range_in_range(struct mac_mls *rangea, struct mac_mls *rangeb)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (mac_mls_dominate_element(&rangeb->mm_rangehigh,
|
|
|
|
&rangea->mm_rangehigh) &&
|
|
|
|
mac_mls_dominate_element(&rangea->mm_rangelow,
|
|
|
|
&rangeb->mm_rangelow));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_effective_in_range(struct mac_mls *effective, struct mac_mls *range)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
KASSERT((effective->mm_flags & MAC_MLS_FLAG_EFFECTIVE) != 0,
|
|
|
|
("mac_mls_effective_in_range: a not effective"));
|
2002-09-21 18:29:37 +00:00
|
|
|
KASSERT((range->mm_flags & MAC_MLS_FLAG_RANGE) != 0,
|
2004-07-16 02:03:50 +00:00
|
|
|
("mac_mls_effective_in_range: b not range"));
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
return (mac_mls_dominate_element(&range->mm_rangehigh,
|
2004-07-16 02:03:50 +00:00
|
|
|
&effective->mm_effective) &&
|
|
|
|
mac_mls_dominate_element(&effective->mm_effective,
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
&range->mm_rangelow));
|
|
|
|
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_dominate_effective(struct mac_mls *a, struct mac_mls *b)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
2004-07-16 02:03:50 +00:00
|
|
|
KASSERT((a->mm_flags & MAC_MLS_FLAG_EFFECTIVE) != 0,
|
|
|
|
("mac_mls_dominate_effective: a not effective"));
|
|
|
|
KASSERT((b->mm_flags & MAC_MLS_FLAG_EFFECTIVE) != 0,
|
|
|
|
("mac_mls_dominate_effective: b not effective"));
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
return (mac_mls_dominate_element(&a->mm_effective, &b->mm_effective));
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_equal_element(struct mac_mls_element *a, struct mac_mls_element *b)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (a->mme_type == MAC_MLS_TYPE_EQUAL ||
|
|
|
|
b->mme_type == MAC_MLS_TYPE_EQUAL)
|
|
|
|
return (1);
|
|
|
|
|
|
|
|
return (a->mme_type == b->mme_type && a->mme_level == b->mme_level);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_equal_effective(struct mac_mls *a, struct mac_mls *b)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
KASSERT((a->mm_flags & MAC_MLS_FLAG_EFFECTIVE) != 0,
|
|
|
|
("mac_mls_equal_effective: a not effective"));
|
|
|
|
KASSERT((b->mm_flags & MAC_MLS_FLAG_EFFECTIVE) != 0,
|
|
|
|
("mac_mls_equal_effective: b not effective"));
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
return (mac_mls_equal_element(&a->mm_effective, &b->mm_effective));
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
2002-10-21 16:35:54 +00:00
|
|
|
static int
|
|
|
|
mac_mls_contains_equal(struct mac_mls *mac_mls)
|
|
|
|
{
|
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (mac_mls->mm_flags & MAC_MLS_FLAG_EFFECTIVE)
|
|
|
|
if (mac_mls->mm_effective.mme_type == MAC_MLS_TYPE_EQUAL)
|
2002-10-21 16:35:54 +00:00
|
|
|
return (1);
|
|
|
|
|
|
|
|
if (mac_mls->mm_flags & MAC_MLS_FLAG_RANGE) {
|
|
|
|
if (mac_mls->mm_rangelow.mme_type == MAC_MLS_TYPE_EQUAL)
|
|
|
|
return (1);
|
|
|
|
if (mac_mls->mm_rangehigh.mme_type == MAC_MLS_TYPE_EQUAL)
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2003-07-31 20:00:06 +00:00
|
|
|
mac_mls_subject_privileged(struct mac_mls *mac_mls)
|
2002-10-21 16:35:54 +00:00
|
|
|
{
|
|
|
|
|
2003-07-31 20:00:06 +00:00
|
|
|
KASSERT((mac_mls->mm_flags & MAC_MLS_FLAGS_BOTH) ==
|
|
|
|
MAC_MLS_FLAGS_BOTH,
|
|
|
|
("mac_mls_subject_privileged: subject doesn't have both labels"));
|
2002-10-21 16:35:54 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
/* If the effective is EQUAL, it's ok. */
|
|
|
|
if (mac_mls->mm_effective.mme_type == MAC_MLS_TYPE_EQUAL)
|
2002-10-21 16:35:54 +00:00
|
|
|
return (0);
|
|
|
|
|
|
|
|
/* If either range endpoint is EQUAL, it's ok. */
|
|
|
|
if (mac_mls->mm_rangelow.mme_type == MAC_MLS_TYPE_EQUAL ||
|
|
|
|
mac_mls->mm_rangehigh.mme_type == MAC_MLS_TYPE_EQUAL)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
/* If the range is low-high, it's ok. */
|
|
|
|
if (mac_mls->mm_rangelow.mme_type == MAC_MLS_TYPE_LOW &&
|
|
|
|
mac_mls->mm_rangehigh.mme_type == MAC_MLS_TYPE_HIGH)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
/* It's not ok. */
|
|
|
|
return (EPERM);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static int
|
|
|
|
mac_mls_valid(struct mac_mls *mac_mls)
|
|
|
|
{
|
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (mac_mls->mm_flags & MAC_MLS_FLAG_EFFECTIVE) {
|
|
|
|
switch (mac_mls->mm_effective.mme_type) {
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
case MAC_MLS_TYPE_LEVEL:
|
|
|
|
break;
|
|
|
|
|
|
|
|
case MAC_MLS_TYPE_EQUAL:
|
|
|
|
case MAC_MLS_TYPE_HIGH:
|
|
|
|
case MAC_MLS_TYPE_LOW:
|
2004-07-16 02:03:50 +00:00
|
|
|
if (mac_mls->mm_effective.mme_level != 0 ||
|
2002-10-21 18:42:01 +00:00
|
|
|
!MAC_MLS_BIT_SET_EMPTY(
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls->mm_effective.mme_compartments))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EINVAL);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
} else {
|
2004-07-16 02:03:50 +00:00
|
|
|
if (mac_mls->mm_effective.mme_type != MAC_MLS_TYPE_UNDEF)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mac_mls->mm_flags & MAC_MLS_FLAG_RANGE) {
|
|
|
|
switch (mac_mls->mm_rangelow.mme_type) {
|
|
|
|
case MAC_MLS_TYPE_LEVEL:
|
|
|
|
break;
|
|
|
|
|
|
|
|
case MAC_MLS_TYPE_EQUAL:
|
|
|
|
case MAC_MLS_TYPE_HIGH:
|
|
|
|
case MAC_MLS_TYPE_LOW:
|
2002-10-21 18:42:01 +00:00
|
|
|
if (mac_mls->mm_rangelow.mme_level != 0 ||
|
|
|
|
!MAC_MLS_BIT_SET_EMPTY(
|
|
|
|
mac_mls->mm_rangelow.mme_compartments))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EINVAL);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (mac_mls->mm_rangehigh.mme_type) {
|
|
|
|
case MAC_MLS_TYPE_LEVEL:
|
|
|
|
break;
|
|
|
|
|
|
|
|
case MAC_MLS_TYPE_EQUAL:
|
|
|
|
case MAC_MLS_TYPE_HIGH:
|
|
|
|
case MAC_MLS_TYPE_LOW:
|
2002-10-21 18:42:01 +00:00
|
|
|
if (mac_mls->mm_rangehigh.mme_level != 0 ||
|
|
|
|
!MAC_MLS_BIT_SET_EMPTY(
|
|
|
|
mac_mls->mm_rangehigh.mme_compartments))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EINVAL);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
if (!mac_mls_dominate_element(&mac_mls->mm_rangehigh,
|
|
|
|
&mac_mls->mm_rangelow))
|
|
|
|
return (EINVAL);
|
|
|
|
} else {
|
|
|
|
if (mac_mls->mm_rangelow.mme_type != MAC_MLS_TYPE_UNDEF ||
|
|
|
|
mac_mls->mm_rangehigh.mme_type != MAC_MLS_TYPE_UNDEF)
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_mls_set_range(struct mac_mls *mac_mls, u_short typelow,
|
2002-10-21 18:42:01 +00:00
|
|
|
u_short levellow, u_char *compartmentslow, u_short typehigh,
|
|
|
|
u_short levelhigh, u_char *compartmentshigh)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
mac_mls->mm_rangelow.mme_type = typelow;
|
|
|
|
mac_mls->mm_rangelow.mme_level = levellow;
|
2002-10-21 18:42:01 +00:00
|
|
|
if (compartmentslow != NULL)
|
|
|
|
memcpy(mac_mls->mm_rangelow.mme_compartments,
|
|
|
|
compartmentslow,
|
|
|
|
sizeof(mac_mls->mm_rangelow.mme_compartments));
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
mac_mls->mm_rangehigh.mme_type = typehigh;
|
|
|
|
mac_mls->mm_rangehigh.mme_level = levelhigh;
|
2002-10-21 18:42:01 +00:00
|
|
|
if (compartmentshigh != NULL)
|
|
|
|
memcpy(mac_mls->mm_rangehigh.mme_compartments,
|
|
|
|
compartmentshigh,
|
|
|
|
sizeof(mac_mls->mm_rangehigh.mme_compartments));
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
mac_mls->mm_flags |= MAC_MLS_FLAG_RANGE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_set_effective(struct mac_mls *mac_mls, u_short type, u_short level,
|
2002-10-21 18:42:01 +00:00
|
|
|
u_char *compartments)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls->mm_effective.mme_type = type;
|
|
|
|
mac_mls->mm_effective.mme_level = level;
|
2002-10-21 18:42:01 +00:00
|
|
|
if (compartments != NULL)
|
2004-07-16 02:03:50 +00:00
|
|
|
memcpy(mac_mls->mm_effective.mme_compartments, compartments,
|
|
|
|
sizeof(mac_mls->mm_effective.mme_compartments));
|
|
|
|
mac_mls->mm_flags |= MAC_MLS_FLAG_EFFECTIVE;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_mls_copy_range(struct mac_mls *labelfrom, struct mac_mls *labelto)
|
|
|
|
{
|
2002-10-21 18:42:01 +00:00
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
KASSERT((labelfrom->mm_flags & MAC_MLS_FLAG_RANGE) != 0,
|
|
|
|
("mac_mls_copy_range: labelfrom not range"));
|
|
|
|
|
|
|
|
labelto->mm_rangelow = labelfrom->mm_rangelow;
|
|
|
|
labelto->mm_rangehigh = labelfrom->mm_rangehigh;
|
|
|
|
labelto->mm_flags |= MAC_MLS_FLAG_RANGE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(struct mac_mls *labelfrom, struct mac_mls *labelto)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
KASSERT((labelfrom->mm_flags & MAC_MLS_FLAG_EFFECTIVE) != 0,
|
|
|
|
("mac_mls_copy_effective: labelfrom not effective"));
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
labelto->mm_effective = labelfrom->mm_effective;
|
|
|
|
labelto->mm_flags |= MAC_MLS_FLAG_EFFECTIVE;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
2002-10-21 20:55:39 +00:00
|
|
|
static void
|
|
|
|
mac_mls_copy(struct mac_mls *source, struct mac_mls *dest)
|
|
|
|
{
|
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (source->mm_flags & MAC_MLS_FLAG_EFFECTIVE)
|
|
|
|
mac_mls_copy_effective(source, dest);
|
2002-10-21 20:55:39 +00:00
|
|
|
if (source->mm_flags & MAC_MLS_FLAG_RANGE)
|
|
|
|
mac_mls_copy_range(source, dest);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
/*
|
|
|
|
* Policy module operations.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_mls_init(struct mac_policy_conf *conf)
|
|
|
|
{
|
|
|
|
|
2003-11-18 04:11:52 +00:00
|
|
|
zone_mls = uma_zcreate("mac_mls", sizeof(struct mac_mls), NULL,
|
|
|
|
NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Label operations.
|
|
|
|
*/
|
|
|
|
static void
|
Begin another merge from the TrustedBSD MAC branch:
- Change mpo_init_foo(obj, label) and mpo_destroy_foo(obj, label) policy
entry points to mpo_init_foo_label(label) and
mpo_destroy_foo_label(label). This will permit the use of the same
entry points for holding temporary type-specific label during
internalization and externalization, as well as for caching purposes.
