19589 lines
604 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#define BXE_DRIVER_VERSION "1.78.91"
#include "bxe.h"
#include "ecore_sp.h"
#include "ecore_init.h"
#include "ecore_init_ops.h"
#include "57710_int_offsets.h"
#include "57711_int_offsets.h"
#include "57712_int_offsets.h"
/*
* CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
* explicitly here for older kernels that don't include this changeset.
*/
#ifndef CTLTYPE_U64
#define CTLTYPE_U64 CTLTYPE_QUAD
#define sysctl_handle_64 sysctl_handle_quad
#endif
/*
* CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
* here as zero(0) for older kernels that don't include this changeset
* thereby masking the functionality.
*/
#ifndef CSUM_TCP_IPV6
#define CSUM_TCP_IPV6 0
#define CSUM_UDP_IPV6 0
#endif
/*
* pci_find_cap was added in r219865. Re-define this at pci_find_extcap
* for older kernels that don't include this changeset.
*/
#if __FreeBSD_version < 900035
#define pci_find_cap pci_find_extcap
#endif
#define BXE_DEF_SB_ATT_IDX 0x0001
#define BXE_DEF_SB_IDX 0x0002
/*
* FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
* function HW initialization.
*/
#define FLR_WAIT_USEC 10000 /* 10 msecs */
#define FLR_WAIT_INTERVAL 50 /* usecs */
#define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
struct pbf_pN_buf_regs {
int pN;
uint32_t init_crd;
uint32_t crd;
uint32_t crd_freed;
};
struct pbf_pN_cmd_regs {
int pN;
uint32_t lines_occup;
uint32_t lines_freed;
};
/*
* PCI Device ID Table used by bxe_probe().
*/
#define BXE_DEVDESC_MAX 64
static struct bxe_device_type bxe_devs[] = {
{
BRCM_VENDORID,
CHIP_NUM_57710,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57710 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57711,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57711 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57711E,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57711E 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57712,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57712 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57712_MF,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57712 MF 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57800,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57800 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57800_MF,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57800 MF 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57810,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57810 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57810_MF,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57810 MF 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57811,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57811 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57811_MF,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57811 MF 10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57840_4_10,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57840 4x10GbE"
},
{
QLOGIC_VENDORID,
CHIP_NUM_57840_4_10,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57840 4x10GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57840_2_20,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57840 2x20GbE"
},
{
BRCM_VENDORID,
CHIP_NUM_57840_MF,
PCI_ANY_ID, PCI_ANY_ID,
"QLogic NetXtreme II BCM57840 MF 10GbE"
},
{
0, 0, 0, 0, NULL
}
};
MALLOC_DECLARE(M_BXE_ILT);
MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
/*
* FreeBSD device entry points.
*/
static int bxe_probe(device_t);
static int bxe_attach(device_t);
static int bxe_detach(device_t);
static int bxe_shutdown(device_t);
/*
* FreeBSD KLD module/device interface event handler method.
*/
static device_method_t bxe_methods[] = {
/* Device interface (device_if.h) */
DEVMETHOD(device_probe, bxe_probe),
DEVMETHOD(device_attach, bxe_attach),
DEVMETHOD(device_detach, bxe_detach),
DEVMETHOD(device_shutdown, bxe_shutdown),
/* Bus interface (bus_if.h) */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
KOBJMETHOD_END
};
/*
* FreeBSD KLD Module data declaration
*/
static driver_t bxe_driver = {
"bxe", /* module name */
bxe_methods, /* event handler */
sizeof(struct bxe_softc) /* extra data */
};
/*
* FreeBSD dev class is needed to manage dev instances and
* to associate with a bus type
*/
static devclass_t bxe_devclass;
MODULE_DEPEND(bxe, pci, 1, 1, 1);
MODULE_DEPEND(bxe, ether, 1, 1, 1);
DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
Split out a more generic debugnet(4) from netdump(4) Debugnet is a simplistic and specialized panic- or debug-time reliable datagram transport. It can drive a single connection at a time and is currently unidirectional (debug/panic machine transmit to remote server only). It is mostly a verbatim code lift from netdump(4). Netdump(4) remains the only consumer (until the rest of this patch series lands). The INET-specific logic has been extracted somewhat more thoroughly than previously in netdump(4), into debugnet_inet.c. UDP-layer logic and up, as much as possible as is protocol-independent, remains in debugnet.c. The separation is not perfect and future improvement is welcome. Supporting INET6 is a long-term goal. Much of the diff is "gratuitous" renaming from 'netdump_' or 'nd_' to 'debugnet_' or 'dn_' -- sorry. I thought keeping the netdump name on the generic module would be more confusing than the refactoring. The only functional change here is the mbuf allocation / tracking. Instead of initiating solely on netdump-configured interface(s) at dumpon(8) configuration time, we watch for any debugnet-enabled NIC for link activation and query it for mbuf parameters at that time. If they exceed the existing high-water mark allocation, we re-allocate and track the new high-water mark. Otherwise, we leave the pre-panic mbuf allocation alone. In a future patch in this series, this will allow initiating netdump from panic ddb(4) without pre-panic configuration. No other functional change intended. Reviewed by: markj (earlier version) Some discussion with: emaste, jhb Objection from: marius Differential Revision: https://reviews.freebsd.org/D21421
2019-10-17 16:23:03 +00:00
DEBUGNET_DEFINE(bxe);
/* resources needed for unloading a previously loaded device */
#define BXE_PREV_WAIT_NEEDED 1
struct mtx bxe_prev_mtx;
MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
struct bxe_prev_list_node {
LIST_ENTRY(bxe_prev_list_node) node;
uint8_t bus;
uint8_t slot;
uint8_t path;
uint8_t aer; /* XXX automatic error recovery */
uint8_t undi;
};
static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
/* Tunable device values... */
SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
/* Debug */
unsigned long bxe_debug = 0;
SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
&bxe_debug, 0, "Debug logging mode");
/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
static int bxe_interrupt_mode = INTR_MODE_MSIX;
SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
&bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
static int bxe_queue_count = 4;
SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
&bxe_queue_count, 0, "Multi-Queue queue count");
/* max number of buffers per queue (default RX_BD_USABLE) */
static int bxe_max_rx_bufs = 0;
SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
&bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
/* Host interrupt coalescing RX tick timer (usecs) */
static int bxe_hc_rx_ticks = 25;
SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
&bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
/* Host interrupt coalescing TX tick timer (usecs) */
static int bxe_hc_tx_ticks = 50;
SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
&bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
/* Maximum number of Rx packets to process at a time */
static int bxe_rx_budget = 0xffffffff;
SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
&bxe_rx_budget, 0, "Rx processing budget");
/* Maximum LRO aggregation size */
static int bxe_max_aggregation_size = 0;
SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
&bxe_max_aggregation_size, 0, "max aggregation size");
/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
static int bxe_mrrs = -1;
SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
&bxe_mrrs, 0, "PCIe maximum read request size");
/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
static int bxe_autogreeen = 0;
SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
&bxe_autogreeen, 0, "AutoGrEEEn support");
/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
static int bxe_udp_rss = 0;
SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
&bxe_udp_rss, 0, "UDP RSS support");
#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
#define STATS_OFFSET32(stat_name) \
(offsetof(struct bxe_eth_stats, stat_name) / 4)
#define Q_STATS_OFFSET32(stat_name) \
(offsetof(struct bxe_eth_q_stats, stat_name) / 4)
static const struct {
uint32_t offset;
uint32_t size;
uint32_t flags;
#define STATS_FLAGS_PORT 1
#define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */
#define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
char string[STAT_NAME_LEN];
} bxe_eth_stats_arr[] = {
{ STATS_OFFSET32(total_bytes_received_hi),
8, STATS_FLAGS_BOTH, "rx_bytes" },
{ STATS_OFFSET32(error_bytes_received_hi),
8, STATS_FLAGS_BOTH, "rx_error_bytes" },
{ STATS_OFFSET32(total_unicast_packets_received_hi),
8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
{ STATS_OFFSET32(total_multicast_packets_received_hi),
8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
{ STATS_OFFSET32(total_broadcast_packets_received_hi),
8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
{ STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
8, STATS_FLAGS_PORT, "rx_crc_errors" },
{ STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
8, STATS_FLAGS_PORT, "rx_align_errors" },
{ STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
8, STATS_FLAGS_PORT, "rx_undersize_packets" },
{ STATS_OFFSET32(etherstatsoverrsizepkts_hi),
8, STATS_FLAGS_PORT, "rx_oversize_packets" },
{ STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
8, STATS_FLAGS_PORT, "rx_fragments" },
{ STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
8, STATS_FLAGS_PORT, "rx_jabbers" },
{ STATS_OFFSET32(no_buff_discard_hi),
8, STATS_FLAGS_BOTH, "rx_discards" },
{ STATS_OFFSET32(mac_filter_discard),
4, STATS_FLAGS_PORT, "rx_filtered_packets" },
{ STATS_OFFSET32(mf_tag_discard),
4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
{ STATS_OFFSET32(pfc_frames_received_hi),
8, STATS_FLAGS_PORT, "pfc_frames_received" },
{ STATS_OFFSET32(pfc_frames_sent_hi),
8, STATS_FLAGS_PORT, "pfc_frames_sent" },
{ STATS_OFFSET32(brb_drop_hi),
8, STATS_FLAGS_PORT, "rx_brb_discard" },
{ STATS_OFFSET32(brb_truncate_hi),
8, STATS_FLAGS_PORT, "rx_brb_truncate" },
{ STATS_OFFSET32(pause_frames_received_hi),
8, STATS_FLAGS_PORT, "rx_pause_frames" },
{ STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
{ STATS_OFFSET32(nig_timer_max),
4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
{ STATS_OFFSET32(total_bytes_transmitted_hi),
8, STATS_FLAGS_BOTH, "tx_bytes" },
{ STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
8, STATS_FLAGS_PORT, "tx_error_bytes" },
{ STATS_OFFSET32(total_unicast_packets_transmitted_hi),
8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
{ STATS_OFFSET32(total_multicast_packets_transmitted_hi),
8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
{ STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
{ STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
8, STATS_FLAGS_PORT, "tx_mac_errors" },
{ STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
8, STATS_FLAGS_PORT, "tx_carrier_errors" },
{ STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
8, STATS_FLAGS_PORT, "tx_single_collisions" },
{ STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
8, STATS_FLAGS_PORT, "tx_multi_collisions" },
{ STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
8, STATS_FLAGS_PORT, "tx_deferred" },
{ STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
8, STATS_FLAGS_PORT, "tx_excess_collisions" },
{ STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
8, STATS_FLAGS_PORT, "tx_late_collisions" },
{ STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
8, STATS_FLAGS_PORT, "tx_total_collisions" },
{ STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
{ STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
{ STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
{ STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
{ STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
{ STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
{ STATS_OFFSET32(etherstatspktsover1522octets_hi),
8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
{ STATS_OFFSET32(pause_frames_sent_hi),
8, STATS_FLAGS_PORT, "tx_pause_frames" },
{ STATS_OFFSET32(total_tpa_aggregations_hi),
8, STATS_FLAGS_FUNC, "tpa_aggregations" },
{ STATS_OFFSET32(total_tpa_aggregated_frames_hi),
8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
{ STATS_OFFSET32(total_tpa_bytes_hi),
8, STATS_FLAGS_FUNC, "tpa_bytes"},
{ STATS_OFFSET32(eee_tx_lpi),
4, STATS_FLAGS_PORT, "eee_tx_lpi"},
{ STATS_OFFSET32(rx_calls),
4, STATS_FLAGS_FUNC, "rx_calls"},
{ STATS_OFFSET32(rx_pkts),
4, STATS_FLAGS_FUNC, "rx_pkts"},
{ STATS_OFFSET32(rx_tpa_pkts),
4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
{ STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
{ STATS_OFFSET32(rx_bxe_service_rxsgl),
4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
{ STATS_OFFSET32(rx_jumbo_sge_pkts),
4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
{ STATS_OFFSET32(rx_soft_errors),
4, STATS_FLAGS_FUNC, "rx_soft_errors"},
{ STATS_OFFSET32(rx_hw_csum_errors),
4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
{ STATS_OFFSET32(rx_ofld_frames_csum_ip),
4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
{ STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
{ STATS_OFFSET32(rx_budget_reached),
4, STATS_FLAGS_FUNC, "rx_budget_reached"},
{ STATS_OFFSET32(tx_pkts),
4, STATS_FLAGS_FUNC, "tx_pkts"},
{ STATS_OFFSET32(tx_soft_errors),
4, STATS_FLAGS_FUNC, "tx_soft_errors"},
{ STATS_OFFSET32(tx_ofld_frames_csum_ip),
4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
{ STATS_OFFSET32(tx_ofld_frames_csum_tcp),
4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
{ STATS_OFFSET32(tx_ofld_frames_csum_udp),
4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
{ STATS_OFFSET32(tx_ofld_frames_lso),
4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
{ STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
{ STATS_OFFSET32(tx_encap_failures),
4, STATS_FLAGS_FUNC, "tx_encap_failures"},
{ STATS_OFFSET32(tx_hw_queue_full),
4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
{ STATS_OFFSET32(tx_hw_max_queue_depth),
4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
{ STATS_OFFSET32(tx_dma_mapping_failure),
4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
{ STATS_OFFSET32(tx_max_drbr_queue_depth),
4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
{ STATS_OFFSET32(tx_window_violation_std),
4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
{ STATS_OFFSET32(tx_window_violation_tso),
4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
{ STATS_OFFSET32(tx_chain_lost_mbuf),
4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
{ STATS_OFFSET32(tx_frames_deferred),
4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
{ STATS_OFFSET32(tx_queue_xoff),
4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
{ STATS_OFFSET32(mbuf_defrag_attempts),
4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
{ STATS_OFFSET32(mbuf_defrag_failures),
4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
{ STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
{ STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
{ STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
{ STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
{ STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
{ STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
{ STATS_OFFSET32(mbuf_alloc_tx),
4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
{ STATS_OFFSET32(mbuf_alloc_rx),
4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
{ STATS_OFFSET32(mbuf_alloc_sge),