- Because of this, break out mpo_{init,destroy}_socket() and
mpo_{init,destroy}_mount() into seperate entry points for socket
main/peer labels and mount main/fs labels.
- Since the prototype for label initialization is the same across almost
all entry points, implement these entry points using common
implementations for Biba, MLS, and Test, reducing the number of
almost identical looking functions.
This simplifies policy implementation, as well as preparing us for the
merge of the new flexible userland API for managing labels on objects.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-05 15:10:00 +00:00
|
|
|
mac_mls_init_label(struct label *label)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
|
2004-07-28 07:01:33 +00:00
|
|
|
SLOT_SET(label, mls_alloc(M_WAITOK));
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
Begin another merge from the TrustedBSD MAC branch:
- Change mpo_init_foo(obj, label) and mpo_destroy_foo(obj, label) policy
entry points to mpo_init_foo_label(label) and
mpo_destroy_foo_label(label). This will permit the use of the same
entry points for holding temporary type-specific label during
internalization and externalization, as well as for caching purposes.
- Because of this, break out mpo_{init,destroy}_socket() and
mpo_{init,destroy}_mount() into seperate entry points for socket
main/peer labels and mount main/fs labels.
- Since the prototype for label initialization is the same across almost
all entry points, implement these entry points using common
implementations for Biba, MLS, and Test, reducing the number of
almost identical looking functions.
This simplifies policy implementation, as well as preparing us for the
merge of the new flexible userland API for managing labels on objects.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-05 15:10:00 +00:00
|
|
|
mac_mls_init_label_waitcheck(struct label *label, int flag)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
|
2004-07-28 07:01:33 +00:00
|
|
|
SLOT_SET(label, mls_alloc(flag));
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
if (SLOT(label) == NULL)
|
|
|
|
return (ENOMEM);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
Begin another merge from the TrustedBSD MAC branch:
- Change mpo_init_foo(obj, label) and mpo_destroy_foo(obj, label) policy
entry points to mpo_init_foo_label(label) and
mpo_destroy_foo_label(label). This will permit the use of the same
entry points for holding temporary type-specific label during
internalization and externalization, as well as for caching purposes.
- Because of this, break out mpo_{init,destroy}_socket() and
mpo_{init,destroy}_mount() into seperate entry points for socket
main/peer labels and mount main/fs labels.
- Since the prototype for label initialization is the same across almost
all entry points, implement these entry points using common
implementations for Biba, MLS, and Test, reducing the number of
almost identical looking functions.
This simplifies policy implementation, as well as preparing us for the
merge of the new flexible userland API for managing labels on objects.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-05 15:10:00 +00:00
|
|
|
mac_mls_destroy_label(struct label *label)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
mls_free(SLOT(label));
|
2004-07-28 07:01:33 +00:00
|
|
|
SLOT_SET(label, NULL);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
2002-10-22 14:31:34 +00:00
|
|
|
/*
|
2003-05-31 19:01:44 +00:00
|
|
|
* mac_mls_element_to_string() accepts an sbuf and MLS element. It
|
|
|
|
* converts the MLS element to a string and stores the result in the
|
|
|
|
* sbuf; if there isn't space in the sbuf, -1 is returned.
|
2002-10-22 14:31:34 +00:00
|
|
|
*/
|
2003-05-31 19:01:44 +00:00
|
|
|
static int
|
|
|
|
mac_mls_element_to_string(struct sbuf *sb, struct mac_mls_element *element)
|
2002-10-22 14:31:34 +00:00
|
|
|
{
|
2003-05-31 19:01:44 +00:00
|
|
|
int i, first;
|
2002-10-22 14:31:34 +00:00
|
|
|
|
|
|
|
switch (element->mme_type) {
|
|
|
|
case MAC_MLS_TYPE_HIGH:
|
2003-05-31 19:01:44 +00:00
|
|
|
return (sbuf_printf(sb, "high"));
|
2002-10-22 14:31:34 +00:00
|
|
|
|
|
|
|
case MAC_MLS_TYPE_LOW:
|
2003-05-31 19:01:44 +00:00
|
|
|
return (sbuf_printf(sb, "low"));
|
2002-10-22 14:31:34 +00:00
|
|
|
|
|
|
|
case MAC_MLS_TYPE_EQUAL:
|
2003-05-31 19:01:44 +00:00
|
|
|
return (sbuf_printf(sb, "equal"));
|
2002-10-22 14:31:34 +00:00
|
|
|
|
|
|
|
case MAC_MLS_TYPE_LEVEL:
|
2003-05-31 19:01:44 +00:00
|
|
|
if (sbuf_printf(sb, "%d", element->mme_level) == -1)
|
|
|
|
return (-1);
|
|
|
|
|
|
|
|
first = 1;
|
|
|
|
for (i = 1; i <= MAC_MLS_MAX_COMPARTMENTS; i++) {
|
|
|
|
if (MAC_MLS_BIT_TEST(i, element->mme_compartments)) {
|
|
|
|
if (first) {
|
|
|
|
if (sbuf_putc(sb, ':') == -1)
|
|
|
|
return (-1);
|
|
|
|
if (sbuf_printf(sb, "%d", i) == -1)
|
|
|
|
return (-1);
|
|
|
|
first = 0;
|
|
|
|
} else {
|
|
|
|
if (sbuf_printf(sb, "+%d", i) == -1)
|
|
|
|
return (-1);
|
|
|
|
}
|
|
|
|
}
|
2002-10-22 14:31:34 +00:00
|
|
|
}
|
2003-05-31 19:01:44 +00:00
|
|
|
return (0);
|
2002-10-22 14:31:34 +00:00
|
|
|
|
|
|
|
default:
|
|
|
|
panic("mac_mls_element_to_string: invalid type (%d)",
|
|
|
|
element->mme_type);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2003-05-31 19:01:44 +00:00
|
|
|
/*
|
2003-06-23 01:26:34 +00:00
|
|
|
* mac_mls_to_string() converts an MLS label to a string, and places
|
|
|
|
* the results in the passed sbuf. It returns 0 on success, or EINVAL
|
|
|
|
* if there isn't room in the sbuf. Note: the sbuf will be modified
|
|
|
|
* even in a failure case, so the caller may need to revert the sbuf
|
|
|
|
* by restoring the offset if that's undesired.
|
2003-05-31 19:01:44 +00:00
|
|
|
*/
|
|
|
|
static int
|
2003-06-23 01:26:34 +00:00
|
|
|
mac_mls_to_string(struct sbuf *sb, struct mac_mls *mac_mls)
|
2002-10-22 14:31:34 +00:00
|
|
|
{
|
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (mac_mls->mm_flags & MAC_MLS_FLAG_EFFECTIVE) {
|
|
|
|
if (mac_mls_element_to_string(sb, &mac_mls->mm_effective)
|
2003-05-31 19:01:44 +00:00
|
|
|
== -1)
|
2002-10-22 14:31:34 +00:00
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mac_mls->mm_flags & MAC_MLS_FLAG_RANGE) {
|
2003-06-23 01:26:34 +00:00
|
|
|
if (sbuf_putc(sb, '(') == -1)
|
2002-10-22 14:31:34 +00:00
|
|
|
return (EINVAL);
|
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
if (mac_mls_element_to_string(sb, &mac_mls->mm_rangelow)
|
2003-05-31 19:01:44 +00:00
|
|
|
== -1)
|
2002-10-22 14:31:34 +00:00
|
|
|
return (EINVAL);
|
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
if (sbuf_putc(sb, '-') == -1)
|
2002-10-22 14:31:34 +00:00
|
|
|
return (EINVAL);
|
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
if (mac_mls_element_to_string(sb, &mac_mls->mm_rangehigh)
|
2003-05-31 19:01:44 +00:00
|
|
|
== -1)
|
2002-10-22 14:31:34 +00:00
|
|
|
return (EINVAL);
|
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
if (sbuf_putc(sb, ')') == -1)
|
2002-10-22 14:31:34 +00:00
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_externalize_label(struct label *label, char *element_name,
|
2003-06-23 01:26:34 +00:00
|
|
|
struct sbuf *sb, int *claimed)
|
2002-10-22 14:31:34 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *mac_mls;
|
|
|
|
|
|
|
|
if (strcmp(MAC_MLS_LABEL_NAME, element_name) != 0)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
(*claimed)++;
|
|
|
|
|
|
|
|
mac_mls = SLOT(label);
|
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
return (mac_mls_to_string(sb, mac_mls));
|
2002-10-22 14:31:34 +00:00
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static int
|
2002-10-22 14:31:34 +00:00
|
|
|
mac_mls_parse_element(struct mac_mls_element *element, char *string)
|
|
|
|
{
|
2003-05-29 22:51:52 +00:00
|
|
|
char *compartment, *end, *level;
|
|
|
|
int value;
|
2002-10-22 14:31:34 +00:00
|
|
|
|
|
|
|
if (strcmp(string, "high") == 0 ||
|
|
|
|
strcmp(string, "hi") == 0) {
|
|
|
|
element->mme_type = MAC_MLS_TYPE_HIGH;
|
|
|
|
element->mme_level = MAC_MLS_TYPE_UNDEF;
|
|
|
|
} else if (strcmp(string, "low") == 0 ||
|
|
|
|
strcmp(string, "lo") == 0) {
|
|
|
|
element->mme_type = MAC_MLS_TYPE_LOW;
|
|
|
|
element->mme_level = MAC_MLS_TYPE_UNDEF;
|
|
|
|
} else if (strcmp(string, "equal") == 0 ||
|
|
|
|
strcmp(string, "eq") == 0) {
|
|
|
|
element->mme_type = MAC_MLS_TYPE_EQUAL;
|
|
|
|
element->mme_level = MAC_MLS_TYPE_UNDEF;
|
|
|
|
} else {
|
|
|
|
element->mme_type = MAC_MLS_TYPE_LEVEL;
|
|
|
|
|
2003-05-29 22:51:52 +00:00
|
|
|
/*
|
|
|
|
* Numeric level piece of the element.
|
|
|
|
*/
|
|
|
|
level = strsep(&string, ":");
|
|
|
|
value = strtol(level, &end, 10);
|
|
|
|
if (end == level || *end != '\0')
|
|
|
|
return (EINVAL);
|
|
|
|
if (value < 0 || value > 65535)
|
|
|
|
return (EINVAL);
|
|
|
|
element->mme_level = value;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Optional compartment piece of the element. If none
|
|
|
|
* are included, we assume that the label has no
|
|
|
|
* compartments.
|
|
|
|
*/
|
|
|
|
if (string == NULL)
|
|
|
|
return (0);
|
|
|
|
if (*string == '\0')
|
|
|
|
return (0);
|
2002-10-22 14:31:34 +00:00
|
|
|
|
2003-05-29 22:51:52 +00:00
|
|
|
while ((compartment = strsep(&string, "+")) != NULL) {
|
|
|
|
value = strtol(compartment, &end, 10);
|
|
|
|
if (compartment == end || *end != '\0')
|
2002-10-22 14:31:34 +00:00
|
|
|
return (EINVAL);
|
2003-05-29 22:51:52 +00:00
|
|
|
if (value < 1 || value > MAC_MLS_MAX_COMPARTMENTS)
|
2002-10-22 14:31:34 +00:00
|
|
|
return (EINVAL);
|
2003-05-29 22:51:52 +00:00
|
|
|
MAC_MLS_BIT_SET(value, element->mme_compartments);
|
2002-10-22 14:31:34 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note: destructively consumes the string, make a local copy before
|
|
|
|
* calling if that's a problem.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
mac_mls_parse(struct mac_mls *mac_mls, char *string)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
2004-07-16 02:03:50 +00:00
|
|
|
char *rangehigh, *rangelow, *effective;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
int error;
|
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
effective = strsep(&string, "(");
|
|
|
|
if (*effective == '\0')
|
|
|
|
effective = NULL;
|
2003-05-29 22:51:52 +00:00
|
|
|
|
|
|
|
if (string != NULL) {
|
|
|
|
rangelow = strsep(&string, "-");
|
|
|
|
if (string == NULL)
|
2002-10-22 14:31:34 +00:00
|
|
|
return (EINVAL);
|
2003-05-29 22:51:52 +00:00
|
|
|
rangehigh = strsep(&string, ")");
|
|
|
|
if (string == NULL)
|
2002-10-22 14:31:34 +00:00
|
|
|
return (EINVAL);
|
2003-05-29 22:51:52 +00:00
|
|
|
if (*string != '\0')
|
2002-10-22 14:31:34 +00:00
|
|
|
return (EINVAL);
|
2003-05-30 17:02:36 +00:00
|
|
|
} else {
|
|
|
|
rangelow = NULL;
|
|
|
|
rangehigh = NULL;
|
2002-10-22 14:31:34 +00:00
|
|
|
}
|
2003-05-29 22:51:52 +00:00
|
|
|
|
2002-10-22 14:31:34 +00:00
|
|
|
KASSERT((rangelow != NULL && rangehigh != NULL) ||
|
|
|
|
(rangelow == NULL && rangehigh == NULL),
|
2003-05-29 22:51:52 +00:00
|
|
|
("mac_mls_parse: range mismatch"));
|
2002-10-22 14:31:34 +00:00
|
|
|
|
|
|
|
bzero(mac_mls, sizeof(*mac_mls));
|
2004-07-16 02:03:50 +00:00
|
|
|
if (effective != NULL) {
|
|
|
|
error = mac_mls_parse_element(&mac_mls->mm_effective, effective);
|
2002-10-22 14:31:34 +00:00
|
|
|
if (error)
|
|
|
|
return (error);
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls->mm_flags |= MAC_MLS_FLAG_EFFECTIVE;
|
2002-10-22 14:31:34 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (rangelow != NULL) {
|
|
|
|
error = mac_mls_parse_element(&mac_mls->mm_rangelow,
|
|
|
|
rangelow);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
error = mac_mls_parse_element(&mac_mls->mm_rangehigh,
|
|
|
|
rangehigh);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
mac_mls->mm_flags |= MAC_MLS_FLAG_RANGE;
|
|
|
|
}
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
error = mac_mls_valid(mac_mls);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
2002-10-22 14:31:34 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_internalize_label(struct label *label, char *element_name,
|
|
|
|
char *element_data, int *claimed)
|
|
|
|
{
|
|
|
|
struct mac_mls *mac_mls, mac_mls_temp;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
if (strcmp(MAC_MLS_LABEL_NAME, element_name) != 0)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
(*claimed)++;
|
|
|
|
|
|
|
|
error = mac_mls_parse(&mac_mls_temp, element_data);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
mac_mls = SLOT(label);
|
|
|
|
*mac_mls = mac_mls_temp;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2002-10-22 14:31:34 +00:00
|
|
|
static void
|
|
|
|
mac_mls_copy_label(struct label *src, struct label *dest)
|
|
|
|
{
|
|
|
|
|
|
|
|
*SLOT(dest) = *SLOT(src);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
/*
|
|
|
|
* Labeling event operations: file system objects, and things that look
|
|
|
|
* a lot like file system objects.
|
|
|
|
*/
|
|
|
|
static void
|
When devfs cloning takes place, provide access to the credential of the
process that caused the clone event to take place for the device driver
creating the device. This allows cloned device drivers to adapt the
device node based on security aspects of the process, such as the uid,
gid, and MAC label.
- Add a cred reference to struct cdev, so that when a device node is
instantiated as a vnode, the cloning credential can be exposed to
MAC.
- Add make_dev_cred(), a version of make_dev() that additionally
accepts the credential to stick in the struct cdev. Implement it and
make_dev() in terms of a back-end make_dev_credv().
- Add a new event handler, dev_clone_cred, which can be registered to
receive the credential instead of dev_clone, if desired.
- Modify the MAC entry point mac_create_devfs_device() to accept an
optional credential pointer (may be NULL), so that MAC policies can
inspect and act on the label or other elements of the credential
when initializing the skeleton device protections.
- Modify tty_pty.c to register clone_dev_cred and invoke make_dev_cred(),
so that the pty clone credential is exposed to the MAC Framework.
While currently primarily focussed on MAC policies, this change is also
a prerequisite for changes to allow ptys to be instantiated with the UID
of the process looking up the pty. This requires further changes to the
pty driver -- in particular, to immediately recycle pty nodes on last
close so that the credential-related state can be recreated on next
lookup.
Submitted by: Andrew Reisse <andrew.reisse@sparta.com>
Obtained from: TrustedBSD Project
Sponsored by: SPAWAR, SPARTA
MFC after: 1 week
MFC note: Merge to 6.x, but not 5.x for ABI reasons
2005-07-14 10:22:09 +00:00
|
|
|
mac_mls_create_devfs_device(struct ucred *cred, struct mount *mp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct cdev *dev, struct devfs_dirent *de, struct label *delabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *mac_mls;
|
|
|
|
int mls_type;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls = SLOT(delabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
if (strcmp(dev->si_name, "null") == 0 ||
|
|
|
|
strcmp(dev->si_name, "zero") == 0 ||
|
|
|
|
strcmp(dev->si_name, "random") == 0 ||
|
|
|
|
strncmp(dev->si_name, "fd/", strlen("fd/")) == 0)
|
|
|
|
mls_type = MAC_MLS_TYPE_EQUAL;
|
|
|
|
else if (strcmp(dev->si_name, "kmem") == 0 ||
|
|
|
|
strcmp(dev->si_name, "mem") == 0)
|
|
|
|
mls_type = MAC_MLS_TYPE_HIGH;
|
2002-10-21 04:15:40 +00:00
|
|
|
else if (ptys_equal &&
|
|
|
|
(strncmp(dev->si_name, "ttyp", strlen("ttyp")) == 0 ||
|
|
|
|
strncmp(dev->si_name, "ptyp", strlen("ptyp")) == 0))
|
|
|
|
mls_type = MAC_MLS_TYPE_EQUAL;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
else
|
|
|
|
mls_type = MAC_MLS_TYPE_LOW;
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_set_effective(mac_mls, mls_type, 0, NULL);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2002-12-09 03:44:28 +00:00
|
|
|
mac_mls_create_devfs_directory(struct mount *mp, char *dirname,
|
2007-04-23 13:15:23 +00:00
|
|
|
int dirnamelen, struct devfs_dirent *de, struct label *delabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *mac_mls;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls = SLOT(delabel);
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_set_effective(mac_mls, MAC_MLS_TYPE_LOW, 0, NULL);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
2002-10-05 18:56:25 +00:00
|
|
|
static void
|
2002-12-09 03:44:28 +00:00
|
|
|
mac_mls_create_devfs_symlink(struct ucred *cred, struct mount *mp,
|
|
|
|
struct devfs_dirent *dd, struct label *ddlabel, struct devfs_dirent *de,
|
2003-11-12 15:09:39 +00:00
|
|
|
struct label *delabel)
|
2002-10-05 18:56:25 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2002-10-05 18:56:25 +00:00
|
|
|
dest = SLOT(delabel);
|
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
2002-10-05 18:56:25 +00:00
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static void
|
|
|
|
mac_mls_create_mount(struct ucred *cred, struct mount *mp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *mplabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(mplabel);
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_mls_relabel_vnode(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, struct label *label)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(label);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2002-10-21 20:55:39 +00:00
|
|
|
mac_mls_copy(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:36:54 +00:00
|
|
|
mac_mls_update_devfs(struct mount *mp, struct devfs_dirent *de,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *delabel, struct vnode *vp, struct label *vplabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(vplabel);
|
|
|
|
dest = SLOT(delabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_associate_vnode_devfs(struct mount *mp, struct label *mplabel,
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
struct devfs_dirent *de, struct label *delabel, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
source = SLOT(delabel);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_associate_vnode_extattr(struct mount *mp, struct label *mplabel,
|
|
|
|
struct vnode *vp, struct label *vplabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
struct mac_mls temp, *source, *dest;
|
2002-11-02 20:16:35 +00:00
|
|
|
int buflen, error;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(mplabel);
|
|
|
|
dest = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
buflen = sizeof(temp);
|
|
|
|
bzero(&temp, buflen);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
error = vn_extattr_get(vp, IO_NODELOCKED, MAC_MLS_EXTATTR_NAMESPACE,
|
|
|
|
MAC_MLS_EXTATTR_NAME, &buflen, (char *) &temp, curthread);
|
|
|
|
if (error == ENOATTR || error == EOPNOTSUPP) {
|
2007-04-22 16:18:10 +00:00
|
|
|
/* Fall back to the mntlabel. */
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
return (0);
|
|
|
|
} else if (error)
|
|
|
|
return (error);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
if (buflen != sizeof(temp)) {
|
|
|
|
printf("mac_mls_associate_vnode_extattr: bad size %d\n",
|
|
|
|
buflen);
|
|
|
|
return (EPERM);
|
|
|
|
}
|
|
|
|
if (mac_mls_valid(&temp) != 0) {
|
|
|
|
printf("mac_mls_associate_vnode_extattr: invalid\n");
|
|
|
|
return (EPERM);
|
|
|
|
}
|
2004-07-16 02:03:50 +00:00
|
|
|
if ((temp.mm_flags & MAC_MLS_FLAGS_BOTH) != MAC_MLS_FLAG_EFFECTIVE) {
|
|
|
|
printf("mac_mls_associated_vnode_extattr: not effective\n");
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
return (EPERM);
|
|
|
|
}
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(&temp, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
mac_mls_associate_vnode_singlelabel(struct mount *mp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *mplabel, struct vnode *vp, struct label *vplabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(mplabel);
|
|
|
|
dest = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
static int
|
|
|
|
mac_mls_create_vnode_extattr(struct ucred *cred, struct mount *mp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *mplabel, struct vnode *dvp, struct label *dvplabel,
|
|
|
|
struct vnode *vp, struct label *vplabel, struct componentname *cnp)
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest, temp;
|
|
|
|
size_t buflen;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
buflen = sizeof(temp);
|
|
|
|
bzero(&temp, buflen);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(vplabel);
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, &temp);
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
|
|
|
|
error = vn_extattr_set(vp, IO_NODELOCKED, MAC_MLS_EXTATTR_NAMESPACE,
|
|
|
|
MAC_MLS_EXTATTR_NAME, buflen, (char *) &temp, curthread);
|
|
|
|
if (error == 0)
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_setlabel_vnode_extattr(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, struct label *intlabel)
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, temp;
|
|
|
|
size_t buflen;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
buflen = sizeof(temp);
|
|
|
|
bzero(&temp, buflen);
|
|
|
|
|
|
|
|
source = SLOT(intlabel);
|
2004-07-16 02:03:50 +00:00
|
|
|
if ((source->mm_flags & MAC_MLS_FLAG_EFFECTIVE) == 0)
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
return (0);
|
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, &temp);
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
|
|
|
|
error = vn_extattr_set(vp, IO_NODELOCKED, MAC_MLS_EXTATTR_NAMESPACE,
|
|
|
|
MAC_MLS_EXTATTR_NAME, buflen, (char *) &temp, curthread);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
/*
|
|
|
|
* Labeling event operations: IPC object.