4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
{ STATS_OFFSET32(mbuf_alloc_tpa),
4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
{ STATS_OFFSET32(tx_queue_full_return),
4, STATS_FLAGS_FUNC, "tx_queue_full_return"},
{ STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"},
{ STATS_OFFSET32(tx_request_link_down_failures),
4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"},
{ STATS_OFFSET32(bd_avail_too_less_failures),
4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"},
{ STATS_OFFSET32(tx_mq_not_empty),
4, STATS_FLAGS_FUNC, "tx_mq_not_empty"},
{ STATS_OFFSET32(nsegs_path1_errors),
4, STATS_FLAGS_FUNC, "nsegs_path1_errors"},
{ STATS_OFFSET32(nsegs_path2_errors),
4, STATS_FLAGS_FUNC, "nsegs_path2_errors"}
};
static const struct {
uint32_t offset;
uint32_t size;
char string[STAT_NAME_LEN];
} bxe_eth_q_stats_arr[] = {
{ Q_STATS_OFFSET32(total_bytes_received_hi),
8, "rx_bytes" },
{ Q_STATS_OFFSET32(total_unicast_packets_received_hi),
8, "rx_ucast_packets" },
{ Q_STATS_OFFSET32(total_multicast_packets_received_hi),
8, "rx_mcast_packets" },
{ Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
8, "rx_bcast_packets" },
{ Q_STATS_OFFSET32(no_buff_discard_hi),
8, "rx_discards" },
{ Q_STATS_OFFSET32(total_bytes_transmitted_hi),
8, "tx_bytes" },
{ Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
8, "tx_ucast_packets" },
{ Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
8, "tx_mcast_packets" },
{ Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
8, "tx_bcast_packets" },
{ Q_STATS_OFFSET32(total_tpa_aggregations_hi),
8, "tpa_aggregations" },
{ Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
8, "tpa_aggregated_frames"},
{ Q_STATS_OFFSET32(total_tpa_bytes_hi),
8, "tpa_bytes"},
{ Q_STATS_OFFSET32(rx_calls),
4, "rx_calls"},
{ Q_STATS_OFFSET32(rx_pkts),
4, "rx_pkts"},
{ Q_STATS_OFFSET32(rx_tpa_pkts),
4, "rx_tpa_pkts"},
{ Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
4, "rx_erroneous_jumbo_sge_pkts"},
{ Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
4, "rx_bxe_service_rxsgl"},
{ Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
4, "rx_jumbo_sge_pkts"},
{ Q_STATS_OFFSET32(rx_soft_errors),
4, "rx_soft_errors"},
{ Q_STATS_OFFSET32(rx_hw_csum_errors),
4, "rx_hw_csum_errors"},
{ Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
4, "rx_ofld_frames_csum_ip"},
{ Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
4, "rx_ofld_frames_csum_tcp_udp"},
{ Q_STATS_OFFSET32(rx_budget_reached),
4, "rx_budget_reached"},
{ Q_STATS_OFFSET32(tx_pkts),
4, "tx_pkts"},
{ Q_STATS_OFFSET32(tx_soft_errors),
4, "tx_soft_errors"},
{ Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
4, "tx_ofld_frames_csum_ip"},
{ Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
4, "tx_ofld_frames_csum_tcp"},
{ Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
4, "tx_ofld_frames_csum_udp"},
{ Q_STATS_OFFSET32(tx_ofld_frames_lso),
4, "tx_ofld_frames_lso"},
{ Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
4, "tx_ofld_frames_lso_hdr_splits"},
{ Q_STATS_OFFSET32(tx_encap_failures),
4, "tx_encap_failures"},
{ Q_STATS_OFFSET32(tx_hw_queue_full),
4, "tx_hw_queue_full"},
{ Q_STATS_OFFSET32(tx_hw_max_queue_depth),
4, "tx_hw_max_queue_depth"},
{ Q_STATS_OFFSET32(tx_dma_mapping_failure),
4, "tx_dma_mapping_failure"},
{ Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
4, "tx_max_drbr_queue_depth"},
{ Q_STATS_OFFSET32(tx_window_violation_std),
4, "tx_window_violation_std"},
{ Q_STATS_OFFSET32(tx_window_violation_tso),
4, "tx_window_violation_tso"},
{ Q_STATS_OFFSET32(tx_chain_lost_mbuf),
4, "tx_chain_lost_mbuf"},
{ Q_STATS_OFFSET32(tx_frames_deferred),
4, "tx_frames_deferred"},
{ Q_STATS_OFFSET32(tx_queue_xoff),
4, "tx_queue_xoff"},
{ Q_STATS_OFFSET32(mbuf_defrag_attempts),
4, "mbuf_defrag_attempts"},
{ Q_STATS_OFFSET32(mbuf_defrag_failures),
4, "mbuf_defrag_failures"},
{ Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
4, "mbuf_rx_bd_alloc_failed"},
{ Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
4, "mbuf_rx_bd_mapping_failed"},
{ Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
4, "mbuf_rx_tpa_alloc_failed"},
{ Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
4, "mbuf_rx_tpa_mapping_failed"},
{ Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
4, "mbuf_rx_sge_alloc_failed"},
{ Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
4, "mbuf_rx_sge_mapping_failed"},
{ Q_STATS_OFFSET32(mbuf_alloc_tx),
4, "mbuf_alloc_tx"},
{ Q_STATS_OFFSET32(mbuf_alloc_rx),
4, "mbuf_alloc_rx"},
{ Q_STATS_OFFSET32(mbuf_alloc_sge),
4, "mbuf_alloc_sge"},
{ Q_STATS_OFFSET32(mbuf_alloc_tpa),
4, "mbuf_alloc_tpa"},
{ Q_STATS_OFFSET32(tx_queue_full_return),
4, "tx_queue_full_return"},
{ Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
4, "bxe_tx_mq_sc_state_failures"},
{ Q_STATS_OFFSET32(tx_request_link_down_failures),
4, "tx_request_link_down_failures"},
{ Q_STATS_OFFSET32(bd_avail_too_less_failures),
4, "bd_avail_too_less_failures"},
{ Q_STATS_OFFSET32(tx_mq_not_empty),
4, "tx_mq_not_empty"},
{ Q_STATS_OFFSET32(nsegs_path1_errors),
4, "nsegs_path1_errors"},
{ Q_STATS_OFFSET32(nsegs_path2_errors),
4, "nsegs_path2_errors"}
};
#define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr)
#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
static void bxe_cmng_fns_init(struct bxe_softc *sc,
uint8_t read_cfg,
uint8_t cmng_type);
static int bxe_get_cmng_fns_mode(struct bxe_softc *sc);
static void storm_memset_cmng(struct bxe_softc *sc,
struct cmng_init *cmng,
uint8_t port);
static void bxe_set_reset_global(struct bxe_softc *sc);
static void bxe_set_reset_in_progress(struct bxe_softc *sc);
static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
int engine);
static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
uint8_t *global,
uint8_t print);
static void bxe_int_disable(struct bxe_softc *sc);
static int bxe_release_leader_lock(struct bxe_softc *sc);
static void bxe_pf_disable(struct bxe_softc *sc);
static void bxe_free_fp_buffers(struct bxe_softc *sc);
static inline void bxe_update_rx_prod(struct bxe_softc *sc,
struct bxe_fastpath *fp,
uint16_t rx_bd_prod,
uint16_t rx_cq_prod,
uint16_t rx_sge_prod);
static void bxe_link_report_locked(struct bxe_softc *sc);
static void bxe_link_report(struct bxe_softc *sc);
static void bxe_link_status_update(struct bxe_softc *sc);
static void bxe_periodic_callout_func(void *xsc);
static void bxe_periodic_start(struct bxe_softc *sc);
static void bxe_periodic_stop(struct bxe_softc *sc);
static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
uint16_t prev_index,
uint16_t index);
static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
int queue);
static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
uint16_t index);
static uint8_t bxe_txeof(struct bxe_softc *sc,
struct bxe_fastpath *fp);
static void bxe_task_fp(struct bxe_fastpath *fp);
static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
struct mbuf *m,
uint8_t contents);
static int bxe_alloc_mem(struct bxe_softc *sc);
static void bxe_free_mem(struct bxe_softc *sc);
static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
static void bxe_free_fw_stats_mem(struct bxe_softc *sc);
static int bxe_interrupt_attach(struct bxe_softc *sc);
static void bxe_interrupt_detach(struct bxe_softc *sc);
static void bxe_set_rx_mode(struct bxe_softc *sc);
static int bxe_init_locked(struct bxe_softc *sc);
static int bxe_stop_locked(struct bxe_softc *sc);
static void bxe_sp_err_timeout_task(void *arg, int pending);
void bxe_parity_recover(struct bxe_softc *sc);
void bxe_handle_error(struct bxe_softc *sc);
static __noinline int bxe_nic_load(struct bxe_softc *sc,
int load_mode);
static __noinline int bxe_nic_unload(struct bxe_softc *sc,
uint32_t unload_mode,
uint8_t keep_link);
static void bxe_handle_sp_tq(void *context, int pending);
static void bxe_handle_fp_tq(void *context, int pending);
static int bxe_add_cdev(struct bxe_softc *sc);
static void bxe_del_cdev(struct bxe_softc *sc);
int bxe_grc_dump(struct bxe_softc *sc);
static int bxe_alloc_buf_rings(struct bxe_softc *sc);
static void bxe_free_buf_rings(struct bxe_softc *sc);
/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
uint32_t
calc_crc32(uint8_t *crc32_packet,
uint32_t crc32_length,
uint32_t crc32_seed,
uint8_t complement)
{
uint32_t byte = 0;
uint32_t bit = 0;
uint8_t msb = 0;
uint32_t temp = 0;
uint32_t shft = 0;
uint8_t current_byte = 0;
uint32_t crc32_result = crc32_seed;
const uint32_t CRC32_POLY = 0x1edc6f41;
if ((crc32_packet == NULL) ||
(crc32_length == 0) ||
((crc32_length % 8) != 0))
{
return (crc32_result);
}
for (byte = 0; byte < crc32_length; byte = byte + 1)
{
current_byte = crc32_packet[byte];
for (bit = 0; bit < 8; bit = bit + 1)
{
/* msb = crc32_result[31]; */
msb = (uint8_t)(crc32_result >> 31);
crc32_result = crc32_result << 1;
/* it (msb != current_byte[bit]) */
if (msb != (0x1 & (current_byte >> bit)))
{
crc32_result = crc32_result ^ CRC32_POLY;
/* crc32_result[0] = 1 */
crc32_result |= 1;
}
}
}
/* Last step is to:
* 1. "mirror" every bit
* 2. swap the 4 bytes
* 3. complement each bit
*/
/* Mirror */
temp = crc32_result;
shft = sizeof(crc32_result) * 8 - 1;
for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
{
temp <<= 1;
temp |= crc32_result & 1;
shft-- ;
}
/* temp[31-bit] = crc32_result[bit] */
temp <<= shft;
/* Swap */
/* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
{
uint32_t t0, t1, t2, t3;
t0 = (0x000000ff & (temp >> 24));
t1 = (0x0000ff00 & (temp >> 8));
t2 = (0x00ff0000 & (temp << 8));
t3 = (0xff000000 & (temp << 24));
crc32_result = t0 | t1 | t2 | t3;
}
/* Complement */
if (complement)
{
crc32_result = ~crc32_result;
}
return (crc32_result);
}
int
bxe_test_bit(int nr,
volatile unsigned long *addr)
{
return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
}
void
bxe_set_bit(unsigned int nr,
volatile unsigned long *addr)
{
atomic_set_acq_long(addr, (1 << nr));
}
void
bxe_clear_bit(int nr,
volatile unsigned long *addr)
{
atomic_clear_acq_long(addr, (1 << nr));
}
int
bxe_test_and_set_bit(int nr,
volatile unsigned long *addr)
{
unsigned long x;
nr = (1 << nr);
do {
x = *addr;
} while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
// if (x & nr) bit_was_set; else bit_was_not_set;
return (x & nr);
}
int
bxe_test_and_clear_bit(int nr,
volatile unsigned long *addr)
{
unsigned long x;
nr = (1 << nr);
do {
x = *addr;
} while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
// if (x & nr) bit_was_set; else bit_was_not_set;
return (x & nr);
}
int
bxe_cmpxchg(volatile int *addr,
int old,
int new)
{
int x;
do {
x = *addr;
} while (atomic_cmpset_acq_int(addr, old, new) == 0);
return (x);
}
/*
* Get DMA memory from the OS.
*
* Validates that the OS has provided DMA buffers in response to a
* bus_dmamap_load call and saves the physical address of those buffers.
* When the callback is used the OS will return 0 for the mapping function
* (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
* failures back to the caller.
*
* Returns:
* Nothing.
*/
static void
bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct bxe_dma *dma = arg;
if (error) {
dma->paddr = 0;
dma->nseg = 0;
BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
} else {
dma->paddr = segs->ds_addr;
dma->nseg = nseg;
}
}
/*
* Allocate a block of memory and map it for DMA. No partial completions
* allowed and release any resources acquired if we can't acquire all
* resources.
*
* Returns:
* 0 = Success, !0 = Failure
*/
int
bxe_dma_alloc(struct bxe_softc *sc,
bus_size_t size,
struct bxe_dma *dma,
const char *msg)
{
int rc;
if (dma->size > 0) {
BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
(unsigned long)dma->size);
return (1);
}
memset(dma, 0, sizeof(*dma)); /* sanity */
dma->sc = sc;
dma->size = size;
snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
BCM_PAGE_SIZE, /* alignment */
0, /* boundary limit */
BUS_SPACE_MAXADDR, /* restricted low */
BUS_SPACE_MAXADDR, /* restricted hi */
NULL, /* addr filter() */
NULL, /* addr filter() arg */
size, /* max map size */
1, /* num discontinuous */
size, /* max seg size */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lock() */
NULL, /* lock() arg */
&dma->tag); /* returned dma tag */
if (rc != 0) {
BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
memset(dma, 0, sizeof(*dma));
return (1);
}
rc = bus_dmamem_alloc(dma->tag,
(void **)&dma->vaddr,
(BUS_DMA_NOWAIT | BUS_DMA_ZERO),
&dma->map);
if (rc != 0) {
BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
bus_dma_tag_destroy(dma->tag);
memset(dma, 0, sizeof(*dma));
return (1);
}
rc = bus_dmamap_load(dma->tag,
dma->map,
dma->vaddr,
size,
bxe_dma_map_addr, /* BLOGD in here */
dma,
BUS_DMA_NOWAIT);
if (rc != 0) {
BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
bus_dma_tag_destroy(dma->tag);
memset(dma, 0, sizeof(*dma));
return (1);
}
return (0);
}
void
bxe_dma_free(struct bxe_softc *sc,
struct bxe_dma *dma)
{
if (dma->size > 0) {
DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
bus_dmamap_sync(dma->tag, dma->map,
(BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
bus_dmamap_unload(dma->tag, dma->map);
bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
bus_dma_tag_destroy(dma->tag);
}
memset(dma, 0, sizeof(*dma));
}
/*
* These indirect read and write routines are only during init.
* The locking is handled by the MCP.
*/
void
bxe_reg_wr_ind(struct bxe_softc *sc,
uint32_t addr,
uint32_t val)
{
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
}
uint32_t
bxe_reg_rd_ind(struct bxe_softc *sc,
uint32_t addr)
{
uint32_t val;
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
return (val);
}
static int
bxe_acquire_hw_lock(struct bxe_softc *sc,
uint32_t resource)
{
uint32_t lock_status;
uint32_t resource_bit = (1 << resource);
int func = SC_FUNC(sc);
uint32_t hw_lock_control_reg;
int cnt;
/* validate the resource is within range */
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
" resource_bit 0x%x\n", resource, resource_bit);
return (-1);
}
if (func <= 5) {
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
} else {
hw_lock_control_reg =
(MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
}
/* validate the resource is not already taken */
lock_status = REG_RD(sc, hw_lock_control_reg);
if (lock_status & resource_bit) {
BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
resource, lock_status, resource_bit);
return (-1);
}
/* try every 5ms for 5 seconds */
for (cnt = 0; cnt < 1000; cnt++) {
REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
lock_status = REG_RD(sc, hw_lock_control_reg);
if (lock_status & resource_bit) {
return (0);
}
DELAY(5000);
}
BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
resource, resource_bit);
return (-1);
}
static int
bxe_release_hw_lock(struct bxe_softc *sc,
uint32_t resource)
{
uint32_t lock_status;
uint32_t resource_bit = (1 << resource);
int func = SC_FUNC(sc);
uint32_t hw_lock_control_reg;
/* validate the resource is within range */
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
" resource_bit 0x%x\n", resource, resource_bit);
return (-1);
}
if (func <= 5) {
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
} else {
hw_lock_control_reg =
(MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
}
/* validate the resource is currently taken */
lock_status = REG_RD(sc, hw_lock_control_reg);
if (!(lock_status & resource_bit)) {
BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
resource, lock_status, resource_bit);
return (-1);
}
REG_WR(sc, hw_lock_control_reg, resource_bit);
return (0);
}
static void bxe_acquire_phy_lock(struct bxe_softc *sc)
{
BXE_PHY_LOCK(sc);
bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
}
static void bxe_release_phy_lock(struct bxe_softc *sc)
{
bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
BXE_PHY_UNLOCK(sc);
}
/*
* Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
* had we done things the other way around, if two pfs from the same port
* would attempt to access nvram at the same time, we could run into a
* scenario such as:
* pf A takes the port lock.
* pf B succeeds in taking the same lock since they are from the same port.
* pf A takes the per pf misc lock. Performs eeprom access.
* pf A finishes. Unlocks the per pf misc lock.
* Pf B takes the lock and proceeds to perform it's own access.
* pf A unlocks the per port lock, while pf B is still working (!).