|
|
|
|
*/
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
static void
|
|
|
|
mac_mls_create_inpcb_from_socket(struct socket *so, struct label *solabel,
|
|
|
|
struct inpcb *inp, struct label *inplabel)
|
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(solabel);
|
|
|
|
dest = SLOT(inplabel);
|
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_create_mbuf_from_socket(struct socket *so, struct label *solabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(solabel);
|
|
|
|
dest = SLOT(mlabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_create_socket(struct ucred *cred, struct socket *so,
|
|
|
|
struct label *solabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(solabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_mls_create_pipe(struct ucred *cred, struct pipepair *pp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *pplabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(pplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
2005-05-04 10:39:15 +00:00
|
|
|
static void
|
|
|
|
mac_mls_create_posix_sem(struct ucred *cred, struct ksem *ksemptr,
|
|
|
|
struct label *ks_label)
|
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(cred->cr_label);
|
|
|
|
dest = SLOT(ks_label);
|
|
|
|
|
|
|
|
mac_mls_copy_effective(source, dest);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_create_socket_from_socket(struct socket *oldso,
|
|
|
|
struct label *oldsolabel, struct socket *newso, struct label *newsolabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(oldsolabel);
|
|
|
|
dest = SLOT(newsolabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_relabel_socket(struct ucred *cred, struct socket *so,
|
|
|
|
struct label *solabel, struct label *newlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(newlabel);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(solabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2002-10-21 20:55:39 +00:00
|
|
|
mac_mls_copy(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_mls_relabel_pipe(struct ucred *cred, struct pipepair *pp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *pplabel, struct label *newlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(newlabel);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(pplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2002-10-21 20:55:39 +00:00
|
|
|
mac_mls_copy(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_set_socket_peer_from_mbuf(struct mbuf *m, struct label *mlabel,
|
|
|
|
struct socket *so, struct label *sopeerlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(mlabel);
|
|
|
|
dest = SLOT(sopeerlabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
2005-01-22 20:11:16 +00:00
|
|
|
/*
|
|
|
|
* Labeling event operations: System V IPC objects.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_mls_create_sysv_msgmsg(struct ucred *cred, struct msqid_kernel *msqkptr,
|
|
|
|
struct label *msqlabel, struct msg *msgptr, struct label *msglabel)
|
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
/* Ignore the msgq label. */
|
2005-01-22 20:11:16 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
|
|
|
dest = SLOT(msglabel);
|
|
|
|
|
|
|
|
mac_mls_copy_effective(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_mls_create_sysv_msgqueue(struct ucred *cred, struct msqid_kernel *msqkptr,
|
|
|
|
struct label *msqlabel)
|
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(cred->cr_label);
|
|
|
|
dest = SLOT(msqlabel);
|
|
|
|
|
|
|
|
mac_mls_copy_effective(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2005-06-07 05:03:28 +00:00
|
|
|
mac_mls_create_sysv_sem(struct ucred *cred, struct semid_kernel *semakptr,
|
2005-01-22 20:11:16 +00:00
|
|
|
struct label *semalabel)
|
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(cred->cr_label);
|
|
|
|
dest = SLOT(semalabel);
|
|
|
|
|
|
|
|
mac_mls_copy_effective(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_mls_create_sysv_shm(struct ucred *cred, struct shmid_kernel *shmsegptr,
|
|
|
|
struct label *shmlabel)
|
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(cred->cr_label);
|
|
|
|
dest = SLOT(shmlabel);
|
|
|
|
|
|
|
|
mac_mls_copy_effective(source, dest);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
/*
|
|
|
|
* Labeling event operations: network objects.
|
|
|
|
*/
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_set_socket_peer_from_socket(struct socket *oldso,
|
|
|
|
struct label *oldsolabel, struct socket *newso,
|
|
|
|
struct label *newsopeerlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(oldsolabel);
|
|
|
|
dest = SLOT(newsopeerlabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_create_bpfdesc(struct ucred *cred, struct bpf_d *d,
|
|
|
|
struct label *dlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(dlabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_create_ifnet(struct ifnet *ifp, struct label *ifplabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *dest;
|
2003-02-04 21:00:51 +00:00
|
|
|
int type;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(ifplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
if (ifp->if_type == IFT_LOOP)
|
2003-02-04 21:00:51 +00:00
|
|
|
type = MAC_MLS_TYPE_EQUAL;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
else
|
2003-02-04 21:00:51 +00:00
|
|
|
type = MAC_MLS_TYPE_LOW;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_set_effective(dest, type, 0, NULL);
|
2003-02-04 21:00:51 +00:00
|
|
|
mac_mls_set_range(dest, type, 0, NULL, type, 0, NULL);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_create_ipq(struct mbuf *m, struct label *mlabel, struct ipq *ipq,
|
|
|
|
struct label *ipqlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(mlabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
dest = SLOT(ipqlabel);
|
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_mls_create_datagram_from_ipq(struct ipq *ipq, struct label *ipqlabel,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct mbuf *m, struct label *mlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(ipqlabel);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(mlabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
/* Just use the head, since we require them all to match. */
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_create_fragment(struct mbuf *m, struct label *mlabel,
|
|
|
|
struct mbuf *frag, struct label *fraglabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(mlabel);
|
|
|
|
dest = SLOT(fraglabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
2003-12-17 14:55:11 +00:00
|
|
|
static void
|
|
|
|
mac_mls_create_mbuf_from_inpcb(struct inpcb *inp, struct label *inplabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(inplabel);
|
|
|
|
dest = SLOT(mlabel);
|
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
2003-12-17 14:55:11 +00:00
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_create_mbuf_linklayer(struct ifnet *ifp, struct label *ifplabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(mlabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_set_effective(dest, MAC_MLS_TYPE_EQUAL, 0, NULL);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_create_mbuf_from_bpfdesc(struct bpf_d *d, struct label *dlabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(dlabel);
|
|
|
|
dest = SLOT(mlabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_create_mbuf_from_ifnet(struct ifnet *ifp, struct label *ifplabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(ifplabel);
|
|
|
|
dest = SLOT(mlabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_create_mbuf_multicast_encap(struct mbuf *m, struct label *mlabel,
|
|
|
|
struct ifnet *ifp, struct label *ifplabel, struct mbuf *mnew,
|
|
|
|
struct label *mnewlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(mlabel);
|
|
|
|
dest = SLOT(mnewlabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_create_mbuf_netlayer(struct mbuf *m, struct label *mlabel,
|
|
|
|
struct mbuf *mnew, struct label *mnewlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(mlabel);
|
|
|
|
dest = SLOT(mnewlabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_fragment_match(struct mbuf *m, struct label *mlabel, struct ipq *ipq,
|
|
|
|
struct label *ipqlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *a, *b;
|
|
|
|
|
|
|
|
a = SLOT(ipqlabel);
|
2007-04-23 13:15:23 +00:00
|
|
|
b = SLOT(mlabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
return (mac_mls_equal_effective(a, b));
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_relabel_ifnet(struct ucred *cred, struct ifnet *ifp,
|
|
|
|
struct label *ifplabel, struct label *newlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(newlabel);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(ifplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2002-10-21 20:55:39 +00:00
|
|
|
mac_mls_copy(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_update_ipq(struct mbuf *m, struct label *mlabel, struct ipq *ipq,
|
|
|
|
struct label *ipqlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
/* NOOP: we only accept matching labels, so no need to update */
|
|
|
|
}
|
|
|
|
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
static void
|
|
|
|
mac_mls_inpcb_sosetlabel(struct socket *so, struct label *solabel,
|
|
|
|
struct inpcb *inp, struct label *inplabel)
|
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(solabel);
|
|
|
|
dest = SLOT(inplabel);
|
|
|
|
|
|
|
|
mac_mls_copy(source, dest);
|
|
|
|
}
|
|
|
|
|
2006-09-12 04:25:13 +00:00
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_create_mbuf_from_firewall(struct mbuf *m, struct label *mlabel)
|
2006-09-12 04:25:13 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(mlabel);
|
2006-09-12 04:25:13 +00:00
|
|
|
|
|
|
|
/* XXX: where is the label for the firewall really comming from? */
|
|
|
|
mac_mls_set_effective(dest, MAC_MLS_TYPE_EQUAL, 0, NULL);
|
|
|
|
}
|
|
|
|
|
2006-12-13 06:03:22 +00:00
|
|
|
static void
|
|
|
|
mac_mls_init_syncache_from_inpcb(struct label *label, struct inpcb *inp)
|
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(inp->inp_label);
|
|
|
|
dest = SLOT(label);
|
|
|
|
mac_mls_copy_effective(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_mls_create_mbuf_from_syncache(struct label *sc_label, struct mbuf *m,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *mlabel)
|
2006-12-13 06:03:22 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(sc_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(mlabel);
|
2006-12-13 06:03:22 +00:00
|
|
|
mac_mls_copy_effective(source, dest);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
/*
|
|
|
|
* Labeling event operations: processes.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_mls_create_proc0(struct ucred *cred)
|
|
|
|
{
|
|
|
|
struct mac_mls *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
dest = SLOT(cred->cr_label);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_set_effective(dest, MAC_MLS_TYPE_EQUAL, 0, NULL);
|
2002-10-21 18:42:01 +00:00
|
|
|
mac_mls_set_range(dest, MAC_MLS_TYPE_LOW, 0, NULL, MAC_MLS_TYPE_HIGH,
|
|
|
|
0, NULL);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_mls_create_proc1(struct ucred *cred)
|
|
|
|
{
|
|
|
|
struct mac_mls *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
dest = SLOT(cred->cr_label);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
mac_mls_set_effective(dest, MAC_MLS_TYPE_LOW, 0, NULL);
|
2002-10-21 18:42:01 +00:00
|
|
|
mac_mls_set_range(dest, MAC_MLS_TYPE_LOW, 0, NULL, MAC_MLS_TYPE_HIGH,
|
|
|
|
0, NULL);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_mls_relabel_cred(struct ucred *cred, struct label *newlabel)
|
|
|
|
{
|
|
|
|
struct mac_mls *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(newlabel);
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
dest = SLOT(cred->cr_label);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2002-10-21 20:55:39 +00:00
|
|
|
mac_mls_copy(source, dest);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
2005-01-22 20:11:16 +00:00
|
|
|
/*
|
|
|
|
* Label cleanup/flush operations.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_mls_cleanup_sysv_msgmsg(struct label *msglabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
bzero(SLOT(msglabel), sizeof(struct mac_mls));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_mls_cleanup_sysv_msgqueue(struct label *msqlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
bzero(SLOT(msqlabel), sizeof(struct mac_mls));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2005-06-07 05:03:28 +00:00
|
|
|
mac_mls_cleanup_sysv_sem(struct label *semalabel)
|
2005-01-22 20:11:16 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
bzero(SLOT(semalabel), sizeof(struct mac_mls));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_mls_cleanup_sysv_shm(struct label *shmlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
bzero(SLOT(shmlabel), sizeof(struct mac_mls));
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
/*
|
|
|
|
* Access control checks.
|
|
|
|
*/
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_check_bpfdesc_receive(struct bpf_d *d, struct label *dlabel,
|
|
|
|
struct ifnet *ifp, struct label *ifplabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *a, *b;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
a = SLOT(dlabel);
|
|
|
|
b = SLOT(ifplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (mac_mls_equal_effective(a, b))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (0);
|
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_cred_relabel(struct ucred *cred, struct label *newlabel)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *new;
|
2002-10-21 16:35:54 +00:00
|
|
|
int error;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
new = SLOT(newlabel);
|
|
|
|
|
|
|
|
/*
|
2002-10-21 16:35:54 +00:00
|
|
|
* If there is an MLS label update for the credential, it may be
|
2004-07-16 02:03:50 +00:00
|
|
|
* an update of effective, range, or both.