* mcp takes the per port lock and corrupts pf B's access (and/or has it's own
* access corrupted by pf B).*
*/
static int
bxe_acquire_nvram_lock(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
int count, i;
uint32_t val = 0;
/* acquire HW lock: protect against other PFs in PF Direct Assignment */
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
/* adjust timeout for emulation/FPGA */
count = NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(sc)) {
count *= 100;
}
/* request access to nvram interface */
REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
(MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
for (i = 0; i < count*10; i++) {
val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
break;
}
DELAY(5);
}
if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
BLOGE(sc, "Cannot get access to nvram interface "
"port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
port, val);
return (-1);
}
return (0);
}
static int
bxe_release_nvram_lock(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
int count, i;
uint32_t val = 0;
/* adjust timeout for emulation/FPGA */
count = NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(sc)) {
count *= 100;
}
/* relinquish nvram interface */
REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
(MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
for (i = 0; i < count*10; i++) {
val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
break;
}
DELAY(5);
}
if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
BLOGE(sc, "Cannot free access to nvram interface "
"port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
port, val);
return (-1);
}
/* release HW lock: protect against other PFs in PF Direct Assignment */
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
return (0);
}
static void
bxe_enable_nvram_access(struct bxe_softc *sc)
{
uint32_t val;
val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
/* enable both bits, even on read */
REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
(val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
}
static void
bxe_disable_nvram_access(struct bxe_softc *sc)
{
uint32_t val;
val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
/* disable both bits, even after read */
REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
(val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
MCPR_NVM_ACCESS_ENABLE_WR_EN)));
}
static int
bxe_nvram_read_dword(struct bxe_softc *sc,
uint32_t offset,
uint32_t *ret_val,
uint32_t cmd_flags)
{
int count, i, rc;
uint32_t val;
/* build the command word */
cmd_flags |= MCPR_NVM_COMMAND_DOIT;
/* need to clear DONE bit separately */
REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
/* address of the NVRAM to read from */
REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
(offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
/* issue a read command */
REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
/* adjust timeout for emulation/FPGA */
count = NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(sc)) {
count *= 100;
}
/* wait for completion */
*ret_val = 0;
rc = -1;
for (i = 0; i < count; i++) {
DELAY(5);
val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
if (val & MCPR_NVM_COMMAND_DONE) {
val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
/* we read nvram data in cpu order
* but ethtool sees it as an array of bytes
* converting to big-endian will do the work
*/
*ret_val = htobe32(val);
rc = 0;
break;
}
}
if (rc == -1) {
BLOGE(sc, "nvram read timeout expired "
"(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
offset, cmd_flags, val);
}
return (rc);
}
static int
bxe_nvram_read(struct bxe_softc *sc,
uint32_t offset,
uint8_t *ret_buf,
int buf_size)
{
uint32_t cmd_flags;
uint32_t val;
int rc;
if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
offset, buf_size);
return (-1);
}
if ((offset + buf_size) > sc->devinfo.flash_size) {
BLOGE(sc, "Invalid parameter, "
"offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
offset, buf_size, sc->devinfo.flash_size);
return (-1);
}
/* request access to nvram interface */
rc = bxe_acquire_nvram_lock(sc);
if (rc) {
return (rc);
}
/* enable access to nvram interface */
bxe_enable_nvram_access(sc);
/* read the first word(s) */
cmd_flags = MCPR_NVM_COMMAND_FIRST;
while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
memcpy(ret_buf, &val, 4);
/* advance to the next dword */
offset += sizeof(uint32_t);
ret_buf += sizeof(uint32_t);
buf_size -= sizeof(uint32_t);
cmd_flags = 0;
}
if (rc == 0) {
cmd_flags |= MCPR_NVM_COMMAND_LAST;
rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
memcpy(ret_buf, &val, 4);
}
/* disable access to nvram interface */
bxe_disable_nvram_access(sc);
bxe_release_nvram_lock(sc);
return (rc);
}
static int
bxe_nvram_write_dword(struct bxe_softc *sc,
uint32_t offset,
uint32_t val,
uint32_t cmd_flags)
{
int count, i, rc;
/* build the command word */
cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
/* need to clear DONE bit separately */
REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
/* write the data */
REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
/* address of the NVRAM to write to */
REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
(offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
/* issue the write command */
REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
/* adjust timeout for emulation/FPGA */
count = NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(sc)) {
count *= 100;
}
/* wait for completion */
rc = -1;
for (i = 0; i < count; i++) {
DELAY(5);
val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
if (val & MCPR_NVM_COMMAND_DONE) {
rc = 0;
break;
}
}
if (rc == -1) {
BLOGE(sc, "nvram write timeout expired "
"(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
offset, cmd_flags, val);
}
return (rc);
}
#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
static int
bxe_nvram_write1(struct bxe_softc *sc,
uint32_t offset,
uint8_t *data_buf,
int buf_size)
{
uint32_t cmd_flags;
uint32_t align_offset;
uint32_t val;
int rc;
if ((offset + buf_size) > sc->devinfo.flash_size) {
BLOGE(sc, "Invalid parameter, "
"offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
offset, buf_size, sc->devinfo.flash_size);
return (-1);
}
/* request access to nvram interface */
rc = bxe_acquire_nvram_lock(sc);
if (rc) {
return (rc);
}
/* enable access to nvram interface */
bxe_enable_nvram_access(sc);
cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
align_offset = (offset & ~0x03);
rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
if (rc == 0) {
val &= ~(0xff << BYTE_OFFSET(offset));
val |= (*data_buf << BYTE_OFFSET(offset));
/* nvram data is returned as an array of bytes
* convert it back to cpu order
*/
val = be32toh(val);
rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
}
/* disable access to nvram interface */
bxe_disable_nvram_access(sc);
bxe_release_nvram_lock(sc);
return (rc);
}
static int
bxe_nvram_write(struct bxe_softc *sc,
uint32_t offset,
uint8_t *data_buf,
int buf_size)
{
uint32_t cmd_flags;
uint32_t val;
uint32_t written_so_far;
int rc;
if (buf_size == 1) {
return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
}
if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
offset, buf_size);
return (-1);
}
if (buf_size == 0) {
return (0); /* nothing to do */
}
if ((offset + buf_size) > sc->devinfo.flash_size) {
BLOGE(sc, "Invalid parameter, "
"offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
offset, buf_size, sc->devinfo.flash_size);
return (-1);
}
/* request access to nvram interface */
rc = bxe_acquire_nvram_lock(sc);
if (rc) {
return (rc);
}
/* enable access to nvram interface */
bxe_enable_nvram_access(sc);
written_so_far = 0;
cmd_flags = MCPR_NVM_COMMAND_FIRST;
while ((written_so_far < buf_size) && (rc == 0)) {
if (written_so_far == (buf_size - sizeof(uint32_t))) {
cmd_flags |= MCPR_NVM_COMMAND_LAST;
} else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
cmd_flags |= MCPR_NVM_COMMAND_LAST;
} else if ((offset % NVRAM_PAGE_SIZE) == 0) {
cmd_flags |= MCPR_NVM_COMMAND_FIRST;
}
memcpy(&val, data_buf, 4);
rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
/* advance to the next dword */
offset += sizeof(uint32_t);
data_buf += sizeof(uint32_t);
written_so_far += sizeof(uint32_t);
cmd_flags = 0;
}
/* disable access to nvram interface */
bxe_disable_nvram_access(sc);
bxe_release_nvram_lock(sc);
return (rc);
}
/* copy command into DMAE command memory and set DMAE command Go */
void
bxe_post_dmae(struct bxe_softc *sc,
struct dmae_cmd *dmae,
int idx)
{
uint32_t cmd_offset;
int i;
cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
}
REG_WR(sc, dmae_reg_go_c[idx], 1);
}
uint32_t
bxe_dmae_opcode_add_comp(uint32_t opcode,
uint8_t comp_type)
{
return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
DMAE_CMD_C_TYPE_ENABLE));
}
uint32_t
bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
{
return (opcode & ~DMAE_CMD_SRC_RESET);
}
uint32_t
bxe_dmae_opcode(struct bxe_softc *sc,
uint8_t src_type,
uint8_t dst_type,
uint8_t with_comp,
uint8_t comp_type)
{
uint32_t opcode = 0;
opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
(dst_type << DMAE_CMD_DST_SHIFT));
opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
(SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
#ifdef __BIG_ENDIAN
opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
#else
opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
#endif
if (with_comp) {
opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
}
return (opcode);
}
static void
bxe_prep_dmae_with_comp(struct bxe_softc *sc,
struct dmae_cmd *dmae,
uint8_t src_type,
uint8_t dst_type)
{
memset(dmae, 0, sizeof(struct dmae_cmd));
/* set the opcode */
dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
TRUE, DMAE_COMP_PCI);
/* fill in the completion parameters */
dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
dmae->comp_val = DMAE_COMP_VAL;
}
/* issue a DMAE command over the init channel and wait for completion */
static int
bxe_issue_dmae_with_comp(struct bxe_softc *sc,
struct dmae_cmd *dmae)
{
uint32_t *wb_comp = BXE_SP(sc, wb_comp);
int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
BXE_DMAE_LOCK(sc);
/* reset completion */
*wb_comp = 0;
/* post the command on the channel used for initializations */
bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
/* wait for completion */
DELAY(5);
while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
if (!timeout ||
(sc->recovery_state != BXE_RECOVERY_DONE &&
sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
*wb_comp, sc->recovery_state);
BXE_DMAE_UNLOCK(sc);
return (DMAE_TIMEOUT);
}
timeout--;
DELAY(50);
}
if (*wb_comp & DMAE_PCI_ERR_FLAG) {
BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
*wb_comp, sc->recovery_state);
BXE_DMAE_UNLOCK(sc);
return (DMAE_PCI_ERROR);
}
BXE_DMAE_UNLOCK(sc);
return (0);
}
void
bxe_read_dmae(struct bxe_softc *sc,
uint32_t src_addr,
uint32_t len32)
{
struct dmae_cmd dmae;
uint32_t *data;
int i, rc;
DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
if (!sc->dmae_ready) {
data = BXE_SP(sc, wb_data[0]);
for (i = 0; i < len32; i++) {
data[i] = (CHIP_IS_E1(sc)) ?
bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
REG_RD(sc, (src_addr + (i * 4)));
}
return;
}
/* set opcode and fixed command fields */
bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
/* fill in addresses and len */
dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
dmae.src_addr_hi = 0;
dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
dmae.len = len32;
/* issue the command and wait for completion */
if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
bxe_panic(sc, ("DMAE failed (%d)\n", rc));
}
}
void
bxe_write_dmae(struct bxe_softc *sc,
bus_addr_t dma_addr,
uint32_t dst_addr,
uint32_t len32)
{
struct dmae_cmd dmae;
int rc;
if (!sc->dmae_ready) {
DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
if (CHIP_IS_E1(sc)) {
ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
} else {
ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
}
return;
}
/* set opcode and fixed command fields */
bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
/* fill in addresses and len */
dmae.src_addr_lo = U64_LO(dma_addr);
dmae.src_addr_hi = U64_HI(dma_addr);
dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
dmae.dst_addr_hi = 0;
dmae.len = len32;
/* issue the command and wait for completion */
if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
bxe_panic(sc, ("DMAE failed (%d)\n", rc));
}
}
void
bxe_write_dmae_phys_len(struct bxe_softc *sc,
bus_addr_t phys_addr,
uint32_t addr,
uint32_t len)
{
int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
int offset = 0;
while (len > dmae_wr_max) {
bxe_write_dmae(sc,
(phys_addr + offset), /* src DMA address */
(addr + offset), /* dst GRC address */
dmae_wr_max);
offset += (dmae_wr_max * 4);
len -= dmae_wr_max;
}
bxe_write_dmae(sc,
(phys_addr + offset), /* src DMA address */
(addr + offset), /* dst GRC address */
len);
}
void
bxe_set_ctx_validation(struct bxe_softc *sc,
struct eth_context *cxt,
uint32_t cid)
{
/* ustorm cxt validation */
cxt->ustorm_ag_context.cdu_usage =
CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
/* xcontext validation */
cxt->xstorm_ag_context.cdu_reserved =
CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
}
static void
bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
uint8_t port,
uint8_t fw_sb_id,
uint8_t sb_index,
uint8_t ticks)
{
uint32_t addr =
(BAR_CSTRORM_INTMEM +
CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
REG_WR8(sc, addr, ticks);
BLOGD(sc, DBG_LOAD,
"port %d fw_sb_id %d sb_index %d ticks %d\n",
port, fw_sb_id, sb_index, ticks);
}
static void
bxe_storm_memset_hc_disable(struct bxe_softc *sc,
uint8_t port,
uint16_t fw_sb_id,
uint8_t sb_index,
uint8_t disable)
{
uint32_t enable_flag =
(disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
uint32_t addr =
(BAR_CSTRORM_INTMEM +
CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
uint8_t flags;
/* clear and set */
flags = REG_RD8(sc, addr);
flags &= ~HC_INDEX_DATA_HC_ENABLED;
flags |= enable_flag;
REG_WR8(sc, addr, flags);
BLOGD(sc, DBG_LOAD,
"port %d fw_sb_id %d sb_index %d disable %d\n",
port, fw_sb_id, sb_index, disable);
}
void
bxe_update_coalesce_sb_index(struct bxe_softc *sc,
uint8_t fw_sb_id,
uint8_t sb_index,
uint8_t disable,
uint16_t usec)
{
int port = SC_PORT(sc);
uint8_t ticks = (usec / 4); /* XXX ??? */
bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
disable = (disable) ? 1 : ((usec) ? 0 : 1);
bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
}
void
elink_cb_udelay(struct bxe_softc *sc,
uint32_t usecs)
{
DELAY(usecs);
}
uint32_t
elink_cb_reg_read(struct bxe_softc *sc,
uint32_t reg_addr)
{
return (REG_RD(sc, reg_addr));
}
void
elink_cb_reg_write(struct bxe_softc *sc,
uint32_t reg_addr,
uint32_t val)
{
REG_WR(sc, reg_addr, val);
}
void
elink_cb_reg_wb_write(struct bxe_softc *sc,
uint32_t offset,
uint32_t *wb_write,
uint16_t len)
{
REG_WR_DMAE(sc, offset, wb_write, len);
}
void
elink_cb_reg_wb_read(struct bxe_softc *sc,
uint32_t offset,
uint32_t *wb_write,
uint16_t len)
{
REG_RD_DMAE(sc, offset, wb_write, len);
}
uint8_t
elink_cb_path_id(struct bxe_softc *sc)
{
return (SC_PATH(sc));
}
void
elink_cb_event_log(struct bxe_softc *sc,
const elink_log_id_t elink_log_id,
...)
{
/* XXX */
BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
}
static int
bxe_set_spio(struct bxe_softc *sc,
int spio,
uint32_t mode)
{
uint32_t spio_reg;
/* Only 2 SPIOs are configurable */
if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
return (-1);
}
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
/* read SPIO and mask except the float bits */
spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
switch (mode) {
case MISC_SPIO_OUTPUT_LOW:
BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
/* clear FLOAT and set CLR */
spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
spio_reg |= (spio << MISC_SPIO_CLR_POS);
break;
case MISC_SPIO_OUTPUT_HIGH:
BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
/* clear FLOAT and set SET */
spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
spio_reg |= (spio << MISC_SPIO_SET_POS);
break;
case MISC_SPIO_INPUT_HI_Z:
BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
/* set FLOAT */
spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
break;
default:
break;
}
REG_WR(sc, MISC_REG_SPIO, spio_reg);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
return (0);
}
static int
bxe_gpio_read(struct bxe_softc *sc,
int gpio_num,
uint8_t port)
{
/* The GPIO should be swapped if swap register is set and active */
int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
int gpio_shift = (gpio_num +
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
uint32_t gpio_mask = (1 << gpio_shift);
uint32_t gpio_reg;
if (gpio_num > MISC_REGISTERS_GPIO_3) {
BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
" gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
gpio_mask);
return (-1);
}
/* read GPIO value */
gpio_reg = REG_RD(sc, MISC_REG_GPIO);
/* get the requested pin value */
return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
}
static int
bxe_gpio_write(struct bxe_softc *sc,
int gpio_num,
uint32_t mode,
uint8_t port)
{
/* The GPIO should be swapped if swap register is set and active */
int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
int gpio_shift = (gpio_num +
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
uint32_t gpio_mask = (1 << gpio_shift);
uint32_t gpio_reg;
if (gpio_num > MISC_REGISTERS_GPIO_3) {
BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
" gpio_shift %d gpio_mask 0x%x\n",
gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
return (-1);
}
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
/* read GPIO and mask except the float bits */
gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
switch (mode) {
case MISC_REGISTERS_GPIO_OUTPUT_LOW:
BLOGD(sc, DBG_PHY,
"Set GPIO %d (shift %d) -> output low\n",
gpio_num, gpio_shift);
/* clear FLOAT and set CLR */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
break;
case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
BLOGD(sc, DBG_PHY,
"Set GPIO %d (shift %d) -> output high\n",
gpio_num, gpio_shift);
/* clear FLOAT and set SET */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
break;
case MISC_REGISTERS_GPIO_INPUT_HI_Z:
BLOGD(sc, DBG_PHY,
"Set GPIO %d (shift %d) -> input\n",
gpio_num, gpio_shift);
/* set FLOAT */
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
break;
default:
break;
}
REG_WR(sc, MISC_REG_GPIO, gpio_reg);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
return (0);
}
static int
bxe_gpio_mult_write(struct bxe_softc *sc,
uint8_t pins,
uint32_t mode)
{
uint32_t gpio_reg;
/* any port swapping should be handled by caller */
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
/* read GPIO and mask except the float bits */
gpio_reg = REG_RD(sc, MISC_REG_GPIO);
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
switch (mode) {
case MISC_REGISTERS_GPIO_OUTPUT_LOW:
BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
/* set CLR */
gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
break;
case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
/* set SET */
gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
break;
case MISC_REGISTERS_GPIO_INPUT_HI_Z:
BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
/* set FLOAT */
gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
break;
default:
BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
" gpio_reg 0x%x\n", pins, mode, gpio_reg);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
return (-1);
}
REG_WR(sc, MISC_REG_GPIO, gpio_reg);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
return (0);
}
static int
bxe_gpio_int_write(struct bxe_softc *sc,
int gpio_num,
uint32_t mode,
uint8_t port)
{
/* The GPIO should be swapped if swap register is set and active */
int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
int gpio_shift = (gpio_num +
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
uint32_t gpio_mask = (1 << gpio_shift);
uint32_t gpio_reg;
if (gpio_num > MISC_REGISTERS_GPIO_3) {
BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
" gpio_shift %d gpio_mask 0x%x\n",
gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
return (-1);
}
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
/* read GPIO int */
gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
switch (mode) {
case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
BLOGD(sc, DBG_PHY,
"Clear GPIO INT %d (shift %d) -> output low\n",
gpio_num, gpio_shift);
/* clear SET and set CLR */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
break;
case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
BLOGD(sc, DBG_PHY,
"Set GPIO INT %d (shift %d) -> output high\n",
gpio_num, gpio_shift);
/* clear CLR and set SET */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
break;
default:
break;
}
REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
return (0);
}
uint32_t
elink_cb_gpio_read(struct bxe_softc *sc,
uint16_t gpio_num,
uint8_t port)
{
return (bxe_gpio_read(sc, gpio_num, port));
}
uint8_t
elink_cb_gpio_write(struct bxe_softc *sc,
uint16_t gpio_num,
uint8_t mode, /* 0=low 1=high */
uint8_t port)
{
return (bxe_gpio_write(sc, gpio_num, mode, port));
}
uint8_t
elink_cb_gpio_mult_write(struct bxe_softc *sc,
uint8_t pins,
uint8_t mode) /* 0=low 1=high */
{
return (bxe_gpio_mult_write(sc, pins, mode));
}
uint8_t
elink_cb_gpio_int_write(struct bxe_softc *sc,
uint16_t gpio_num,
uint8_t mode, /* 0=low 1=high */
uint8_t port)
{
return (bxe_gpio_int_write(sc, gpio_num, mode, port));
}
void
elink_cb_notify_link_changed(struct bxe_softc *sc)
{
REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
(SC_FUNC(sc) * sizeof(uint32_t))), 1);
}
/* send the MCP a request, block until there is a reply */
uint32_t
elink_cb_fw_command(struct bxe_softc *sc,
uint32_t command,
uint32_t param)
{
int mb_idx = SC_FW_MB_IDX(sc);
uint32_t seq;
uint32_t rc = 0;
uint32_t cnt = 1;
uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
BXE_FWMB_LOCK(sc);
seq = ++sc->fw_seq;
SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
BLOGD(sc, DBG_PHY,
"wrote command 0x%08x to FW MB param 0x%08x\n",
(command | seq), param);
/* Let the FW do it's magic. GIve it up to 5 seconds... */
do {
DELAY(delay * 1000);
rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
BLOGD(sc, DBG_PHY,
"[after %d ms] read 0x%x seq 0x%x from FW MB\n",
cnt*delay, rc, seq);
/* is this a reply to our command? */
if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
rc &= FW_MSG_CODE_MASK;
} else {
/* Ruh-roh! */
BLOGE(sc, "FW failed to respond!\n");
// XXX bxe_fw_dump(sc);
rc = 0;
}
BXE_FWMB_UNLOCK(sc);
return (rc);
}
static uint32_t
bxe_fw_command(struct bxe_softc *sc,
uint32_t command,
uint32_t param)
{
return (elink_cb_fw_command(sc, command, param));
}
static void
__storm_memset_dma_mapping(struct bxe_softc *sc,
uint32_t addr,
bus_addr_t mapping)
{
REG_WR(sc, addr, U64_LO(mapping));
REG_WR(sc, (addr + 4), U64_HI(mapping));
}
static void
storm_memset_spq_addr(struct bxe_softc *sc,
bus_addr_t mapping,
uint16_t abs_fid)
{
uint32_t addr = (XSEM_REG_FAST_MEMORY +
XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
__storm_memset_dma_mapping(sc, addr, mapping);
}
static void
storm_memset_vf_to_pf(struct bxe_softc *sc,
uint16_t abs_fid,
uint16_t pf_id)
{
REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
}
static void
storm_memset_func_en(struct bxe_softc *sc,
uint16_t abs_fid,
uint8_t enable)
{
REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
}
static void
storm_memset_eq_data(struct bxe_softc *sc,
struct event_ring_data *eq_data,
uint16_t pfid)
{
uint32_t addr;
size_t size;
addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
size = sizeof(struct event_ring_data);
ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
}
static void
storm_memset_eq_prod(struct bxe_softc *sc,
uint16_t eq_prod,
uint16_t pfid)
{
uint32_t addr = (BAR_CSTRORM_INTMEM +
CSTORM_EVENT_RING_PROD_OFFSET(pfid));
REG_WR16(sc, addr, eq_prod);
}
/*
* Post a slowpath command.
*
* A slowpath command is used to propagate a configuration change through
* the controller in a controlled manner, allowing each STORM processor and
* other H/W blocks to phase in the change. The commands sent on the
* slowpath are referred to as ramrods. Depending on the ramrod used the
* completion of the ramrod will occur in different ways. Here's a
* breakdown of ramrods and how they complete:
*
* RAMROD_CMD_ID_ETH_PORT_SETUP
* Used to setup the leading connection on a port. Completes on the
* Receive Completion Queue (RCQ) of that port (typically fp[0]).
*
* RAMROD_CMD_ID_ETH_CLIENT_SETUP
* Used to setup an additional connection on a port. Completes on the
* RCQ of the multi-queue/RSS connection being initialized.
*
* RAMROD_CMD_ID_ETH_STAT_QUERY
* Used to force the storm processors to update the statistics database
* in host memory. This ramrod is send on the leading connection CID and
* completes as an index increment of the CSTORM on the default status
* block.
*
* RAMROD_CMD_ID_ETH_UPDATE
* Used to update the state of the leading connection, usually to udpate
* the RSS indirection table. Completes on the RCQ of the leading
* connection. (Not currently used under FreeBSD until OS support becomes
* available.)
*
* RAMROD_CMD_ID_ETH_HALT
* Used when tearing down a connection prior to driver unload. Completes
* on the RCQ of the multi-queue/RSS connection being torn down. Don't
* use this on the leading connection.
*
* RAMROD_CMD_ID_ETH_SET_MAC
* Sets the Unicast/Broadcast/Multicast used by the port. Completes on
* the RCQ of the leading connection.
*
* RAMROD_CMD_ID_ETH_CFC_DEL
* Used when tearing down a conneciton prior to driver unload. Completes
* on the RCQ of the leading connection (since the current connection
* has been completely removed from controller memory).
*
* RAMROD_CMD_ID_ETH_PORT_DEL
* Used to tear down the leading connection prior to driver unload,
* typically fp[0]. Completes as an index increment of the CSTORM on the
* default status block.
*
* RAMROD_CMD_ID_ETH_FORWARD_SETUP
* Used for connection offload. Completes on the RCQ of the multi-queue
* RSS connection that is being offloaded. (Not currently used under
* FreeBSD.)
*
* There can only be one command pending per function.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
/* must be called under the spq lock */
static inline
struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
{
struct eth_spe *next_spe = sc->spq_prod_bd;
if (sc->spq_prod_bd == sc->spq_last_bd) {
/* wrap back to the first eth_spq */
sc->spq_prod_bd = sc->spq;
sc->spq_prod_idx = 0;
} else {
sc->spq_prod_bd++;
sc->spq_prod_idx++;
}
return (next_spe);
}
/* must be called under the spq lock */
static inline
void bxe_sp_prod_update(struct bxe_softc *sc)
{
int func = SC_FUNC(sc);
/*
* Make sure that BD data is updated before writing the producer.
* BD data is written to the memory, the producer is read from the
* memory, thus we need a full memory barrier to ensure the ordering.
*/
mb();
REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
sc->spq_prod_idx);
bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
BUS_SPACE_BARRIER_WRITE);
}
/**
* bxe_is_contextless_ramrod - check if the current command ends on EQ
*
* @cmd: command to check
* @cmd_type: command type
*/
static inline
int bxe_is_contextless_ramrod(int cmd,
int cmd_type)
{
if ((cmd_type == NONE_CONNECTION_TYPE) ||
(cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
(cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
(cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
(cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
(cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
(cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
return (TRUE);
} else {
return (FALSE);
}
}
/**
* bxe_sp_post - place a single command on an SP ring
*
* @sc: driver handle
* @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
* @cid: SW CID the command is related to
* @data_hi: command private data address (high 32 bits)
* @data_lo: command private data address (low 32 bits)
* @cmd_type: command type (e.g. NONE, ETH)
*
* SP data is handled as if it's always an address pair, thus data fields are
* not swapped to little endian in upper functions. Instead this function swaps
* data as if it's two uint32 fields.
*/
int
bxe_sp_post(struct bxe_softc *sc,
int command,
int cid,
uint32_t data_hi,
uint32_t data_lo,
int cmd_type)
{
struct eth_spe *spe;
uint16_t type;
int common;
common = bxe_is_contextless_ramrod(command, cmd_type);
BXE_SP_LOCK(sc);
if (common) {
if (!atomic_load_acq_long(&sc->eq_spq_left)) {
BLOGE(sc, "EQ ring is full!\n");
BXE_SP_UNLOCK(sc);
return (-1);
}
} else {
if (!atomic_load_acq_long(&sc->cq_spq_left)) {
BLOGE(sc, "SPQ ring is full!\n");
BXE_SP_UNLOCK(sc);
return (-1);
}
}
spe = bxe_sp_get_next(sc);
/* CID needs port number to be encoded int it */
spe->hdr.conn_and_cmd_data =
htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
/* TBD: Check if it works for VFs */
type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
SPE_HDR_T_FUNCTION_ID);
spe->hdr.type = htole16(type);
spe->data.update_data_addr.hi = htole32(data_hi);
spe->data.update_data_addr.lo = htole32(data_lo);
/*
* It's ok if the actual decrement is issued towards the memory
* somewhere between the lock and unlock. Thus no more explict
* memory barrier is needed.
*/
if (common) {
atomic_subtract_acq_long(&sc->eq_spq_left, 1);
} else {
atomic_subtract_acq_long(&sc->cq_spq_left, 1);
}
BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
BLOGD(sc, DBG_SP,
"SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
sc->spq_prod_idx,
(uint32_t)U64_HI(sc->spq_dma.paddr),
(uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
command,
common,
HW_CID(sc, cid),
data_hi,
data_lo,
type,
atomic_load_acq_long(&sc->cq_spq_left),
atomic_load_acq_long(&sc->eq_spq_left));
bxe_sp_prod_update(sc);
BXE_SP_UNLOCK(sc);
return (0);
}
/**
* bxe_debug_print_ind_table - prints the indirection table configuration.
*
* @sc: driver hanlde
* @p: pointer to rss configuration
*/
/*
* FreeBSD Device probe function.
*
* Compares the device found to the driver's list of supported devices and
* reports back to the bsd loader whether this is the right driver for the device.
* This is the driver entry function called from the "kldload" command.
*
* Returns:
* BUS_PROBE_DEFAULT on success, positive value on failure.
*/
static int
bxe_probe(device_t dev)
{
struct bxe_device_type *t;
char *descbuf;
uint16_t did, sdid, svid, vid;
/* Find our device structure */
t = bxe_devs;
/* Get the data for the device to be probed. */
vid = pci_get_vendor(dev);
did = pci_get_device(dev);
svid = pci_get_subvendor(dev);
sdid = pci_get_subdevice(dev);
/* Look through the list of known devices for a match. */
while (t->bxe_name != NULL) {
if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
if (descbuf == NULL)
return (ENOMEM);
/* Print out the device identity. */
snprintf(descbuf, BXE_DEVDESC_MAX,
"%s (%c%d) BXE v:%s\n", t->bxe_name,
(((pci_read_config(dev, PCIR_REVID, 4) &
0xf0) >> 4) + 'A'),
(pci_read_config(dev, PCIR_REVID, 4) & 0xf),
BXE_DRIVER_VERSION);
device_set_desc_copy(dev, descbuf);
free(descbuf, M_TEMP);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
static void
bxe_init_mutexes(struct bxe_softc *sc)
{
#ifdef BXE_CORE_LOCK_SX
snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
"bxe%d_core_lock", sc->unit);
sx_init(&sc->core_sx, sc->core_sx_name);
#else
snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
"bxe%d_core_lock", sc->unit);
mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
#endif
snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
"bxe%d_sp_lock", sc->unit);
mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
"bxe%d_dmae_lock", sc->unit);
mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
"bxe%d_phy_lock", sc->unit);
mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
"bxe%d_fwmb_lock", sc->unit);
mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
"bxe%d_print_lock", sc->unit);
mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
"bxe%d_stats_lock", sc->unit);
mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
"bxe%d_mcast_lock", sc->unit);
mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
}
static void
bxe_release_mutexes(struct bxe_softc *sc)
{
#ifdef BXE_CORE_LOCK_SX
sx_destroy(&sc->core_sx);
#else
if (mtx_initialized(&sc->core_mtx)) {
mtx_destroy(&sc->core_mtx);
}
#endif
if (mtx_initialized(&sc->sp_mtx)) {
mtx_destroy(&sc->sp_mtx);
}
if (mtx_initialized(&sc->dmae_mtx)) {
mtx_destroy(&sc->dmae_mtx);
}
if (mtx_initialized(&sc->port.phy_mtx)) {
mtx_destroy(&sc->port.phy_mtx);
}
if (mtx_initialized(&sc->fwmb_mtx)) {
mtx_destroy(&sc->fwmb_mtx);
}
if (mtx_initialized(&sc->print_mtx)) {
mtx_destroy(&sc->print_mtx);
}
if (mtx_initialized(&sc->stats_mtx)) {
mtx_destroy(&sc->stats_mtx);
}
if (mtx_initialized(&sc->mcast_mtx)) {
mtx_destroy(&sc->mcast_mtx);
}
}
static void
bxe_tx_disable(struct bxe_softc* sc)
{
if_t ifp = sc->ifp;
/* tell the stack the driver is stopped and TX queue is full */
if (ifp != NULL) {
if_setdrvflags(ifp, 0);
}
}
static void
bxe_drv_pulse(struct bxe_softc *sc)
{
SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
sc->fw_drv_pulse_wr_seq);
}
static inline uint16_t
bxe_tx_avail(struct bxe_softc *sc,
struct bxe_fastpath *fp)
{
int16_t used;
uint16_t prod;
uint16_t cons;
prod = fp->tx_bd_prod;
cons = fp->tx_bd_cons;
used = SUB_S16(prod, cons);
return (int16_t)(sc->tx_ring_size) - used;
}
static inline int
bxe_tx_queue_has_work(struct bxe_fastpath *fp)
{
uint16_t hw_cons;
mb(); /* status block fields can change */
hw_cons = le16toh(*fp->tx_cons_sb);
return (hw_cons != fp->tx_pkt_cons);
}
static inline uint8_t
bxe_has_tx_work(struct bxe_fastpath *fp)
{
/* expand this for multi-cos if ever supported */
return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
}
static inline int
bxe_has_rx_work(struct bxe_fastpath *fp)
{
uint16_t rx_cq_cons_sb;
mb(); /* status block fields can change */
rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
rx_cq_cons_sb++;
return (fp->rx_cq_cons != rx_cq_cons_sb);
}
static void
bxe_sp_event(struct bxe_softc *sc,
struct bxe_fastpath *fp,
union eth_rx_cqe *rr_cqe)
{
int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
switch (command) {
case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
drv_cmd = ECORE_Q_CMD_UPDATE;
break;
case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
drv_cmd = ECORE_Q_CMD_SETUP;
break;
case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
break;
case (RAMROD_CMD_ID_ETH_HALT):
BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
drv_cmd = ECORE_Q_CMD_HALT;
break;
case (RAMROD_CMD_ID_ETH_TERMINATE):
BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
drv_cmd = ECORE_Q_CMD_TERMINATE;
break;
case (RAMROD_CMD_ID_ETH_EMPTY):
BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
drv_cmd = ECORE_Q_CMD_EMPTY;
break;
default:
BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
command, fp->index);
return;
}
if ((drv_cmd != ECORE_Q_CMD_MAX) &&
q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
/*
* q_obj->complete_cmd() failure means that this was
* an unexpected completion.
*
* In this case we don't want to increase the sc->spq_left
* because apparently we haven't sent this command the first
* place.
*/
// bxe_panic(sc, ("Unexpected SP completion\n"));
return;
}
atomic_add_acq_long(&sc->cq_spq_left, 1);
BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
atomic_load_acq_long(&sc->cq_spq_left));
}
/*
* The current mbuf is part of an aggregation. Move the mbuf into the TPA
* aggregation queue, put an empty mbuf back onto the receive chain, and mark
* the current aggregation queue as in-progress.