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
*/
|
2002-10-21 16:35:54 +00:00
|
|
|
error = mls_atmostflags(new, MAC_MLS_FLAGS_BOTH);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
/*
|
2002-10-21 16:35:54 +00:00
|
|
|
* If the MLS label is to be changed, authorize as appropriate.
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
*/
|
2002-10-21 16:35:54 +00:00
|
|
|
if (new->mm_flags & MAC_MLS_FLAGS_BOTH) {
|
2003-02-04 21:28:46 +00:00
|
|
|
/*
|
2004-07-16 02:03:50 +00:00
|
|
|
* If the change request modifies both the MLS label effective
|
|
|
|
* and range, check that the new effective will be in the
|
2003-02-04 21:28:46 +00:00
|
|
|
* new range.
|
|
|
|
*/
|
|
|
|
if ((new->mm_flags & MAC_MLS_FLAGS_BOTH) ==
|
|
|
|
MAC_MLS_FLAGS_BOTH &&
|
2004-07-16 02:03:50 +00:00
|
|
|
!mac_mls_effective_in_range(new, new))
|
2003-02-04 21:28:46 +00:00
|
|
|
return (EINVAL);
|
|
|
|
|
2002-10-21 16:35:54 +00:00
|
|
|
/*
|
2004-07-16 02:03:50 +00:00
|
|
|
* To change the MLS effective label on a credential, the
|
|
|
|
* new effective label must be in the current range.
|
2002-10-21 16:35:54 +00:00
|
|
|
*/
|
2004-07-16 02:03:50 +00:00
|
|
|
if (new->mm_flags & MAC_MLS_FLAG_EFFECTIVE &&
|
|
|
|
!mac_mls_effective_in_range(new, subj))
|
2002-10-21 16:35:54 +00:00
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To change the MLS range label on a credential, the
|
2003-02-04 21:28:46 +00:00
|
|
|
* new range must be in the current range.
|
2002-10-21 16:35:54 +00:00
|
|
|
*/
|
|
|
|
if (new->mm_flags & MAC_MLS_FLAG_RANGE &&
|
2002-10-21 17:01:30 +00:00
|
|
|
!mac_mls_range_in_range(new, subj))
|
2002-10-21 16:35:54 +00:00
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To have EQUAL in any component of the new credential
|
|
|
|
* MLS label, the subject must already have EQUAL in
|
|
|
|
* their label.
|
|
|
|
*/
|
|
|
|
if (mac_mls_contains_equal(new)) {
|
2003-07-31 20:00:06 +00:00
|
|
|
error = mac_mls_subject_privileged(subj);
|
2002-10-21 16:35:54 +00:00
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_check_cred_visible(struct ucred *cr1, struct ucred *cr2)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
subj = SLOT(cr1->cr_label);
|
|
|
|
obj = SLOT(cr2->cr_label);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
/* XXX: range */
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (ESRCH);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_check_ifnet_relabel(struct ucred *cred, struct ifnet *ifp,
|
|
|
|
struct label *ifplabel, struct label *newlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *new;
|
2002-10-21 16:35:54 +00:00
|
|
|
int error;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
new = SLOT(newlabel);
|
|
|
|
|
2002-10-21 16:35:54 +00:00
|
|
|
/*
|
|
|
|
* If there is an MLS label update for the interface, it may
|
2004-07-16 02:03:50 +00:00
|
|
|
* be an update of effective, range, or both.
|
2002-10-21 16:35:54 +00:00
|
|
|
*/
|
|
|
|
error = mls_atmostflags(new, MAC_MLS_FLAGS_BOTH);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2002-10-21 16:35:54 +00:00
|
|
|
/*
|
2003-07-31 20:00:06 +00:00
|
|
|
* Relabeling network interfaces requires MLS privilege.
|
2002-10-21 16:35:54 +00:00
|
|
|
*/
|
2003-07-31 20:00:06 +00:00
|
|
|
error = mac_mls_subject_privileged(subj);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2002-10-21 16:35:54 +00:00
|
|
|
return (0);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_check_ifnet_transmit(struct ifnet *ifp, struct label *ifplabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *p, *i;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
p = SLOT(mlabel);
|
|
|
|
i = SLOT(ifplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
return (mac_mls_effective_in_range(p, i) ? 0 : EACCES);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
static int
|
|
|
|
mac_mls_check_inpcb_deliver(struct inpcb *inp, struct label *inplabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
|
|
|
{
|
|
|
|
struct mac_mls *p, *i;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
p = SLOT(mlabel);
|
|
|
|
i = SLOT(inplabel);
|
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
return (mac_mls_equal_effective(p, i) ? 0 : EACCES);
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
}
|
|
|
|
|
2005-01-22 20:11:16 +00:00
|
|
|
static int
|
|
|
|
mac_mls_check_sysv_msgrcv(struct ucred *cred, struct msg *msgptr,
|
|
|
|
struct label *msglabel)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(msglabel);
|
|
|
|
|
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_sysv_msgrmid(struct ucred *cred, struct msg *msgptr,
|
|
|
|
struct label *msglabel)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(msglabel);
|
|
|
|
|
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_sysv_msqget(struct ucred *cred, struct msqid_kernel *msqkptr,
|
|
|
|
struct label *msqklabel)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(msqklabel);
|
|
|
|
|
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_sysv_msqsnd(struct ucred *cred, struct msqid_kernel *msqkptr,
|
|
|
|
struct label *msqklabel)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(msqklabel);
|
|
|
|
|
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_sysv_msqrcv(struct ucred *cred, struct msqid_kernel *msqkptr,
|
|
|
|
struct label *msqklabel)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(msqklabel);
|
|
|
|
|
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_sysv_msqctl(struct ucred *cred, struct msqid_kernel *msqkptr,
|
|
|
|
struct label *msqklabel, int cmd)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(msqklabel);
|
|
|
|
|
|
|
|
switch(cmd) {
|
|
|
|
case IPC_RMID:
|
|
|
|
case IPC_SET:
|
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
|
|
|
return (EACCES);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case IPC_STAT:
|
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_sysv_semctl(struct ucred *cred, struct semid_kernel *semakptr,
|
|
|
|
struct label *semaklabel, int cmd)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(semaklabel);
|
|
|
|
|
|
|
|
switch(cmd) {
|
|
|
|
case IPC_RMID:
|
|
|
|
case IPC_SET:
|
|
|
|
case SETVAL:
|
|
|
|
case SETALL:
|
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
|
|
|
return (EACCES);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case IPC_STAT:
|
|
|
|
case GETVAL:
|
|
|
|
case GETPID:
|
|
|
|
case GETNCNT:
|
|
|
|
case GETZCNT:
|
|
|
|
case GETALL:
|
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_sysv_semget(struct ucred *cred, struct semid_kernel *semakptr,
|
|
|
|
struct label *semaklabel)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(semaklabel);
|
|
|
|
|
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_sysv_semop(struct ucred *cred, struct semid_kernel *semakptr,
|
|
|
|
struct label *semaklabel, size_t accesstype)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(semaklabel);
|
|
|
|
|
|
|
|
if( accesstype & SEM_R )
|
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
if( accesstype & SEM_A )
|
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_sysv_shmat(struct ucred *cred, struct shmid_kernel *shmsegptr,
|
|
|
|
struct label *shmseglabel, int shmflg)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(shmseglabel);
|
|
|
|
|
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
if ((shmflg & SHM_RDONLY) == 0)
|
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_sysv_shmctl(struct ucred *cred, struct shmid_kernel *shmsegptr,
|
|
|
|
struct label *shmseglabel, int cmd)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(shmseglabel);
|
|
|
|
|
|
|
|
switch(cmd) {
|
|
|
|
case IPC_RMID:
|
|
|
|
case IPC_SET:
|
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
|
|
|
return (EACCES);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case IPC_STAT:
|
|
|
|
case SHM_STAT:
|
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_sysv_shmget(struct ucred *cred, struct shmid_kernel *shmsegptr,
|
|
|
|
struct label *shmseglabel, int shmflg)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(shmseglabel);
|
|
|
|
|
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static int
|
|
|
|
mac_mls_check_mount_stat(struct ucred *cred, struct mount *mp,
|
|
|
|
struct label *mntlabel)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
obj = SLOT(mntlabel);
|
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_mls_check_pipe_ioctl(struct ucred *cred, struct pipepair *pp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *pplabel, unsigned long cmd, void /* caddr_t */ *data)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
2002-09-21 19:26:59 +00:00
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
if(!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
/* XXX: This will be implemented soon... */
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_mls_check_pipe_poll(struct ucred *cred, struct pipepair *pp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *pplabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(pplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
2002-08-19 16:59:37 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_mls_check_pipe_read(struct ucred *cred, struct pipepair *pp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *pplabel)
|
2002-08-19 16:59:37 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(pplabel);
|
2002-08-19 16:59:37 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
2002-08-19 16:59:37 +00:00
|
|
|
return (EACCES);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_mls_check_pipe_relabel(struct ucred *cred, struct pipepair *pp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *pplabel, struct label *newlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj, *new;
|
2002-10-21 16:35:54 +00:00
|
|
|
int error;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
new = SLOT(newlabel);
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(pplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
/*
|
2002-10-21 16:35:54 +00:00
|
|
|
* If there is an MLS label update for a pipe, it must be a
|
2004-07-16 02:03:50 +00:00
|
|
|
* effective update.
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
*/
|
2004-07-16 02:03:50 +00:00
|
|
|
error = mls_atmostflags(new, MAC_MLS_FLAG_EFFECTIVE);
|
2002-10-21 16:35:54 +00:00
|
|
|
if (error)
|
|
|
|
return (error);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
/*
|
2002-10-21 16:35:54 +00:00
|
|
|
* To perform a relabel of a pipe (MLS label or not), MLS must
|
|
|
|
* authorize the relabel.
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
*/
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_effective_in_range(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
2002-10-21 16:35:54 +00:00
|
|
|
* If the MLS label is to be changed, authorize as appropriate.