*/
static void
bxe_tpa_start(struct bxe_softc *sc,
struct bxe_fastpath *fp,
uint16_t queue,
uint16_t cons,
uint16_t prod,
struct eth_fast_path_rx_cqe *cqe)
{
struct bxe_sw_rx_bd tmp_bd;
struct bxe_sw_rx_bd *rx_buf;
struct eth_rx_bd *rx_bd;
int max_agg_queues;
struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
uint16_t index;
BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
"cons=%d prod=%d\n",
fp->index, queue, cons, prod);
max_agg_queues = MAX_AGG_QS(sc);
KASSERT((queue < max_agg_queues),
("fp[%02d] invalid aggr queue (%d >= %d)!",
fp->index, queue, max_agg_queues));
KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
fp->index, queue));
/* copy the existing mbuf and mapping from the TPA pool */
tmp_bd = tpa_info->bd;
if (tmp_bd.m == NULL) {
uint32_t *tmp;
tmp = (uint32_t *)cqe;
BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
fp->index, queue, cons, prod);
BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
*tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
/* XXX Error handling? */
return;
}
/* change the TPA queue to the start state */
tpa_info->state = BXE_TPA_STATE_START;
tpa_info->placement_offset = cqe->placement_offset;
tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags);
tpa_info->vlan_tag = le16toh(cqe->vlan_tag);
tpa_info->len_on_bd = le16toh(cqe->len_on_bd);
fp->rx_tpa_queue_used |= (1 << queue);
/*
* If all the buffer descriptors are filled with mbufs then fill in
* the current consumer index with a new BD. Else if a maximum Rx
* buffer limit is imposed then fill in the next producer index.
*/
index = (sc->max_rx_bufs != RX_BD_USABLE) ?
prod : cons;
/* move the received mbuf and mapping to TPA pool */
tpa_info->bd = fp->rx_mbuf_chain[cons];
/* release any existing RX BD mbuf mappings */
if (cons != index) {
rx_buf = &fp->rx_mbuf_chain[cons];
if (rx_buf->m_map != NULL) {
bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
}
/*
* We get here when the maximum number of rx buffers is less than
* RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
* it out here without concern of a memory leak.
*/
fp->rx_mbuf_chain[cons].m = NULL;
}
/* update the Rx SW BD with the mbuf info from the TPA pool */
fp->rx_mbuf_chain[index] = tmp_bd;
/* update the Rx BD with the empty mbuf phys address from the TPA pool */
rx_bd = &fp->rx_chain[index];
rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
}
/*
* When a TPA aggregation is completed, loop through the individual mbufs
* of the aggregation, combining them into a single mbuf which will be sent
* up the stack. Refill all freed SGEs with mbufs as we go along.
*/
static int
bxe_fill_frag_mbuf(struct bxe_softc *sc,
struct bxe_fastpath *fp,
struct bxe_sw_tpa_info *tpa_info,
uint16_t queue,
uint16_t pages,
struct mbuf *m,
struct eth_end_agg_rx_cqe *cqe,
uint16_t cqe_idx)
{
struct mbuf *m_frag;
uint32_t frag_len, frag_size, i;
uint16_t sge_idx;
int rc = 0;
int j;
frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
BLOGD(sc, DBG_LRO,
"fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
/* make sure the aggregated frame is not too big to handle */
if (pages > 8 * PAGES_PER_SGE) {
uint32_t *tmp = (uint32_t *)cqe;
BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
"pkt_len=%d len_on_bd=%d frag_size=%d\n",
fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
tpa_info->len_on_bd, frag_size);
BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
*tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
bxe_panic(sc, ("sge page count error\n"));
return (EINVAL);
}
/*
* Scan through the scatter gather list pulling individual mbufs into a
* single mbuf for the host stack.
*/
for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
/*
* Firmware gives the indices of the SGE as if the ring is an array
* (meaning that the "next" element will consume 2 indices).
*/
frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
"sge_idx=%d frag_size=%d frag_len=%d\n",
fp->index, queue, i, j, sge_idx, frag_size, frag_len);
m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
/* allocate a new mbuf for the SGE */
rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
if (rc) {
/* Leave all remaining SGEs in the ring! */
return (rc);
}
/* update the fragment length */
m_frag->m_len = frag_len;
/* concatenate the fragment to the head mbuf */
m_cat(m, m_frag);
fp->eth_q_stats.mbuf_alloc_sge--;
/* update the TPA mbuf size and remaining fragment size */
m->m_pkthdr.len += frag_len;
frag_size -= frag_len;
}
BLOGD(sc, DBG_LRO,
"fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
fp->index, queue, frag_size);
return (rc);
}
static inline void
bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
{
int i, j;
for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
for (j = 0; j < 2; j++) {
BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
idx--;
}
}
}
static inline void
bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
{
/* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
/*
* Clear the two last indices in the page to 1. These are the indices that
* correspond to the "next" element, hence will never be indicated and
* should be removed from the calculations.
*/
bxe_clear_sge_mask_next_elems(fp);
}
static inline void
bxe_update_last_max_sge(struct bxe_fastpath *fp,
uint16_t idx)
{
uint16_t last_max = fp->last_max_sge;
if (SUB_S16(idx, last_max) > 0) {
fp->last_max_sge = idx;
}
}
static inline void
bxe_update_sge_prod(struct bxe_softc *sc,
struct bxe_fastpath *fp,
uint16_t sge_len,
union eth_sgl_or_raw_data *cqe)
{
uint16_t last_max, last_elem, first_elem;
uint16_t delta = 0;
uint16_t i;
if (!sge_len) {
return;
}
/* first mark all used pages */
for (i = 0; i < sge_len; i++) {
BIT_VEC64_CLEAR_BIT(fp->sge_mask,
RX_SGE(le16toh(cqe->sgl[i])));
}
BLOGD(sc, DBG_LRO,
"fp[%02d] fp_cqe->sgl[%d] = %d\n",
fp->index, sge_len - 1,
le16toh(cqe->sgl[sge_len - 1]));
/* assume that the last SGE index is the biggest */
bxe_update_last_max_sge(fp,
le16toh(cqe->sgl[sge_len - 1]));
last_max = RX_SGE(fp->last_max_sge);
last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
/* if ring is not full */
if (last_elem + 1 != first_elem) {
last_elem++;
}
/* now update the prod */
for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
if (__predict_true(fp->sge_mask[i])) {
break;
}
fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
delta += BIT_VEC64_ELEM_SZ;
}
if (delta > 0) {
fp->rx_sge_prod += delta;
/* clear page-end entries */
bxe_clear_sge_mask_next_elems(fp);
}
BLOGD(sc, DBG_LRO,
"fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
fp->index, fp->last_max_sge, fp->rx_sge_prod);
}
/*
* The aggregation on the current TPA queue has completed. Pull the individual
* mbuf fragments together into a single mbuf, perform all necessary checksum
* calculations, and send the resuting mbuf to the stack.
*/
static void
bxe_tpa_stop(struct bxe_softc *sc,
struct bxe_fastpath *fp,
struct bxe_sw_tpa_info *tpa_info,
uint16_t queue,
uint16_t pages,
struct eth_end_agg_rx_cqe *cqe,
uint16_t cqe_idx)
{
if_t ifp = sc->ifp;
struct mbuf *m;
int rc = 0;
BLOGD(sc, DBG_LRO,
"fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
fp->index, queue, tpa_info->placement_offset,
le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
m = tpa_info->bd.m;
/* allocate a replacement before modifying existing mbuf */
rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
if (rc) {
/* drop the frame and log an error */
fp->eth_q_stats.rx_soft_errors++;
goto bxe_tpa_stop_exit;
}
/* we have a replacement, fixup the current mbuf */
m_adj(m, tpa_info->placement_offset);
m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
/* mark the checksums valid (taken care of by the firmware) */
fp->eth_q_stats.rx_ofld_frames_csum_ip++;
fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
m->m_pkthdr.csum_data = 0xffff;
m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
CSUM_IP_VALID |
CSUM_DATA_VALID |
CSUM_PSEUDO_HDR);
/* aggregate all of the SGEs into a single mbuf */
rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
if (rc) {
/* drop the packet and log an error */
fp->eth_q_stats.rx_soft_errors++;
m_freem(m);
} else {
if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
m->m_flags |= M_VLANTAG;
}
/* assign packet to this interface interface */
if_setrcvif(m, ifp);
#if __FreeBSD_version >= 800000
/* specify what RSS queue was used for this flow */
m->m_pkthdr.flowid = fp->index;
BXE_SET_FLOWID(m);
#endif
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
fp->eth_q_stats.rx_tpa_pkts++;
/* pass the frame to the stack */
if_input(ifp, m);
}
/* we passed an mbuf up the stack or dropped the frame */
fp->eth_q_stats.mbuf_alloc_tpa--;
bxe_tpa_stop_exit:
fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
fp->rx_tpa_queue_used &= ~(1 << queue);
}
static uint8_t
bxe_service_rxsgl(
struct bxe_fastpath *fp,
uint16_t len,
uint16_t lenonbd,
struct mbuf *m,
struct eth_fast_path_rx_cqe *cqe_fp)
{
struct mbuf *m_frag;
uint16_t frags, frag_len;
uint16_t sge_idx = 0;
uint16_t j;
uint8_t i, rc = 0;
uint32_t frag_size;
/* adjust the mbuf */
m->m_len = lenonbd;
frag_size = len - lenonbd;
frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
m_frag->m_len = frag_len;
/* allocate a new mbuf for the SGE */
rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
if (rc) {
/* Leave all remaining SGEs in the ring! */
return (rc);
}
fp->eth_q_stats.mbuf_alloc_sge--;
/* concatenate the fragment to the head mbuf */
m_cat(m, m_frag);
frag_size -= frag_len;
}
bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
return rc;
}
static uint8_t
bxe_rxeof(struct bxe_softc *sc,
struct bxe_fastpath *fp)
{
if_t ifp = sc->ifp;
uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
int rx_pkts = 0;
int rc = 0;
BXE_FP_RX_LOCK(fp);
/* CQ "next element" is of the size of the regular element */
hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
hw_cq_cons++;
}
bd_cons = fp->rx_bd_cons;
bd_prod = fp->rx_bd_prod;
bd_prod_fw = bd_prod;
sw_cq_cons = fp->rx_cq_cons;
sw_cq_prod = fp->rx_cq_prod;
/*
* Memory barrier necessary as speculative reads of the rx
* buffer can be ahead of the index in the status block
*/
rmb();
BLOGD(sc, DBG_RX,
"fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
fp->index, hw_cq_cons, sw_cq_cons);
while (sw_cq_cons != hw_cq_cons) {
struct bxe_sw_rx_bd *rx_buf = NULL;
union eth_rx_cqe *cqe;
struct eth_fast_path_rx_cqe *cqe_fp;
uint8_t cqe_fp_flags;
enum eth_rx_cqe_type cqe_fp_type;
uint16_t len, lenonbd, pad;
struct mbuf *m = NULL;
comp_ring_cons = RCQ(sw_cq_cons);
bd_prod = RX_BD(bd_prod);
bd_cons = RX_BD(bd_cons);
cqe = &fp->rcq_chain[comp_ring_cons];
cqe_fp = &cqe->fast_path_cqe;
cqe_fp_flags = cqe_fp->type_error_flags;
cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
BLOGD(sc, DBG_RX,
"fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
"BD prod=%d cons=%d CQE type=0x%x err=0x%x "
"status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
fp->index,
hw_cq_cons,
sw_cq_cons,
bd_prod,
bd_cons,
CQE_TYPE(cqe_fp_flags),
cqe_fp_flags,
cqe_fp->status_flags,
le32toh(cqe_fp->rss_hash_result),
le16toh(cqe_fp->vlan_tag),
le16toh(cqe_fp->pkt_len_or_gro_seg_len),
le16toh(cqe_fp->len_on_bd));
/* is this a slowpath msg? */
if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
bxe_sp_event(sc, fp, cqe);
goto next_cqe;
}
rx_buf = &fp->rx_mbuf_chain[bd_cons];
if (!CQE_TYPE_FAST(cqe_fp_type)) {
struct bxe_sw_tpa_info *tpa_info;
uint16_t frag_size, pages;
uint8_t queue;
if (CQE_TYPE_START(cqe_fp_type)) {
bxe_tpa_start(sc, fp, cqe_fp->queue_index,
bd_cons, bd_prod, cqe_fp);
m = NULL; /* packet not ready yet */
goto next_rx;
}
KASSERT(CQE_TYPE_STOP(cqe_fp_type),
("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
queue = cqe->end_agg_cqe.queue_index;
tpa_info = &fp->rx_tpa_info[queue];
BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
fp->index, queue);
frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
tpa_info->len_on_bd);
pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
&cqe->end_agg_cqe, comp_ring_cons);
bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
goto next_cqe;
}
/* non TPA */
/* is this an error packet? */
if (__predict_false(cqe_fp_flags &
ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
fp->eth_q_stats.rx_soft_errors++;
goto next_rx;
}
len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
lenonbd = le16toh(cqe_fp->len_on_bd);
pad = cqe_fp->placement_offset;
m = rx_buf->m;
if (__predict_false(m == NULL)) {
BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
bd_cons, fp->index);
goto next_rx;
}
/* XXX double copy if packet length under a threshold */
/*
* If all the buffer descriptors are filled with mbufs then fill in
* the current consumer index with a new BD. Else if a maximum Rx
* buffer limit is imposed then fill in the next producer index.
*/
rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
(sc->max_rx_bufs != RX_BD_USABLE) ?
bd_prod : bd_cons);
if (rc != 0) {
/* we simply reuse the received mbuf and don't post it to the stack */
m = NULL;
BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
fp->index, rc);
fp->eth_q_stats.rx_soft_errors++;
if (sc->max_rx_bufs != RX_BD_USABLE) {
/* copy this consumer index to the producer index */
memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
sizeof(struct bxe_sw_rx_bd));
memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
}
goto next_rx;
}
/* current mbuf was detached from the bd */
fp->eth_q_stats.mbuf_alloc_rx--;
/* we allocated a replacement mbuf, fixup the current one */
m_adj(m, pad);
m->m_pkthdr.len = m->m_len = len;
if ((len > 60) && (len > lenonbd)) {
fp->eth_q_stats.rx_bxe_service_rxsgl++;
rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
if (rc)
break;
fp->eth_q_stats.rx_jumbo_sge_pkts++;
} else if (lenonbd < len) {
fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
}
/* assign packet to this interface interface */
if_setrcvif(m, ifp);
/* assume no hardware checksum has complated */
m->m_pkthdr.csum_flags = 0;
/* validate checksum if offload enabled */
if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
/* check for a valid IP frame */
if (!(cqe->fast_path_cqe.status_flags &
ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if (__predict_false(cqe_fp_flags &
ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
fp->eth_q_stats.rx_hw_csum_errors++;
} else {
fp->eth_q_stats.rx_ofld_frames_csum_ip++;
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
}
}
/* check for a valid TCP/UDP frame */
if (!(cqe->fast_path_cqe.status_flags &
ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
if (__predict_false(cqe_fp_flags &
ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
fp->eth_q_stats.rx_hw_csum_errors++;
} else {
fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
m->m_pkthdr.csum_data = 0xFFFF;
m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
CSUM_PSEUDO_HDR);
}
}
}
/* if there is a VLAN tag then flag that info */
if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
m->m_flags |= M_VLANTAG;
}
#if __FreeBSD_version >= 800000
/* specify what RSS queue was used for this flow */
m->m_pkthdr.flowid = fp->index;
BXE_SET_FLOWID(m);
#endif
next_rx:
bd_cons = RX_BD_NEXT(bd_cons);
bd_prod = RX_BD_NEXT(bd_prod);
bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
/* pass the frame to the stack */
if (__predict_true(m != NULL)) {
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
rx_pkts++;
if_input(ifp, m);
}
next_cqe:
sw_cq_prod = RCQ_NEXT(sw_cq_prod);
sw_cq_cons = RCQ_NEXT(sw_cq_cons);
/* limit spinning on the queue */
if (rc != 0)
break;
if (rx_pkts == sc->rx_budget) {
fp->eth_q_stats.rx_budget_reached++;
break;
}
} /* while work to do */
fp->rx_bd_cons = bd_cons;
fp->rx_bd_prod = bd_prod_fw;
fp->rx_cq_cons = sw_cq_cons;
fp->rx_cq_prod = sw_cq_prod;
/* Update producers */
bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
fp->eth_q_stats.rx_pkts += rx_pkts;
fp->eth_q_stats.rx_calls++;
BXE_FP_RX_UNLOCK(fp);
return (sw_cq_cons != hw_cq_cons);
}
static uint16_t
bxe_free_tx_pkt(struct bxe_softc *sc,
struct bxe_fastpath *fp,
uint16_t idx)
{
struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
struct eth_tx_start_bd *tx_start_bd;
uint16_t bd_idx = TX_BD(tx_buf->first_bd);
uint16_t new_cons;
int nbd;
/* unmap the mbuf from non-paged memory */
bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
nbd = le16toh(tx_start_bd->nbd) - 1;
new_cons = (tx_buf->first_bd + nbd);
/* free the mbuf */
if (__predict_true(tx_buf->m != NULL)) {
m_freem(tx_buf->m);
fp->eth_q_stats.mbuf_alloc_tx--;
} else {
fp->eth_q_stats.tx_chain_lost_mbuf++;
}
tx_buf->m = NULL;
tx_buf->first_bd = 0;
return (new_cons);
}
/* transmit timeout watchdog */
static int
bxe_watchdog(struct bxe_softc *sc,
struct bxe_fastpath *fp)
{
BXE_FP_TX_LOCK(fp);
if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
BXE_FP_TX_UNLOCK(fp);
return (0);
}
BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
BXE_FP_TX_UNLOCK(fp);
BXE_SET_ERROR_BIT(sc, BXE_ERR_TXQ_STUCK);
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
return (-1);
}
/* processes transmit completions */
static uint8_t
bxe_txeof(struct bxe_softc *sc,
struct bxe_fastpath *fp)
{
if_t ifp = sc->ifp;
uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
uint16_t tx_bd_avail;
BXE_FP_TX_LOCK_ASSERT(fp);
bd_cons = fp->tx_bd_cons;
hw_cons = le16toh(*fp->tx_cons_sb);
sw_cons = fp->tx_pkt_cons;
while (sw_cons != hw_cons) {
pkt_cons = TX_BD(sw_cons);
BLOGD(sc, DBG_TX,
"TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
fp->index, hw_cons, sw_cons, pkt_cons);
bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
sw_cons++;
}
fp->tx_pkt_cons = sw_cons;
fp->tx_bd_cons = bd_cons;
BLOGD(sc, DBG_TX,
"TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
mb();
tx_bd_avail = bxe_tx_avail(sc, fp);
if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
} else {
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
}
if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
/* reset the watchdog timer if there are pending transmits */
fp->watchdog_timer = BXE_TX_TIMEOUT;
return (TRUE);
} else {
/* clear watchdog when there are no pending transmits */
fp->watchdog_timer = 0;
return (FALSE);
}
}
static void
bxe_drain_tx_queues(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i, count;
/* wait until all TX fastpath tasks have completed */
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
count = 1000;
while (bxe_has_tx_work(fp)) {
BXE_FP_TX_LOCK(fp);
bxe_txeof(sc, fp);
BXE_FP_TX_UNLOCK(fp);
if (count == 0) {
BLOGE(sc, "Timeout waiting for fp[%d] "
"transmits to complete!\n", i);
bxe_panic(sc, ("tx drain failure\n"));
return;
}
count--;
DELAY(1000);
rmb();
}
}
return;
}
static int
bxe_del_all_macs(struct bxe_softc *sc,
struct ecore_vlan_mac_obj *mac_obj,
int mac_type,
uint8_t wait_for_comp)
{
unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
int rc;
/* wait for completion of requested */
if (wait_for_comp) {
bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
}
/* Set the mac type of addresses we want to clear */
bxe_set_bit(mac_type, &vlan_mac_flags);
rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
if (rc < 0) {
BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
rc, mac_type, wait_for_comp);
}
return (rc);
}
static int
bxe_fill_accept_flags(struct bxe_softc *sc,
uint32_t rx_mode,
unsigned long *rx_accept_flags,
unsigned long *tx_accept_flags)
{
/* Clear the flags first */
*rx_accept_flags = 0;
*tx_accept_flags = 0;
switch (rx_mode) {
case BXE_RX_MODE_NONE:
/*
* 'drop all' supersedes any accept flags that may have been
* passed to the function.
*/
break;
case BXE_RX_MODE_NORMAL:
bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
/* internal switching mode */
bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
break;
case BXE_RX_MODE_ALLMULTI:
bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
/* internal switching mode */
bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
break;
case BXE_RX_MODE_PROMISC:
/*
* According to deffinition of SI mode, iface in promisc mode
* should receive matched and unmatched (in resolution of port)
* unicast packets.
*/
bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
/* internal switching mode */
bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
if (IS_MF_SI(sc)) {
bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
} else {
bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
}
break;
default:
BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
return (-1);
}
/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
if (rx_mode != BXE_RX_MODE_NONE) {
bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
}
return (0);
}
static int
bxe_set_q_rx_mode(struct bxe_softc *sc,
uint8_t cl_id,
unsigned long rx_mode_flags,
unsigned long rx_accept_flags,
unsigned long tx_accept_flags,
unsigned long ramrod_flags)
{
struct ecore_rx_mode_ramrod_params ramrod_param;
int rc;
memset(&ramrod_param, 0, sizeof(ramrod_param));
/* Prepare ramrod parameters */
ramrod_param.cid = 0;
ramrod_param.cl_id = cl_id;
ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
ramrod_param.func_id = SC_FUNC(sc);
ramrod_param.pstate = &sc->sp_state;
ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
ramrod_param.ramrod_flags = ramrod_flags;
ramrod_param.rx_mode_flags = rx_mode_flags;
ramrod_param.rx_accept_flags = rx_accept_flags;
ramrod_param.tx_accept_flags = tx_accept_flags;
rc = ecore_config_rx_mode(sc, &ramrod_param);
if (rc < 0) {
BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
"rx_accept_flags 0x%x tx_accept_flags 0x%x "
"ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
(uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
(uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
return (rc);
}
return (0);
}
static int
bxe_set_storm_rx_mode(struct bxe_softc *sc)
{
unsigned long rx_mode_flags = 0, ramrod_flags = 0;
unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
int rc;
rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
&tx_accept_flags);
if (rc) {
return (rc);
}
bxe_set_bit(RAMROD_RX, &ramrod_flags);
bxe_set_bit(RAMROD_TX, &ramrod_flags);
/* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
rx_accept_flags, tx_accept_flags,
ramrod_flags));
}
/* returns the "mcp load_code" according to global load_count array */
static int
bxe_nic_load_no_mcp(struct bxe_softc *sc)
{
int path = SC_PATH(sc);
int port = SC_PORT(sc);
BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n",
path, load_count[path][0], load_count[path][1],
load_count[path][2]);
load_count[path][0]++;
load_count[path][1 + port]++;
BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n",
path, load_count[path][0], load_count[path][1],
load_count[path][2]);
if (load_count[path][0] == 1) {
return (FW_MSG_CODE_DRV_LOAD_COMMON);
} else if (load_count[path][1 + port] == 1) {
return (FW_MSG_CODE_DRV_LOAD_PORT);
} else {
return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
}
}
/* returns the "mcp load_code" according to global load_count array */
static int
bxe_nic_unload_no_mcp(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
int path = SC_PATH(sc);
BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n",
path, load_count[path][0], load_count[path][1],
load_count[path][2]);
load_count[path][0]--;
load_count[path][1 + port]--;
BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n",
path, load_count[path][0], load_count[path][1],
load_count[path][2]);
if (load_count[path][0] == 0) {
return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
} else if (load_count[path][1 + port] == 0) {
return (FW_MSG_CODE_DRV_UNLOAD_PORT);
} else {
return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
}
}
/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
static uint32_t
bxe_send_unload_req(struct bxe_softc *sc,
int unload_mode)
{
uint32_t reset_code = 0;
/* Select the UNLOAD request mode */
if (unload_mode == UNLOAD_NORMAL) {
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
} else {
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
}
/* Send the request to the MCP */
if (!BXE_NOMCP(sc)) {
reset_code = bxe_fw_command(sc, reset_code, 0);
} else {
reset_code = bxe_nic_unload_no_mcp(sc);
}
return (reset_code);
}
/* send UNLOAD_DONE command to the MCP */
static void
bxe_send_unload_done(struct bxe_softc *sc,
uint8_t keep_link)
{
uint32_t reset_param =
keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
/* Report UNLOAD_DONE to MCP */
if (!BXE_NOMCP(sc)) {
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
}
}
static int
bxe_func_wait_started(struct bxe_softc *sc)
{
int tout = 50;
if (!sc->port.pmf) {
return (0);
}
/*
* (assumption: No Attention from MCP at this stage)
* PMF probably in the middle of TX disable/enable transaction
* 1. Sync IRS for default SB
* 2. Sync SP queue - this guarantees us that attention handling started
* 3. Wait, that TX disable/enable transaction completes
*
* 1+2 guarantee that if DCBX attention was scheduled it already changed
* pending bit of transaction from STARTED-->TX_STOPPED, if we already
* received completion for the transaction the state is TX_STOPPED.
* State will return to STARTED after completion of TX_STOPPED-->STARTED
* transaction.
*/
/* XXX make sure default SB ISR is done */
/* need a way to synchronize an irq (intr_mtx?) */
/* XXX flush any work queues */
while (ecore_func_get_state(sc, &sc->func_obj) !=
ECORE_F_STATE_STARTED && tout--) {
DELAY(20000);
}
if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
/*
* Failed to complete the transaction in a "good way"
* Force both transactions with CLR bit.
*/
struct ecore_func_state_params func_params = { NULL };
BLOGE(sc, "Unexpected function state! "
"Forcing STARTED-->TX_STOPPED-->STARTED\n");
func_params.f_obj = &sc->func_obj;
bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
/* STARTED-->TX_STOPPED */
func_params.cmd = ECORE_F_CMD_TX_STOP;
ecore_func_state_change(sc, &func_params);
/* TX_STOPPED-->STARTED */
func_params.cmd = ECORE_F_CMD_TX_START;
return (ecore_func_state_change(sc, &func_params));
}
return (0);
}
static int
bxe_stop_queue(struct bxe_softc *sc,
int index)
{
struct bxe_fastpath *fp = &sc->fp[index];
struct ecore_queue_state_params q_params = { NULL };
int rc;
BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
/* We want to wait for completion in this context */
bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
/* Stop the primary connection: */
/* ...halt the connection */
q_params.cmd = ECORE_Q_CMD_HALT;
rc = ecore_queue_state_change(sc, &q_params);
if (rc) {
return (rc);
}
/* ...terminate the connection */
q_params.cmd = ECORE_Q_CMD_TERMINATE;
memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
rc = ecore_queue_state_change(sc, &q_params);
if (rc) {
return (rc);
}
/* ...delete cfc entry */
q_params.cmd = ECORE_Q_CMD_CFC_DEL;
memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
return (ecore_queue_state_change(sc, &q_params));
}
/* wait for the outstanding SP commands */
static inline uint8_t
bxe_wait_sp_comp(struct bxe_softc *sc,
unsigned long mask)
{
unsigned long tmp;
int tout = 5000; /* wait for 5 secs tops */
while (tout--) {
mb();
if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
return (TRUE);
}
DELAY(1000);
}
mb();
tmp = atomic_load_acq_long(&sc->sp_state);
if (tmp & mask) {
BLOGE(sc, "Filtering completion timed out: "
"sp_state 0x%lx, mask 0x%lx\n",
tmp, mask);
return (FALSE);
}
return (FALSE);
}
static int
bxe_func_stop(struct bxe_softc *sc)
{
struct ecore_func_state_params func_params = { NULL };
int rc;
/* prepare parameters for function state transitions */
bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
func_params.f_obj = &sc->func_obj;
func_params.cmd = ECORE_F_CMD_STOP;
/*
* Try to stop the function the 'good way'. If it fails (in case
* of a parity error during bxe_chip_cleanup()) and we are
* not in a debug mode, perform a state transaction in order to
* enable further HW_RESET transaction.
*/
rc = ecore_func_state_change(sc, &func_params);
if (rc) {
BLOGE(sc, "FUNC_STOP ramrod failed. "
"Running a dry transaction (%d)\n", rc);
bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
return (ecore_func_state_change(sc, &func_params));
}
return (0);
}
static int
bxe_reset_hw(struct bxe_softc *sc,
uint32_t load_code)
{
struct ecore_func_state_params func_params = { NULL };
/* Prepare parameters for function state transitions */
bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
func_params.f_obj = &sc->func_obj;
func_params.cmd = ECORE_F_CMD_HW_RESET;
func_params.params.hw_init.load_phase = load_code;
return (ecore_func_state_change(sc, &func_params));
}
static void
bxe_int_disable_sync(struct bxe_softc *sc,
int disable_hw)
{
if (disable_hw) {
/* prevent the HW from sending interrupts */
bxe_int_disable(sc);
}
/* XXX need a way to synchronize ALL irqs (intr_mtx?) */
/* make sure all ISRs are done */
/* XXX make sure sp_task is not running */
/* cancel and flush work queues */
}
static void
bxe_chip_cleanup(struct bxe_softc *sc,
uint32_t unload_mode,
uint8_t keep_link)
{
int port = SC_PORT(sc);
struct ecore_mcast_ramrod_params rparam = { NULL };
uint32_t reset_code;
int i, rc = 0;
bxe_drain_tx_queues(sc);
/* give HW time to discard old tx messages */
DELAY(1000);
/* Clean all ETH MACs */
rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
if (rc < 0) {
BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
}
/* Clean up UC list */
rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
if (rc < 0) {
BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
}
/* Disable LLH */
if (!CHIP_IS_E1(sc)) {
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
}
/* Set "drop all" to stop Rx */
/*
* We need to take the BXE_MCAST_LOCK() here in order to prevent
* a race between the completion code and this code.
*/
BXE_MCAST_LOCK(sc);
if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
} else {
bxe_set_storm_rx_mode(sc);
}
/* Clean up multicast configuration */
rparam.mcast_obj = &sc->mcast_obj;
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
if (rc < 0) {
BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
}
BXE_MCAST_UNLOCK(sc);
// XXX bxe_iov_chip_cleanup(sc);
/*
* Send the UNLOAD_REQUEST to the MCP. This will return if
* this function should perform FUNCTION, PORT, or COMMON HW
* reset.
*/
reset_code = bxe_send_unload_req(sc, unload_mode);
/*
* (assumption: No Attention from MCP at this stage)
* PMF probably in the middle of TX disable/enable transaction
*/
rc = bxe_func_wait_started(sc);
if (rc) {
BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
}
/*
* Close multi and leading connections
* Completions for ramrods are collected in a synchronous way
*/
for (i = 0; i < sc->num_queues; i++) {
if (bxe_stop_queue(sc, i)) {
goto unload_error;
}
}
/*
* If SP settings didn't get completed so far - something
* very wrong has happen.
*/
if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
}
unload_error:
rc = bxe_func_stop(sc);
if (rc) {
BLOGE(sc, "Function stop failed!(%d)\n", rc);
}
/* disable HW interrupts */
bxe_int_disable_sync(sc, TRUE);
/* detach interrupts */
bxe_interrupt_detach(sc);
/* Reset the chip */
rc = bxe_reset_hw(sc, reset_code);
if (rc) {
BLOGE(sc, "Hardware reset failed(%d)\n", rc);
}
/* Report UNLOAD_DONE to MCP */
bxe_send_unload_done(sc, keep_link);
}
static void
bxe_disable_close_the_gate(struct bxe_softc *sc)
{
uint32_t val;
int port = SC_PORT(sc);
BLOGD(sc, DBG_LOAD,
"Disabling 'close the gates'\n");
if (CHIP_IS_E1(sc)) {
uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0;
val = REG_RD(sc, addr);
val &= ~(0x300);
REG_WR(sc, addr, val);
} else {
val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
}
}
/*
* Cleans the object that have internal lists without sending
* ramrods. Should be run when interrutps are disabled.
*/
static void
bxe_squeeze_objects(struct bxe_softc *sc)
{
unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
struct ecore_mcast_ramrod_params rparam = { NULL };
struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
int rc;
/* Cleanup MACs' object first... */
/* Wait for completion of requested */
bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
/* Perform a dry cleanup */
bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
/* Clean ETH primary MAC */
bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
&ramrod_flags);
if (rc != 0) {
BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
}
/* Cleanup UC list */
vlan_mac_flags = 0;
bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
&ramrod_flags);
if (rc != 0) {
BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
}
/* Now clean mcast object... */
rparam.mcast_obj = &sc->mcast_obj;
bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
/* Add a DEL command... */
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
if (rc < 0) {
BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
}
/* now wait until all pending commands are cleared */
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
while (rc != 0) {
if (rc < 0) {
BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
return;
}
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
}
}
/* stop the controller */
static __noinline int
bxe_nic_unload(struct bxe_softc *sc,
uint32_t unload_mode,
uint8_t keep_link)
{
uint8_t global = FALSE;
uint32_t val;
int i;
BXE_CORE_LOCK_ASSERT(sc);
if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
for (i = 0; i < sc->num_queues; i++) {
struct bxe_fastpath *fp;
fp = &sc->fp[i];
fp->watchdog_timer = 0;
BXE_FP_TX_LOCK(fp);
BXE_FP_TX_UNLOCK(fp);
}
BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
/* mark driver as unloaded in shmem2 */
if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
}
if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
(sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
if(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
/*
* We can get here if the driver has been unloaded
* during parity error recovery and is either waiting for a
* leader to complete or for other functions to unload and
* then ifconfig down has been issued. In this case we want to
* unload and let other functions to complete a recovery
* process.
*/
sc->recovery_state = BXE_RECOVERY_DONE;
sc->is_leader = 0;
bxe_release_leader_lock(sc);
mb();
BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
}
BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
" state = 0x%x\n", sc->recovery_state, sc->state);
return (-1);
}
/*
* Nothing to do during unload if previous bxe_nic_load()
* did not completed successfully - all resourses are released.