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
*/
|
2004-07-16 02:03:50 +00:00
|
|
|
if (new->mm_flags & MAC_MLS_FLAG_EFFECTIVE) {
|
2002-10-21 16:35:54 +00:00
|
|
|
/*
|
|
|
|
* To change the MLS label on a pipe, the new pipe label
|
|
|
|
* must be in the subject range.
|
|
|
|
*/
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_effective_in_range(new, subj))
|
2002-10-21 16:35:54 +00:00
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To change the MLS label on a pipe to be EQUAL, the
|
|
|
|
* subject must have appropriate privilege.
|
|
|
|
*/
|
|
|
|
if (mac_mls_contains_equal(new)) {
|
2003-07-31 20:00:06 +00:00
|
|
|
error = mac_mls_subject_privileged(subj);
|
2002-10-21 16:35:54 +00:00
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2002-08-19 16:59:37 +00:00
|
|
|
static int
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_mls_check_pipe_stat(struct ucred *cred, struct pipepair *pp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *pplabel)
|
2002-08-19 16:59:37 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(pplabel);
|
2002-08-19 16:59:37 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
2002-08-19 16:59:37 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_mls_check_pipe_write(struct ucred *cred, struct pipepair *pp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *pplabel)
|
2002-08-19 16:59:37 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(pplabel);
|
2002-08-19 16:59:37 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
2002-08-19 16:59:37 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2005-05-04 10:39:15 +00:00
|
|
|
static int
|
|
|
|
mac_mls_check_posix_sem_write(struct ucred *cred, struct ksem *ksemptr,
|
|
|
|
struct label *ks_label)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(ks_label);
|
|
|
|
|
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_posix_sem_rdonly(struct ucred *cred, struct ksem *ksemptr,
|
|
|
|
struct label *ks_label)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(ks_label);
|
|
|
|
|
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_check_proc_debug(struct ucred *cred, struct proc *p)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(p->p_ucred->cr_label);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
/* XXX: range checks */
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (ESRCH);
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_check_proc_sched(struct ucred *cred, struct proc *p)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
2002-09-21 19:26:59 +00:00
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(p->p_ucred->cr_label);
|
2002-09-21 19:26:59 +00:00
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
/* XXX: range checks */
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (ESRCH);
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_check_proc_signal(struct ucred *cred, struct proc *p, int signum)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
2002-09-21 19:26:59 +00:00
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(p->p_ucred->cr_label);
|
2002-09-21 19:26:59 +00:00
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
/* XXX: range checks */
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (ESRCH);
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_check_socket_deliver(struct socket *so, struct label *solabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *p, *s;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
p = SLOT(mlabel);
|
|
|
|
s = SLOT(solabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
return (mac_mls_equal_effective(p, s) ? 0 : EACCES);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_check_socket_relabel(struct ucred *cred, struct socket *so,
|
|
|
|
struct label *solabel, struct label *newlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj, *new;
|
2002-10-21 16:35:54 +00:00
|
|
|
int error;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
new = SLOT(newlabel);
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(solabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
/*
|
2002-10-21 16:35:54 +00:00
|
|
|
* If there is an MLS label update for the socket, it may be
|
2004-07-16 02:03:50 +00:00
|
|
|
* an update of effective.
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
*/
|
2004-07-16 02:03:50 +00:00
|
|
|
error = mls_atmostflags(new, MAC_MLS_FLAG_EFFECTIVE);
|
2002-10-21 16:35:54 +00:00
|
|
|
if (error)
|
|
|
|
return (error);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
/*
|
2004-07-16 02:03:50 +00:00
|
|
|
* To relabel a socket, the old socket effective must be in the subject
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
* range.
|
|
|
|
*/
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_effective_in_range(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
2002-10-21 16:35:54 +00:00
|
|
|
* If the MLS label is to be changed, authorize as appropriate.
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
*/
|
2004-07-16 02:03:50 +00:00
|
|
|
if (new->mm_flags & MAC_MLS_FLAG_EFFECTIVE) {
|
2002-10-21 16:35:54 +00:00
|
|
|
/*
|
2004-07-16 02:03:50 +00:00
|
|
|
* To relabel a socket, the new socket effective must be in
|
2002-10-21 16:35:54 +00:00
|
|
|
* the subject range.
|
|
|
|
*/
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_effective_in_range(new, subj))
|
2002-10-21 16:35:54 +00:00
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To change the MLS label on the socket to contain EQUAL,
|
|
|
|
* the subject must have appropriate privilege.
|
|
|
|
*/
|
|
|
|
if (mac_mls_contains_equal(new)) {
|
2003-07-31 20:00:06 +00:00
|
|
|
error = mac_mls_subject_privileged(subj);
|
2002-10-21 16:35:54 +00:00
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_mls_check_socket_visible(struct ucred *cred, struct socket *so,
|
|
|
|
struct label *solabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(solabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (ENOENT);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2007-04-21 22:08:48 +00:00
|
|
|
static int
|
|
|
|
mac_mls_check_system_acct(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel)
|
2007-04-21 22:08:48 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2007-04-21 22:08:48 +00:00
|
|
|
|
|
|
|
if (!mac_mls_dominate_effective(obj, subj) ||
|
|
|
|
!mac_mls_dominate_effective(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_system_auditctl(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel)
|
2007-04-21 22:08:48 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2007-04-21 22:08:48 +00:00
|
|
|
|
|
|
|
if (!mac_mls_dominate_effective(obj, subj) ||
|
|
|
|
!mac_mls_dominate_effective(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2003-03-25 01:16:10 +00:00
|
|
|
static int
|
|
|
|
mac_mls_check_system_swapon(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel)
|
2003-03-25 01:16:10 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2003-03-25 01:16:10 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj) ||
|
|
|
|
!mac_mls_dominate_effective(subj, obj))
|
2003-03-25 01:16:10 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_chdir(struct ucred *cred, struct vnode *dvp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *dvplabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(dvplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_chroot(struct ucred *cred, struct vnode *dvp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *dvplabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(dvplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_create(struct ucred *cred, struct vnode *dvp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *dvplabel, struct componentname *cnp, struct vattr *vap)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(dvplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_delete(struct ucred *cred, struct vnode *dvp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *dvplabel, struct vnode *vp, struct label *vplabel,
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
struct componentname *cnp)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(dvplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_deleteacl(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, acl_type_t type)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2003-08-21 14:34:54 +00:00
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_deleteextattr(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, int attrnamespace, const char *name)
|
2003-08-21 14:34:54 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2003-08-21 14:34:54 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
2003-08-21 14:34:54 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_exec(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, struct image_params *imgp,
|
2002-11-08 18:04:36 +00:00
|
|
|
struct label *execlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
2002-11-08 18:04:36 +00:00
|
|
|
struct mac_mls *subj, *obj, *exec;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
if (execlabel != NULL) {
|
|
|
|
/*
|
|
|
|
* We currently don't permit labels to be changed at
|
|
|
|
* exec-time as part of MLS, so disallow non-NULL
|
|
|
|
* MLS label elements in the execlabel.
|
|
|
|
*/
|
|
|
|
exec = SLOT(execlabel);
|
|
|
|
error = mls_atmostflags(exec, 0);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_getacl(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, acl_type_t type)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_getextattr(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, int attrnamespace, const char *name,
|
|
|
|
struct uio *uio)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2002-10-21 16:35:54 +00:00
|
|
|
static int
|
2002-10-05 18:25:48 +00:00
|
|
|
mac_mls_check_vnode_link(struct ucred *cred, struct vnode *dvp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *dvplabel, struct vnode *vp, struct label *vplabel,
|
2002-10-05 18:25:48 +00:00
|
|
|
struct componentname *cnp)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(dvplabel);
|
2002-10-05 18:25:48 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
2002-10-05 18:25:48 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(dvplabel);
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
2002-10-05 18:25:48 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2003-08-21 14:34:54 +00:00
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_listextattr(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, int attrnamespace)
|
2003-08-21 14:34:54 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2003-08-21 14:34:54 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
2003-08-21 14:34:54 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static int
|
2002-09-21 19:26:59 +00:00
|
|
|
mac_mls_check_vnode_lookup(struct ucred *cred, struct vnode *dvp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *dvplabel, struct componentname *cnp)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
2002-09-21 19:26:59 +00:00
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
2002-09-21 19:26:59 +00:00
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(dvplabel);
|
2002-09-21 19:26:59 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
2002-09-21 19:26:59 +00:00
|
|
|
return (0);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
2002-10-06 02:46:26 +00:00
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_mmap(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, int prot, int flags)
|
2002-10-06 02:46:26 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Rely on the use of open()-time protections to handle
|
|
|
|
* non-revocation cases.
|
|
|
|
*/
|
2002-10-21 18:14:30 +00:00
|
|
|
if (!mac_mls_enabled || !revocation_enabled)
|
2002-10-06 02:46:26 +00:00
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-10-06 02:46:26 +00:00
|
|
|
|
|
|
|
if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
2002-10-06 02:46:26 +00:00
|
|
|
return (EACCES);
|
|
|
|
}
|
2005-04-14 16:03:30 +00:00
|
|
|
if (((prot & VM_PROT_WRITE) != 0) && ((flags & MAP_SHARED) != 0)) {
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
2002-10-06 02:46:26 +00:00
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
|
2002-10-21 16:35:54 +00:00
|
|
|
return (0);
|
2002-10-06 02:46:26 +00:00
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_open(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, int acc_mode)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
/* XXX privilege override for admin? */
|
|
|
|
if (acc_mode & (VREAD | VEXEC | VSTAT)) {
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
if (acc_mode & (VWRITE | VAPPEND | VADMIN)) {
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2002-08-19 16:43:25 +00:00
|
|
|
static int
|
2002-08-19 19:04:53 +00:00
|
|
|
mac_mls_check_vnode_poll(struct ucred *active_cred, struct ucred *file_cred,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct vnode *vp, struct label *vplabel)
|
2002-08-19 16:43:25 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
2002-10-21 18:14:30 +00:00
|
|
|
if (!mac_mls_enabled || !revocation_enabled)
|
2002-08-19 16:43:25 +00:00
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(active_cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-08-19 16:43:25 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
2002-08-19 16:43:25 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2002-08-19 19:04:53 +00:00
|
|
|
mac_mls_check_vnode_read(struct ucred *active_cred, struct ucred *file_cred,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct vnode *vp, struct label *vplabel)
|
2002-08-19 16:43:25 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
2002-10-21 18:14:30 +00:00
|
|
|
if (!mac_mls_enabled || !revocation_enabled)
|
2002-08-19 16:43:25 +00:00
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(active_cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-08-19 16:43:25 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
2002-08-19 16:43:25 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_readdir(struct ucred *cred, struct vnode *dvp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *dvplabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(dvplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_readlink(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_relabel(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, struct label *newlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *old, *new, *subj;
|
2002-10-21 16:35:54 +00:00
|
|
|
int error;
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
old = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
new = SLOT(newlabel);
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
/*
|
2002-10-21 16:35:54 +00:00
|
|
|
* If there is an MLS label update for the vnode, it must be a
|
2004-07-16 02:03:50 +00:00
|
|
|
* effective label.