*/
if ((sc->state == BXE_STATE_CLOSED) ||
(sc->state == BXE_STATE_ERROR)) {
return (0);
}
sc->state = BXE_STATE_CLOSING_WAITING_HALT;
mb();
/* stop tx */
bxe_tx_disable(sc);
sc->rx_mode = BXE_RX_MODE_NONE;
/* XXX set rx mode ??? */
if (IS_PF(sc) && !sc->grcdump_done) {
/* set ALWAYS_ALIVE bit in shmem */
sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
bxe_drv_pulse(sc);
bxe_stats_handle(sc, STATS_EVENT_STOP);
bxe_save_statistics(sc);
}
/* wait till consumers catch up with producers in all queues */
bxe_drain_tx_queues(sc);
/* if VF indicate to PF this function is going down (PF will delete sp
* elements and clear initializations
*/
if (IS_VF(sc)) {
; /* bxe_vfpf_close_vf(sc); */
} else if (unload_mode != UNLOAD_RECOVERY) {
/* if this is a normal/close unload need to clean up chip */
if (!sc->grcdump_done)
bxe_chip_cleanup(sc, unload_mode, keep_link);
} else {
/* Send the UNLOAD_REQUEST to the MCP */
bxe_send_unload_req(sc, unload_mode);
/*
* Prevent transactions to host from the functions on the
* engine that doesn't reset global blocks in case of global
* attention once gloabl blocks are reset and gates are opened
* (the engine which leader will perform the recovery
* last).
*/
if (!CHIP_IS_E1x(sc)) {
bxe_pf_disable(sc);
}
/* disable HW interrupts */
bxe_int_disable_sync(sc, TRUE);
/* detach interrupts */
bxe_interrupt_detach(sc);
/* Report UNLOAD_DONE to MCP */
bxe_send_unload_done(sc, FALSE);
}
/*
* At this stage no more interrupts will arrive so we may safely clean
* the queue'able objects here in case they failed to get cleaned so far.
*/
if (IS_PF(sc)) {
bxe_squeeze_objects(sc);
}
/* There should be no more pending SP commands at this stage */
sc->sp_state = 0;
sc->port.pmf = 0;
bxe_free_fp_buffers(sc);
if (IS_PF(sc)) {
bxe_free_mem(sc);
}
bxe_free_fw_stats_mem(sc);
sc->state = BXE_STATE_CLOSED;
/*
* Check if there are pending parity attentions. If there are - set
* RECOVERY_IN_PROGRESS.
*/
if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
bxe_set_reset_in_progress(sc);
/* Set RESET_IS_GLOBAL if needed */
if (global) {
bxe_set_reset_global(sc);
}
}
/*
* The last driver must disable a "close the gate" if there is no
* parity attention or "process kill" pending.
*/
if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
bxe_reset_is_done(sc, SC_PATH(sc))) {
bxe_disable_close_the_gate(sc);
}
BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
bxe_link_report(sc);
return (0);
}
/*
* Called by the OS to set various media options (i.e. link, speed, etc.) when
* the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
*/
static int
bxe_ifmedia_update(struct ifnet *ifp)
{
struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
struct ifmedia *ifm;
ifm = &sc->ifmedia;
/* We only support Ethernet media type. */
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
return (EINVAL);
}
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
break;
case IFM_10G_CX4:
case IFM_10G_SR:
case IFM_10G_T:
case IFM_10G_TWINAX:
default:
/* We don't support changing the media type. */
BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
IFM_SUBTYPE(ifm->ifm_media));
return (EINVAL);
}
return (0);
}
/*
* Called by the OS to get the current media status (i.e. link, speed, etc.).
*/
static void
bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct bxe_softc *sc = if_getsoftc(ifp);
/* Bug 165447: the 'ifconfig' tool skips printing of the "status: ..."
line if the IFM_AVALID flag is *NOT* set. So we need to set this
flag unconditionally (irrespective of the admininistrative
'up/down' state of the interface) to ensure that that line is always
displayed.
*/
ifmr->ifm_status = IFM_AVALID;
/* Setup the default interface info. */
ifmr->ifm_active = IFM_ETHER;
/* Report link down if the driver isn't running. */
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
ifmr->ifm_active |= IFM_NONE;
BLOGD(sc, DBG_PHY, "in %s : nic still not loaded fully\n", __func__);
BLOGD(sc, DBG_PHY, "in %s : link_up (1) : %d\n",
__func__, sc->link_vars.link_up);
return;
}
if (sc->link_vars.link_up) {
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= IFM_FDX;
} else {
ifmr->ifm_active |= IFM_NONE;
BLOGD(sc, DBG_PHY, "in %s : setting IFM_NONE\n",
__func__);
return;
}
ifmr->ifm_active |= sc->media;
return;
}
static void
bxe_handle_chip_tq(void *context,
int pending)
{
struct bxe_softc *sc = (struct bxe_softc *)context;
long work = atomic_load_acq_long(&sc->chip_tq_flags);
switch (work)
{
case CHIP_TQ_REINIT:
if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
/* restart the interface */
BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
bxe_periodic_stop(sc);
BXE_CORE_LOCK(sc);
bxe_stop_locked(sc);
bxe_init_locked(sc);
BXE_CORE_UNLOCK(sc);
}
break;
default:
break;
}
}
/*
* Handles any IOCTL calls from the operating system.
*
* Returns:
* 0 = Success, >0 Failure
*/
static int
bxe_ioctl(if_t ifp,
u_long command,
caddr_t data)
{
struct bxe_softc *sc = if_getsoftc(ifp);
struct ifreq *ifr = (struct ifreq *)data;
int mask = 0;
int reinit = 0;
int error = 0;
int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
switch (command)
{
case SIOCSIFMTU:
BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
ifr->ifr_mtu);
if (sc->mtu == ifr->ifr_mtu) {
/* nothing to change */
break;
}
if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
ifr->ifr_mtu, mtu_min, mtu_max);
error = EINVAL;
break;
}
atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
(unsigned long)ifr->ifr_mtu);
/*
atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
(unsigned long)ifr->ifr_mtu);
XXX - Not sure why it needs to be atomic
*/
if_setmtu(ifp, ifr->ifr_mtu);
reinit = 1;
break;
case SIOCSIFFLAGS:
/* toggle the interface state up or down */
BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
BXE_CORE_LOCK(sc);
/* check if the interface is up */
if (if_getflags(ifp) & IFF_UP) {
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
/* set the receive mode flags */
bxe_set_rx_mode(sc);
} else if(sc->state != BXE_STATE_DISABLED) {
bxe_init_locked(sc);
}
} else {
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
bxe_periodic_stop(sc);
bxe_stop_locked(sc);
}
}
BXE_CORE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* add/delete multicast addresses */
BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
/* check if the interface is up */
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
/* set the receive mode flags */
BXE_CORE_LOCK(sc);
bxe_set_rx_mode(sc);
BXE_CORE_UNLOCK(sc);
}
break;
case SIOCSIFCAP:
/* find out which capabilities have changed */
mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
mask);
/* toggle the LRO capabilites enable flag */
if (mask & IFCAP_LRO) {
if_togglecapenable(ifp, IFCAP_LRO);
BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
(if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
reinit = 1;
}
/* toggle the TXCSUM checksum capabilites enable flag */
if (mask & IFCAP_TXCSUM) {
if_togglecapenable(ifp, IFCAP_TXCSUM);
BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
(if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
if_sethwassistbits(ifp, (CSUM_IP |
CSUM_TCP |
CSUM_UDP |
CSUM_TSO |
CSUM_TCP_IPV6 |
CSUM_UDP_IPV6), 0);
} else {
if_clearhwassist(ifp); /* XXX */
}
}
/* toggle the RXCSUM checksum capabilities enable flag */
if (mask & IFCAP_RXCSUM) {
if_togglecapenable(ifp, IFCAP_RXCSUM);
BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
(if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
if_sethwassistbits(ifp, (CSUM_IP |
CSUM_TCP |
CSUM_UDP |
CSUM_TSO |
CSUM_TCP_IPV6 |
CSUM_UDP_IPV6), 0);
} else {
if_clearhwassist(ifp); /* XXX */
}
}
/* toggle TSO4 capabilities enabled flag */
if (mask & IFCAP_TSO4) {
if_togglecapenable(ifp, IFCAP_TSO4);
BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
(if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
}
/* toggle TSO6 capabilities enabled flag */
if (mask & IFCAP_TSO6) {
if_togglecapenable(ifp, IFCAP_TSO6);
BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
(if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
}
/* toggle VLAN_HWTSO capabilities enabled flag */
if (mask & IFCAP_VLAN_HWTSO) {
if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
(if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
}
/* toggle VLAN_HWCSUM capabilities enabled flag */
if (mask & IFCAP_VLAN_HWCSUM) {
/* XXX investigate this... */
BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
error = EINVAL;
}
/* toggle VLAN_MTU capabilities enable flag */
if (mask & IFCAP_VLAN_MTU) {
/* XXX investigate this... */
BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
error = EINVAL;
}
/* toggle VLAN_HWTAGGING capabilities enabled flag */
if (mask & IFCAP_VLAN_HWTAGGING) {
/* XXX investigate this... */
BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
error = EINVAL;
}
/* toggle VLAN_HWFILTER capabilities enabled flag */
if (mask & IFCAP_VLAN_HWFILTER) {
/* XXX investigate this... */
BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
error = EINVAL;
}
/* XXX not yet...
* IFCAP_WOL_MAGIC
*/
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
/* set/get interface media */
BLOGD(sc, DBG_IOCTL,
"Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
(command & 0xff));
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
default:
BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
(command & 0xff));
error = ether_ioctl(ifp, command, data);
break;
}
if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
BLOGD(sc, DBG_LOAD | DBG_IOCTL,
"Re-initializing hardware from IOCTL change\n");
bxe_periodic_stop(sc);
BXE_CORE_LOCK(sc);
bxe_stop_locked(sc);
bxe_init_locked(sc);
BXE_CORE_UNLOCK(sc);
}
return (error);
}
static __noinline void
bxe_dump_mbuf(struct bxe_softc *sc,
struct mbuf *m,
uint8_t contents)
{
char * type;
int i = 0;
if (!(sc->debug & DBG_MBUF)) {
return;
}
if (m == NULL) {
BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
return;
}
while (m) {
#if __FreeBSD_version >= 1000000
BLOGD(sc, DBG_MBUF,
"%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
if (m->m_flags & M_PKTHDR) {
BLOGD(sc, DBG_MBUF,
"%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
(int)m->m_pkthdr.csum_flags, CSUM_BITS);
}
#else
BLOGD(sc, DBG_MBUF,
"%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
i, m, m->m_len, m->m_flags,
"\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data);
if (m->m_flags & M_PKTHDR) {
BLOGD(sc, DBG_MBUF,
"%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
i, m->m_pkthdr.len, m->m_flags,
"\20\12M_BCAST\13M_MCAST\14M_FRAG"
"\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
"\22M_PROMISC\23M_NOFREE",
(int)m->m_pkthdr.csum_flags,
"\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
"\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
"\12CSUM_IP_VALID\13CSUM_DATA_VALID"
"\14CSUM_PSEUDO_HDR");
}
#endif /* #if __FreeBSD_version >= 1000000 */
if (m->m_flags & M_EXT) {
switch (m->m_ext.ext_type) {
case EXT_CLUSTER: type = "EXT_CLUSTER"; break;
case EXT_SFBUF: type = "EXT_SFBUF"; break;
case EXT_JUMBOP: type = "EXT_JUMBOP"; break;
case EXT_JUMBO9: type = "EXT_JUMBO9"; break;
case EXT_JUMBO16: type = "EXT_JUMBO16"; break;
case EXT_PACKET: type = "EXT_PACKET"; break;
case EXT_MBUF: type = "EXT_MBUF"; break;
case EXT_NET_DRV: type = "EXT_NET_DRV"; break;
case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break;
case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
case EXT_EXTREF: type = "EXT_EXTREF"; break;
default: type = "UNKNOWN"; break;
}
BLOGD(sc, DBG_MBUF,
"%02d: - m_ext: %p ext_size=%d type=%s\n",
i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
}
if (contents) {
bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
}
m = m->m_next;
i++;
}
}
/*
* Checks to ensure the 13 bd sliding window is >= MSS for TSO.
* Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
* The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
* The headers comes in a separate bd in FreeBSD so 13-3=10.
* Returns: 0 if OK to send, 1 if packet needs further defragmentation
*/
static int
bxe_chktso_window(struct bxe_softc *sc,
int nsegs,
bus_dma_segment_t *segs,
struct mbuf *m)
{
uint32_t num_wnds, wnd_size, wnd_sum;
int32_t frag_idx, wnd_idx;
unsigned short lso_mss;
int defrag;
defrag = 0;
wnd_sum = 0;
wnd_size = 10;
num_wnds = nsegs - wnd_size;
lso_mss = htole16(m->m_pkthdr.tso_segsz);
/*
* Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
* first window sum of data while skipping the first assuming it is the
* header in FreeBSD.
*/
for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
wnd_sum += htole16(segs[frag_idx].ds_len);
}
/* check the first 10 bd window size */
if (wnd_sum < lso_mss) {
return (1);
}
/* run through the windows */
for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
/* subtract the first mbuf->m_len of the last wndw(-header) */
wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
/* add the next mbuf len to the len of our new window */
wnd_sum += htole16(segs[frag_idx].ds_len);
if (wnd_sum < lso_mss) {
return (1);
}
}
return (0);
}
static uint8_t
bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
struct mbuf *m,
uint32_t *parsing_data)
{
struct ether_vlan_header *eh = NULL;
struct ip *ip4 = NULL;
struct ip6_hdr *ip6 = NULL;
caddr_t ip = NULL;
struct tcphdr *th = NULL;
int e_hlen, ip_hlen, l4_off;
uint16_t proto;
if (m->m_pkthdr.csum_flags == CSUM_IP) {
/* no L4 checksum offload needed */
return (0);
}
/* get the Ethernet header */
eh = mtod(m, struct ether_vlan_header *);
/* handle VLAN encapsulation if present */
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
proto = ntohs(eh->evl_proto);
} else {
e_hlen = ETHER_HDR_LEN;
proto = ntohs(eh->evl_encap_proto);
}
switch (proto) {
case ETHERTYPE_IP:
/* get the IP header, if mbuf len < 20 then header in next mbuf */
ip4 = (m->m_len < sizeof(struct ip)) ?
(struct ip *)m->m_next->m_data :
(struct ip *)(m->m_data + e_hlen);
/* ip_hl is number of 32-bit words */
ip_hlen = (ip4->ip_hl << 2);
ip = (caddr_t)ip4;
break;
case ETHERTYPE_IPV6:
/* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
(struct ip6_hdr *)m->m_next->m_data :
(struct ip6_hdr *)(m->m_data + e_hlen);
/* XXX cannot support offload with IPv6 extensions */
ip_hlen = sizeof(struct ip6_hdr);
ip = (caddr_t)ip6;
break;
default:
/* We can't offload in this case... */
/* XXX error stat ??? */
return (0);
}
/* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
l4_off = (e_hlen + ip_hlen);
*parsing_data |=
(((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
if (m->m_pkthdr.csum_flags & (CSUM_TCP |
CSUM_TSO |
CSUM_TCP_IPV6)) {
fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
th = (struct tcphdr *)(ip + ip_hlen);
/* th_off is number of 32-bit words */
*parsing_data |= ((th->th_off <<
ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
return (l4_off + (th->th_off << 2)); /* entire header length */
} else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
CSUM_UDP_IPV6)) {
fp->eth_q_stats.tx_ofld_frames_csum_udp++;
return (l4_off + sizeof(struct udphdr)); /* entire header length */
} else {
/* XXX error stat ??? */
return (0);
}
}
static uint8_t
bxe_set_pbd_csum(struct bxe_fastpath *fp,
struct mbuf *m,
struct eth_tx_parse_bd_e1x *pbd)
{
struct ether_vlan_header *eh = NULL;
struct ip *ip4 = NULL;
struct ip6_hdr *ip6 = NULL;
caddr_t ip = NULL;
struct tcphdr *th = NULL;
struct udphdr *uh = NULL;
int e_hlen, ip_hlen;
uint16_t proto;
uint8_t hlen;
uint16_t tmp_csum;
uint32_t *tmp_uh;
/* get the Ethernet header */
eh = mtod(m, struct ether_vlan_header *);
/* handle VLAN encapsulation if present */
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
proto = ntohs(eh->evl_proto);
} else {
e_hlen = ETHER_HDR_LEN;
proto = ntohs(eh->evl_encap_proto);
}
switch (proto) {
case ETHERTYPE_IP:
/* get the IP header, if mbuf len < 20 then header in next mbuf */
ip4 = (m->m_len < sizeof(struct ip)) ?