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
*/
|
2004-07-16 02:03:50 +00:00
|
|
|
error = mls_atmostflags(new, MAC_MLS_FLAG_EFFECTIVE);
|
2002-10-21 16:35:54 +00:00
|
|
|
if (error)
|
|
|
|
return (error);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
|
|
|
/*
|
2002-10-21 16:35:54 +00:00
|
|
|
* To perform a relabel of the vnode (MLS label or not), MLS must
|
|
|
|
* authorize the relabel.
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
*/
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_effective_in_range(old, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
2002-10-21 16:35:54 +00:00
|
|
|
* If the MLS label is to be changed, authorize as appropriate.
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
*/
|
2004-07-16 02:03:50 +00:00
|
|
|
if (new->mm_flags & MAC_MLS_FLAG_EFFECTIVE) {
|
2002-10-21 16:35:54 +00:00
|
|
|
/*
|
|
|
|
* To change the MLS label on a vnode, the new vnode label
|
|
|
|
* must be in the subject range.
|
|
|
|
*/
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_effective_in_range(new, subj))
|
2002-10-21 16:35:54 +00:00
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To change the MLS label on the vnode to be EQUAL,
|
|
|
|
* the subject must have appropriate privilege.
|
|
|
|
*/
|
|
|
|
if (mac_mls_contains_equal(new)) {
|
2003-07-31 20:00:06 +00:00
|
|
|
error = mac_mls_subject_privileged(subj);
|
2002-10-21 16:35:54 +00:00
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2002-10-21 16:35:54 +00:00
|
|
|
return (0);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_rename_from(struct ucred *cred, struct vnode *dvp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *dvplabel, struct vnode *vp, struct label *vplabel,
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
struct componentname *cnp)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(dvplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_rename_to(struct ucred *cred, struct vnode *dvp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *dvplabel, struct vnode *vp, struct label *vplabel,
|
|
|
|
int samedir, struct componentname *cnp)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(dvplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
if (vp != NULL) {
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_revoke(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_setacl(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, acl_type_t type, struct acl *acl)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_setextattr(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, int attrnamespace, const char *name,
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
struct uio *uio)
|
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
/* XXX: protect the MAC EA in a special way? */
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_setflags(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, u_long flags)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_setmode(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, mode_t mode)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_setowner(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, uid_t uid, gid_t gid)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_mls_check_vnode_setutimes(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, struct timespec atime, struct timespec mtime)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2002-08-19 19:04:53 +00:00
|
|
|
mac_mls_check_vnode_stat(struct ucred *active_cred, struct ucred *file_cred,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct vnode *vp, struct label *vplabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_mls_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(active_cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(subj, obj))
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2002-08-19 16:43:25 +00:00
|
|
|
static int
|
2002-08-19 19:04:53 +00:00
|
|
|
mac_mls_check_vnode_write(struct ucred *active_cred, struct ucred *file_cred,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct vnode *vp, struct label *vplabel)
|
2002-08-19 16:43:25 +00:00
|
|
|
{
|
|
|
|
struct mac_mls *subj, *obj;
|
|
|
|
|
2002-10-21 18:14:30 +00:00
|
|
|
if (!mac_mls_enabled || !revocation_enabled)
|
2002-08-19 16:43:25 +00:00
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(active_cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-08-19 16:43:25 +00:00
|
|
|
|
2004-07-16 02:03:50 +00:00
|
|
|
if (!mac_mls_dominate_effective(obj, subj))
|
2002-08-19 16:43:25 +00:00
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2006-08-26 20:13:35 +00:00
|
|
|
static void
|
|
|
|
mac_mls_associate_nfsd_label(struct ucred *cred)
|
|
|
|
{
|
|
|
|
struct mac_mls *label;
|
|
|
|
|
|
|
|
label = SLOT(cred->cr_label);
|
|
|
|
mac_mls_set_effective(label, MAC_MLS_TYPE_LOW, 0, NULL);
|
|
|
|
mac_mls_set_range(label, MAC_MLS_TYPE_LOW, 0, NULL,
|
|
|
|
MAC_MLS_TYPE_HIGH, 0, NULL);
|
|
|
|
}
|
|
|
|
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
static struct mac_policy_ops mac_mls_ops =
|
|
|
|
{
|
|
|
|
.mpo_init = mac_mls_init,
|
|
|
|
.mpo_init_bpfdesc_label = mac_mls_init_label,
|
|
|
|
.mpo_init_cred_label = mac_mls_init_label,
|
2007-04-23 13:36:54 +00:00
|
|
|
.mpo_init_devfs_label = mac_mls_init_label,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_init_ifnet_label = mac_mls_init_label,
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
.mpo_init_inpcb_label = mac_mls_init_label_waitcheck,
|
2006-12-13 06:03:22 +00:00
|
|
|
.mpo_init_syncache_label = mac_mls_init_label_waitcheck,
|
2005-01-22 20:11:16 +00:00
|
|
|
.mpo_init_sysv_msgmsg_label = mac_mls_init_label,
|
|
|
|
.mpo_init_sysv_msgqueue_label = mac_mls_init_label,
|
2005-06-07 05:03:28 +00:00
|
|
|
.mpo_init_sysv_sem_label = mac_mls_init_label,
|
2005-01-22 20:11:16 +00:00
|
|
|
.mpo_init_sysv_shm_label = mac_mls_init_label,
|
2003-03-26 15:12:03 +00:00
|
|
|
.mpo_init_ipq_label = mac_mls_init_label_waitcheck,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_init_mbuf_label = mac_mls_init_label_waitcheck,
|
|
|
|
.mpo_init_mount_label = mac_mls_init_label,
|
|
|
|
.mpo_init_pipe_label = mac_mls_init_label,
|
2005-05-04 10:39:15 +00:00
|
|
|
.mpo_init_posix_sem_label = mac_mls_init_label,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_init_socket_label = mac_mls_init_label_waitcheck,
|
|
|
|
.mpo_init_socket_peer_label = mac_mls_init_label_waitcheck,
|
|
|
|
.mpo_init_vnode_label = mac_mls_init_label,
|
|
|
|
.mpo_destroy_bpfdesc_label = mac_mls_destroy_label,
|
|
|
|
.mpo_destroy_cred_label = mac_mls_destroy_label,
|
2007-04-23 13:36:54 +00:00
|
|
|
.mpo_destroy_devfs_label = mac_mls_destroy_label,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_destroy_ifnet_label = mac_mls_destroy_label,
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
.mpo_destroy_inpcb_label = mac_mls_destroy_label,
|
2006-12-13 06:03:22 +00:00
|
|
|
.mpo_destroy_syncache_label = mac_mls_destroy_label,
|
2005-01-22 20:11:16 +00:00
|
|
|
.mpo_destroy_sysv_msgmsg_label = mac_mls_destroy_label,
|
|
|
|
.mpo_destroy_sysv_msgqueue_label = mac_mls_destroy_label,
|
2005-06-07 05:03:28 +00:00
|
|
|
.mpo_destroy_sysv_sem_label = mac_mls_destroy_label,
|
2005-01-22 20:11:16 +00:00
|
|
|
.mpo_destroy_sysv_shm_label = mac_mls_destroy_label,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_destroy_ipq_label = mac_mls_destroy_label,
|
|
|
|
.mpo_destroy_mbuf_label = mac_mls_destroy_label,
|
|
|
|
.mpo_destroy_mount_label = mac_mls_destroy_label,
|
|
|
|
.mpo_destroy_pipe_label = mac_mls_destroy_label,
|
2005-05-04 10:39:15 +00:00
|
|
|
.mpo_destroy_posix_sem_label = mac_mls_destroy_label,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_destroy_socket_label = mac_mls_destroy_label,
|
|
|
|
.mpo_destroy_socket_peer_label = mac_mls_destroy_label,
|
|
|
|
.mpo_destroy_vnode_label = mac_mls_destroy_label,
|
2003-12-06 21:48:03 +00:00
|
|
|
.mpo_copy_cred_label = mac_mls_copy_label,
|
2004-06-24 03:34:46 +00:00
|
|
|
.mpo_copy_ifnet_label = mac_mls_copy_label,
|
2003-06-02 17:21:38 +00:00
|
|
|
.mpo_copy_mbuf_label = mac_mls_copy_label,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_copy_pipe_label = mac_mls_copy_label,
|
Implement sockets support for __mac_get_fd() and __mac_set_fd()
system calls, and prefer these calls over getsockopt()/setsockopt()
for ABI reasons. When addressing UNIX domain sockets, these calls
retrieve and modify the socket label, not the label of the
rendezvous vnode.
- Create mac_copy_socket_label() entry point based on
mac_copy_pipe_label() entry point, intended to copy the socket
label into temporary storage that doesn't require a socket lock
to be held (currently Giant).
- Implement mac_copy_socket_label() for various policies.
- Expose socket label allocation, free, internalize, externalize
entry points as non-static from mac_net.c.
- Use mac_socket_label_set() in __mac_set_fd().
MAC-aware applications may now use mac_get_fd(), mac_set_fd(), and
mac_get_peer() to retrieve and set various socket labels without
directly invoking the getsockopt() interface.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-16 23:31:45 +00:00
|
|
|
.mpo_copy_socket_label = mac_mls_copy_label,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_copy_vnode_label = mac_mls_copy_label,
|
|
|
|
.mpo_externalize_cred_label = mac_mls_externalize_label,
|
|
|
|
.mpo_externalize_ifnet_label = mac_mls_externalize_label,
|
|
|
|
.mpo_externalize_pipe_label = mac_mls_externalize_label,
|
|
|
|
.mpo_externalize_socket_label = mac_mls_externalize_label,
|
|
|
|
.mpo_externalize_socket_peer_label = mac_mls_externalize_label,
|
|
|
|
.mpo_externalize_vnode_label = mac_mls_externalize_label,
|
|
|
|
.mpo_internalize_cred_label = mac_mls_internalize_label,
|
|
|
|
.mpo_internalize_ifnet_label = mac_mls_internalize_label,
|
|
|
|
.mpo_internalize_pipe_label = mac_mls_internalize_label,
|
|
|
|
.mpo_internalize_socket_label = mac_mls_internalize_label,
|
|
|
|
.mpo_internalize_vnode_label = mac_mls_internalize_label,
|
|
|
|
.mpo_create_devfs_device = mac_mls_create_devfs_device,
|
|
|
|
.mpo_create_devfs_directory = mac_mls_create_devfs_directory,
|
|
|
|
.mpo_create_devfs_symlink = mac_mls_create_devfs_symlink,
|
|
|
|
.mpo_create_mount = mac_mls_create_mount,
|
|
|
|
.mpo_relabel_vnode = mac_mls_relabel_vnode,
|
2007-04-23 13:36:54 +00:00
|
|
|
.mpo_update_devfs = mac_mls_update_devfs,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_associate_vnode_devfs = mac_mls_associate_vnode_devfs,
|
|
|
|
.mpo_associate_vnode_extattr = mac_mls_associate_vnode_extattr,
|
|
|
|
.mpo_associate_vnode_singlelabel = mac_mls_associate_vnode_singlelabel,
|
|
|
|
.mpo_create_vnode_extattr = mac_mls_create_vnode_extattr,
|
|
|
|
.mpo_setlabel_vnode_extattr = mac_mls_setlabel_vnode_extattr,
|
|
|
|
.mpo_create_mbuf_from_socket = mac_mls_create_mbuf_from_socket,
|
2006-12-13 06:03:22 +00:00
|
|
|
.mpo_create_mbuf_from_syncache = mac_mls_create_mbuf_from_syncache,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_create_pipe = mac_mls_create_pipe,
|
2005-05-04 10:39:15 +00:00
|
|
|
.mpo_create_posix_sem = mac_mls_create_posix_sem,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_create_socket = mac_mls_create_socket,
|
|
|
|
.mpo_create_socket_from_socket = mac_mls_create_socket_from_socket,
|
|
|
|
.mpo_relabel_pipe = mac_mls_relabel_pipe,
|
|
|
|
.mpo_relabel_socket = mac_mls_relabel_socket,
|
|
|
|
.mpo_set_socket_peer_from_mbuf = mac_mls_set_socket_peer_from_mbuf,
|
|
|
|
.mpo_set_socket_peer_from_socket = mac_mls_set_socket_peer_from_socket,
|
|
|
|
.mpo_create_bpfdesc = mac_mls_create_bpfdesc,
|
|
|
|
.mpo_create_datagram_from_ipq = mac_mls_create_datagram_from_ipq,
|
|
|
|
.mpo_create_fragment = mac_mls_create_fragment,
|
|
|
|
.mpo_create_ifnet = mac_mls_create_ifnet,
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
.mpo_create_inpcb_from_socket = mac_mls_create_inpcb_from_socket,
|
2006-12-13 06:03:22 +00:00
|
|
|
.mpo_init_syncache_from_inpcb = mac_mls_init_syncache_from_inpcb,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_create_ipq = mac_mls_create_ipq,
|
2005-01-22 20:11:16 +00:00
|
|
|
.mpo_create_sysv_msgmsg = mac_mls_create_sysv_msgmsg,
|
|
|
|
.mpo_create_sysv_msgqueue = mac_mls_create_sysv_msgqueue,
|
2005-06-07 05:03:28 +00:00
|
|
|
.mpo_create_sysv_sem = mac_mls_create_sysv_sem,
|
2005-01-22 20:11:16 +00:00
|
|
|
.mpo_create_sysv_shm = mac_mls_create_sysv_shm,
|
2003-12-17 14:55:11 +00:00
|
|
|
.mpo_create_mbuf_from_inpcb = mac_mls_create_mbuf_from_inpcb,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_create_mbuf_linklayer = mac_mls_create_mbuf_linklayer,
|
|
|
|
.mpo_create_mbuf_from_bpfdesc = mac_mls_create_mbuf_from_bpfdesc,
|
|
|
|
.mpo_create_mbuf_from_ifnet = mac_mls_create_mbuf_from_ifnet,
|
|
|
|
.mpo_create_mbuf_multicast_encap = mac_mls_create_mbuf_multicast_encap,
|
|
|
|
.mpo_create_mbuf_netlayer = mac_mls_create_mbuf_netlayer,
|
|
|
|
.mpo_fragment_match = mac_mls_fragment_match,
|
|
|
|
.mpo_relabel_ifnet = mac_mls_relabel_ifnet,
|
|
|
|
.mpo_update_ipq = mac_mls_update_ipq,
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
.mpo_inpcb_sosetlabel = mac_mls_inpcb_sosetlabel,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_create_proc0 = mac_mls_create_proc0,
|
|
|
|
.mpo_create_proc1 = mac_mls_create_proc1,
|
|
|
|
.mpo_relabel_cred = mac_mls_relabel_cred,
|
2005-01-22 20:11:16 +00:00
|
|
|
.mpo_cleanup_sysv_msgmsg = mac_mls_cleanup_sysv_msgmsg,
|
|
|
|
.mpo_cleanup_sysv_msgqueue = mac_mls_cleanup_sysv_msgqueue,
|
2005-06-07 05:03:28 +00:00
|
|
|
.mpo_cleanup_sysv_sem = mac_mls_cleanup_sysv_sem,
|
2005-01-22 20:11:16 +00:00
|
|
|
.mpo_cleanup_sysv_shm = mac_mls_cleanup_sysv_shm,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_check_bpfdesc_receive = mac_mls_check_bpfdesc_receive,
|
|
|
|
.mpo_check_cred_relabel = mac_mls_check_cred_relabel,
|
|
|
|
.mpo_check_cred_visible = mac_mls_check_cred_visible,
|
|
|
|
.mpo_check_ifnet_relabel = mac_mls_check_ifnet_relabel,
|
|
|
|
.mpo_check_ifnet_transmit = mac_mls_check_ifnet_transmit,
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
.mpo_check_inpcb_deliver = mac_mls_check_inpcb_deliver,
|
2005-01-22 20:11:16 +00:00
|
|
|
.mpo_check_sysv_msgrcv = mac_mls_check_sysv_msgrcv,
|
|
|
|
.mpo_check_sysv_msgrmid = mac_mls_check_sysv_msgrmid,
|
|
|
|
.mpo_check_sysv_msqget = mac_mls_check_sysv_msqget,
|
|
|
|
.mpo_check_sysv_msqsnd = mac_mls_check_sysv_msqsnd,
|
|
|
|
.mpo_check_sysv_msqrcv = mac_mls_check_sysv_msqrcv,
|
|
|
|
.mpo_check_sysv_msqctl = mac_mls_check_sysv_msqctl,
|
|
|
|
.mpo_check_sysv_semctl = mac_mls_check_sysv_semctl,
|
|
|
|
.mpo_check_sysv_semget = mac_mls_check_sysv_semget,
|
|
|
|
.mpo_check_sysv_semop = mac_mls_check_sysv_semop,
|
|
|
|
.mpo_check_sysv_shmat = mac_mls_check_sysv_shmat,
|
|
|
|
.mpo_check_sysv_shmctl = mac_mls_check_sysv_shmctl,
|
|
|
|
.mpo_check_sysv_shmget = mac_mls_check_sysv_shmget,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_check_mount_stat = mac_mls_check_mount_stat,
|
|
|
|
.mpo_check_pipe_ioctl = mac_mls_check_pipe_ioctl,
|
|
|
|
.mpo_check_pipe_poll = mac_mls_check_pipe_poll,
|
|
|
|
.mpo_check_pipe_read = mac_mls_check_pipe_read,
|
|
|
|
.mpo_check_pipe_relabel = mac_mls_check_pipe_relabel,
|
|
|
|
.mpo_check_pipe_stat = mac_mls_check_pipe_stat,
|
|
|
|
.mpo_check_pipe_write = mac_mls_check_pipe_write,
|
2005-05-04 10:39:15 +00:00
|
|
|
.mpo_check_posix_sem_destroy = mac_mls_check_posix_sem_write,
|
|
|
|
.mpo_check_posix_sem_getvalue = mac_mls_check_posix_sem_rdonly,
|
|
|
|
.mpo_check_posix_sem_open = mac_mls_check_posix_sem_write,
|
|
|
|
.mpo_check_posix_sem_post = mac_mls_check_posix_sem_write,
|
|
|
|
.mpo_check_posix_sem_unlink = mac_mls_check_posix_sem_write,
|
|
|
|
.mpo_check_posix_sem_wait = mac_mls_check_posix_sem_write,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_check_proc_debug = mac_mls_check_proc_debug,
|
|
|
|
.mpo_check_proc_sched = mac_mls_check_proc_sched,
|
|
|
|
.mpo_check_proc_signal = mac_mls_check_proc_signal,
|
|
|
|
.mpo_check_socket_deliver = mac_mls_check_socket_deliver,
|
|
|
|
.mpo_check_socket_relabel = mac_mls_check_socket_relabel,
|
|
|
|
.mpo_check_socket_visible = mac_mls_check_socket_visible,
|
2007-04-21 22:08:48 +00:00
|
|
|
.mpo_check_system_acct = mac_mls_check_system_acct,
|
|
|
|
.mpo_check_system_auditctl = mac_mls_check_system_auditctl,
|
2003-03-25 01:16:10 +00:00
|
|
|
.mpo_check_system_swapon = mac_mls_check_system_swapon,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_check_vnode_access = mac_mls_check_vnode_open,
|
|
|
|
.mpo_check_vnode_chdir = mac_mls_check_vnode_chdir,
|
|
|
|
.mpo_check_vnode_chroot = mac_mls_check_vnode_chroot,
|
|
|
|
.mpo_check_vnode_create = mac_mls_check_vnode_create,
|
|
|
|
.mpo_check_vnode_delete = mac_mls_check_vnode_delete,
|
|
|
|
.mpo_check_vnode_deleteacl = mac_mls_check_vnode_deleteacl,
|
2003-08-21 14:34:54 +00:00
|
|
|
.mpo_check_vnode_deleteextattr = mac_mls_check_vnode_deleteextattr,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_check_vnode_exec = mac_mls_check_vnode_exec,
|
|
|
|
.mpo_check_vnode_getacl = mac_mls_check_vnode_getacl,
|
|
|
|
.mpo_check_vnode_getextattr = mac_mls_check_vnode_getextattr,
|
|
|
|
.mpo_check_vnode_link = mac_mls_check_vnode_link,
|
2003-08-21 14:34:54 +00:00
|
|
|
.mpo_check_vnode_listextattr = mac_mls_check_vnode_listextattr,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_check_vnode_lookup = mac_mls_check_vnode_lookup,
|
|
|
|
.mpo_check_vnode_mmap = mac_mls_check_vnode_mmap,
|
|
|
|
.mpo_check_vnode_open = mac_mls_check_vnode_open,
|
|
|
|
.mpo_check_vnode_poll = mac_mls_check_vnode_poll,
|
|
|
|
.mpo_check_vnode_read = mac_mls_check_vnode_read,
|
|
|
|
.mpo_check_vnode_readdir = mac_mls_check_vnode_readdir,
|
|
|
|
.mpo_check_vnode_readlink = mac_mls_check_vnode_readlink,
|
|
|
|
.mpo_check_vnode_relabel = mac_mls_check_vnode_relabel,
|
|
|
|
.mpo_check_vnode_rename_from = mac_mls_check_vnode_rename_from,
|
|
|
|
.mpo_check_vnode_rename_to = mac_mls_check_vnode_rename_to,
|
|
|
|
.mpo_check_vnode_revoke = mac_mls_check_vnode_revoke,
|
|
|
|
.mpo_check_vnode_setacl = mac_mls_check_vnode_setacl,
|
|
|
|
.mpo_check_vnode_setextattr = mac_mls_check_vnode_setextattr,
|
|
|
|
.mpo_check_vnode_setflags = mac_mls_check_vnode_setflags,
|
|
|
|
.mpo_check_vnode_setmode = mac_mls_check_vnode_setmode,
|
|
|
|
.mpo_check_vnode_setowner = mac_mls_check_vnode_setowner,
|
|
|
|
.mpo_check_vnode_setutimes = mac_mls_check_vnode_setutimes,
|
|
|
|
.mpo_check_vnode_stat = mac_mls_check_vnode_stat,
|
|
|
|
.mpo_check_vnode_write = mac_mls_check_vnode_write,
|
2006-08-26 20:13:35 +00:00
|
|
|
.mpo_associate_nfsd_label = mac_mls_associate_nfsd_label,
|
2006-09-12 04:25:13 +00:00
|
|
|
.mpo_create_mbuf_from_firewall = mac_mls_create_mbuf_from_firewall,
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
};
|
|
|
|
|
2003-03-27 19:26:39 +00:00
|
|
|
MAC_POLICY_SET(&mac_mls_ops, mac_mls, "TrustedBSD MAC/MLS",
|
2003-04-15 20:51:18 +00:00
|
|
|
MPC_LOADTIME_FLAG_NOTLATE | MPC_LOADTIME_FLAG_LABELMBUFS, &mac_mls_slot);
|