(struct ip *)m->m_next->m_data :
(struct ip *)(m->m_data + e_hlen);
/* ip_hl is number of 32-bit words */
ip_hlen = (ip4->ip_hl << 1);
ip = (caddr_t)ip4;
break;
case ETHERTYPE_IPV6:
/* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
(struct ip6_hdr *)m->m_next->m_data :
(struct ip6_hdr *)(m->m_data + e_hlen);
/* XXX cannot support offload with IPv6 extensions */
ip_hlen = (sizeof(struct ip6_hdr) >> 1);
ip = (caddr_t)ip6;
break;
default:
/* We can't offload in this case... */
/* XXX error stat ??? */
return (0);
}
hlen = (e_hlen >> 1);
/* note that rest of global_data is indirectly zeroed here */
if (m->m_flags & M_VLANTAG) {
pbd->global_data =
htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
} else {
pbd->global_data = htole16(hlen);
}
pbd->ip_hlen_w = ip_hlen;
hlen += pbd->ip_hlen_w;
/* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
if (m->m_pkthdr.csum_flags & (CSUM_TCP |
CSUM_TSO |
CSUM_TCP_IPV6)) {
th = (struct tcphdr *)(ip + (ip_hlen << 1));
/* th_off is number of 32-bit words */
hlen += (uint16_t)(th->th_off << 1);
} else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
CSUM_UDP_IPV6)) {
uh = (struct udphdr *)(ip + (ip_hlen << 1));
hlen += (sizeof(struct udphdr) / 2);
} else {
/* valid case as only CSUM_IP was set */
return (0);
}
pbd->total_hlen_w = htole16(hlen);
if (m->m_pkthdr.csum_flags & (CSUM_TCP |
CSUM_TSO |
CSUM_TCP_IPV6)) {
fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
pbd->tcp_pseudo_csum = ntohs(th->th_sum);
} else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
CSUM_UDP_IPV6)) {
fp->eth_q_stats.tx_ofld_frames_csum_udp++;
/*
* Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
* checksums and does not know anything about the UDP header and where
* the checksum field is located. It only knows about TCP. Therefore
* we "lie" to the hardware for outgoing UDP packets w/ checksum
* offload. Since the checksum field offset for TCP is 16 bytes and
* for UDP it is 6 bytes we pass a pointer to the hardware that is 10
* bytes less than the start of the UDP header. This allows the
* hardware to write the checksum in the correct spot. But the
* hardware will compute a checksum which includes the last 10 bytes
* of the IP header. To correct this we tweak the stack computed
* pseudo checksum by folding in the calculation of the inverse
* checksum for those final 10 bytes of the IP header. This allows
* the correct checksum to be computed by the hardware.
*/
/* set pointer 10 bytes before UDP header */
tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
/* calculate a pseudo header checksum over the first 10 bytes */
tmp_csum = in_pseudo(*tmp_uh,
*(tmp_uh + 1),
*(uint16_t *)(tmp_uh + 2));
pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
}
return (hlen * 2); /* entire header length, number of bytes */
}
static void
bxe_set_pbd_lso_e2(struct mbuf *m,
uint32_t *parsing_data)
{
*parsing_data |= ((m->m_pkthdr.tso_segsz <<
ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
ETH_TX_PARSE_BD_E2_LSO_MSS);
/* XXX test for IPv6 with extension header... */
}
static void
bxe_set_pbd_lso(struct mbuf *m,
struct eth_tx_parse_bd_e1x *pbd)
{
struct ether_vlan_header *eh = NULL;
struct ip *ip = NULL;
struct tcphdr *th = NULL;
int e_hlen;
/* get the Ethernet header */
eh = mtod(m, struct ether_vlan_header *);
/* handle VLAN encapsulation if present */
e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
(ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
/* get the IP and TCP header, with LSO entire header in first mbuf */
/* XXX assuming IPv4 */
ip = (struct ip *)(m->m_data + e_hlen);
th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
pbd->tcp_send_seq = ntohl(th->th_seq);
pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
#if 1
/* XXX IPv4 */
pbd->ip_id = ntohs(ip->ip_id);
pbd->tcp_pseudo_csum =
ntohs(in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr,
htons(IPPROTO_TCP)));
#else
/* XXX IPv6 */
pbd->tcp_pseudo_csum =
ntohs(in_pseudo(&ip6->ip6_src,
&ip6->ip6_dst,
htons(IPPROTO_TCP)));
#endif
pbd->global_data |=
htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
}
/*
* Encapsulte an mbuf cluster into the tx bd chain and makes the memory
* visible to the controller.
*
* If an mbuf is submitted to this routine and cannot be given to the
* controller (e.g. it has too many fragments) then the function may free
* the mbuf and return to the caller.
*
* Returns:
* 0 = Success, !0 = Failure
* Note the side effect that an mbuf may be freed if it causes a problem.
*/
static int
bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
{
bus_dma_segment_t segs[32];
struct mbuf *m0;
struct bxe_sw_tx_bd *tx_buf;
struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
/* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
struct eth_tx_bd *tx_data_bd;
struct eth_tx_bd *tx_total_pkt_size_bd;
struct eth_tx_start_bd *tx_start_bd;
uint16_t bd_prod, pkt_prod, total_pkt_size;
uint8_t mac_type;
int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
struct bxe_softc *sc;
uint16_t tx_bd_avail;
struct ether_vlan_header *eh;
uint32_t pbd_e2_parsing_data = 0;
uint8_t hlen = 0;
int tmp_bd;
int i;
sc = fp->sc;
#if __FreeBSD_version >= 800000
M_ASSERTPKTHDR(*m_head);
#endif /* #if __FreeBSD_version >= 800000 */
m0 = *m_head;
rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
tx_start_bd = NULL;
tx_data_bd = NULL;
tx_total_pkt_size_bd = NULL;
/* get the H/W pointer for packets and BDs */
pkt_prod = fp->tx_pkt_prod;
bd_prod = fp->tx_bd_prod;
mac_type = UNICAST_ADDRESS;
/* map the mbuf into the next open DMAable memory */
tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
tx_buf->m_map, m0,
segs, &nsegs, BUS_DMA_NOWAIT);
/* mapping errors */
if(__predict_false(error != 0)) {
fp->eth_q_stats.tx_dma_mapping_failure++;
if (error == ENOMEM) {
/* resource issue, try again later */
rc = ENOMEM;
} else if (error == EFBIG) {
/* possibly recoverable with defragmentation */
fp->eth_q_stats.mbuf_defrag_attempts++;
m0 = m_defrag(*m_head, M_NOWAIT);
if (m0 == NULL) {
fp->eth_q_stats.mbuf_defrag_failures++;
rc = ENOBUFS;
} else {
/* defrag successful, try mapping again */
*m_head = m0;
error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
tx_buf->m_map, m0,
segs, &nsegs, BUS_DMA_NOWAIT);
if (error) {
fp->eth_q_stats.tx_dma_mapping_failure++;
rc = error;
}
}
} else {
/* unknown, unrecoverable mapping error */
BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
bxe_dump_mbuf(sc, m0, FALSE);
rc = error;
}
goto bxe_tx_encap_continue;
}
tx_bd_avail = bxe_tx_avail(sc, fp);
/* make sure there is enough room in the send queue */
if (__predict_false(tx_bd_avail < (nsegs + 2))) {
/* Recoverable, try again later. */
fp->eth_q_stats.tx_hw_queue_full++;
bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
rc = ENOMEM;
goto bxe_tx_encap_continue;
}
/* capture the current H/W TX chain high watermark */
if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
(TX_BD_USABLE - tx_bd_avail))) {
fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
}
/* make sure it fits in the packet window */
if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
/*
* The mbuf may be to big for the controller to handle. If the frame
* is a TSO frame we'll need to do an additional check.
*/
if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
goto bxe_tx_encap_continue; /* OK to send */
} else {
fp->eth_q_stats.tx_window_violation_tso++;
}
} else {
fp->eth_q_stats.tx_window_violation_std++;
}
/* lets try to defragment this mbuf and remap it */
fp->eth_q_stats.mbuf_defrag_attempts++;
bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
m0 = m_defrag(*m_head, M_NOWAIT);
if (m0 == NULL) {
fp->eth_q_stats.mbuf_defrag_failures++;
/* Ugh, just drop the frame... :( */
rc = ENOBUFS;
} else {
/* defrag successful, try mapping again */
*m_head = m0;
error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
tx_buf->m_map, m0,
segs, &nsegs, BUS_DMA_NOWAIT);
if (error) {
fp->eth_q_stats.tx_dma_mapping_failure++;
/* No sense in trying to defrag/copy chain, drop it. :( */
rc = error;
} else {
/* if the chain is still too long then drop it */
if(m0->m_pkthdr.csum_flags & CSUM_TSO) {
/*
* in case TSO is enabled nsegs should be checked against
* BXE_TSO_MAX_SEGMENTS
*/
if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) {
bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
fp->eth_q_stats.nsegs_path1_errors++;
rc = ENODEV;
}
} else {
if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
fp->eth_q_stats.nsegs_path2_errors++;
rc = ENODEV;
}
}
}
}
}
bxe_tx_encap_continue:
/* Check for errors */
if (rc) {
if (rc == ENOMEM) {
/* recoverable try again later */
} else {
fp->eth_q_stats.tx_soft_errors++;
fp->eth_q_stats.mbuf_alloc_tx--;
m_freem(*m_head);
*m_head = NULL;
}
return (rc);
}
/* set flag according to packet type (UNICAST_ADDRESS is default) */
if (m0->m_flags & M_BCAST) {
mac_type = BROADCAST_ADDRESS;
} else if (m0->m_flags & M_MCAST) {
mac_type = MULTICAST_ADDRESS;
}
/* store the mbuf into the mbuf ring */
tx_buf->m = m0;
tx_buf->first_bd = fp->tx_bd_prod;
tx_buf->flags = 0;
/* prepare the first transmit (start) BD for the mbuf */
tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
BLOGD(sc, DBG_TX,
"sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
tx_start_bd->nbytes = htole16(segs[0].ds_len);
total_pkt_size += tx_start_bd->nbytes;
tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
/* all frames have at least Start BD + Parsing BD */
nbds = nsegs + 1;
tx_start_bd->nbd = htole16(nbds);
if (m0->m_flags & M_VLANTAG) {
tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
tx_start_bd->bd_flags.as_bitfield |=
(X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
} else {
/* vf tx, start bd must hold the ethertype for fw to enforce it */
if (IS_VF(sc)) {
/* map ethernet header to find type and header length */
eh = mtod(m0, struct ether_vlan_header *);
tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
} else {
/* used by FW for packet accounting */
tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
}
}
/*
* add a parsing BD from the chain. The parsing BD is always added
* though it is only used for TSO and chksum
*/
bd_prod = TX_BD_NEXT(bd_prod);
if (m0->m_pkthdr.csum_flags) {
if (m0->m_pkthdr.csum_flags & CSUM_IP) {
fp->eth_q_stats.tx_ofld_frames_csum_ip++;
tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
}
if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
ETH_TX_BD_FLAGS_L4_CSUM);
} else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
ETH_TX_BD_FLAGS_IS_UDP |
ETH_TX_BD_FLAGS_L4_CSUM);
} else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
(m0->m_pkthdr.csum_flags & CSUM_TSO)) {
tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
} else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
ETH_TX_BD_FLAGS_IS_UDP);
}
}
if (!CHIP_IS_E1x(sc)) {
pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
if (m0->m_pkthdr.csum_flags) {
hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
}
SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
mac_type);
} else {
uint16_t global_data = 0;
pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
if (m0->m_pkthdr.csum_flags) {
hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
}
SET_FLAG(global_data,
ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
pbd_e1x->global_data |= htole16(global_data);
}
/* setup the parsing BD with TSO specific info */
if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
fp->eth_q_stats.tx_ofld_frames_lso++;
tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
if (__predict_false(tx_start_bd->nbytes > hlen)) {
fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
/* split the first BD into header/data making the fw job easy */
nbds++;
tx_start_bd->nbd = htole16(nbds);
tx_start_bd->nbytes = htole16(hlen);
bd_prod = TX_BD_NEXT(bd_prod);
/* new transmit BD after the tx_parse_bd */
tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen);
if (tx_total_pkt_size_bd == NULL) {
tx_total_pkt_size_bd = tx_data_bd;
}
BLOGD(sc, DBG_TX,
"TSO split header size is %d (%x:%x) nbds %d\n",
le16toh(tx_start_bd->nbytes),
le32toh(tx_start_bd->addr_hi),
le32toh(tx_start_bd->addr_lo),
nbds);
}
if (!CHIP_IS_E1x(sc)) {
bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
} else {
bxe_set_pbd_lso(m0, pbd_e1x);
}
}
if (pbd_e2_parsing_data) {
pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
}
/* prepare remaining BDs, start tx bd contains first seg/frag */
for (i = 1; i < nsegs ; i++) {
bd_prod = TX_BD_NEXT(bd_prod);
tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
tx_data_bd->nbytes = htole16(segs[i].ds_len);
if (tx_total_pkt_size_bd == NULL) {
tx_total_pkt_size_bd = tx_data_bd;
}
total_pkt_size += tx_data_bd->nbytes;
}
BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
if (tx_total_pkt_size_bd != NULL) {
tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
}
if (__predict_false(sc->debug & DBG_TX)) {
tmp_bd = tx_buf->first_bd;
for (i = 0; i < nbds; i++)
{
if (i == 0) {
BLOGD(sc, DBG_TX,
"TX Strt: %p bd=%d nbd=%d vlan=0x%x "
"bd_flags=0x%x hdr_nbds=%d\n",
tx_start_bd,
tmp_bd,
le16toh(tx_start_bd->nbd),
le16toh(tx_start_bd->vlan_or_ethertype),
tx_start_bd->bd_flags.as_bitfield,
(tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
} else if (i == 1) {
if (pbd_e1x) {
BLOGD(sc, DBG_TX,
"-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
"ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
"tcp_seq=%u total_hlen_w=%u\n",
pbd_e1x,
tmp_bd,
pbd_e1x->global_data,
pbd_e1x->ip_hlen_w,
pbd_e1x->ip_id,
pbd_e1x->lso_mss,
pbd_e1x->tcp_flags,
pbd_e1x->tcp_pseudo_csum,
pbd_e1x->tcp_send_seq,
le16toh(pbd_e1x->total_hlen_w));
} else { /* if (pbd_e2) */
BLOGD(sc, DBG_TX,
"-> Parse: %p bd=%d dst=%02x:%02x:%02x "
"src=%02x:%02x:%02x parsing_data=0x%x\n",
pbd_e2,
tmp_bd,
pbd_e2->data.mac_addr.dst_hi,
pbd_e2->data.mac_addr.dst_mid,
pbd_e2->data.mac_addr.dst_lo,
pbd_e2->data.mac_addr.src_hi,
pbd_e2->data.mac_addr.src_mid,
pbd_e2->data.mac_addr.src_lo,
pbd_e2->parsing_data);
}
}
if (i != 1) { /* skip parse db as it doesn't hold data */
tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
BLOGD(sc, DBG_TX,
"-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
tx_data_bd,
tmp_bd,
le16toh(tx_data_bd->nbytes),
le32toh(tx_data_bd->addr_hi),
le32toh(tx_data_bd->addr_lo));
}
tmp_bd = TX_BD_NEXT(tmp_bd);
}
}
BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
/* update TX BD producer index value for next TX */
bd_prod = TX_BD_NEXT(bd_prod);
/*
* If the chain of tx_bd's describing this frame is adjacent to or spans
* an eth_tx_next_bd element then we need to increment the nbds value.
*/
if (TX_BD_IDX(bd_prod) < nbds) {
nbds++;
}
/* don't allow reordering of writes for nbd and packets */
mb();
fp->tx_db.data.prod += nbds;
/* producer points to the next free tx_bd at this point */
fp->tx_pkt_prod++;
fp->tx_bd_prod = bd_prod;
DOORBELL(sc, fp->index, fp->tx_db.raw);
fp->eth_q_stats.tx_pkts++;
/* Prevent speculative reads from getting ahead of the status block. */
bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
0, 0, BUS_SPACE_BARRIER_READ);
/* Prevent speculative reads from getting ahead of the doorbell. */
bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
0, 0, BUS_SPACE_BARRIER_READ);
return (0);
}
static void
bxe_tx_start_locked(struct bxe_softc *sc,
if_t ifp,
struct bxe_fastpath *fp)
{
struct mbuf *m = NULL;
int tx_count = 0;
uint16_t tx_bd_avail;
BXE_FP_TX_LOCK_ASSERT(fp);
/* keep adding entries while there are frames to send */
while (!if_sendq_empty(ifp)) {
/*
* check for any frames to send
* dequeue can still be NULL even if queue is not empty
*/
m = if_dequeue(ifp);
if (__predict_false(m == NULL)) {
break;
}
/* the mbuf now belongs to us */
fp->eth_q_stats.mbuf_alloc_tx++;
/*
* Put the frame into the transmit ring. If we don't have room,
* place the mbuf back at the head of the TX queue, set the
* OACTIVE flag, and wait for the NIC to drain the chain.
*/
if (__predict_false(bxe_tx_encap(fp, &m))) {
fp->eth_q_stats.tx_encap_failures++;
if (m != NULL) {
/* mark the TX queue as full and return the frame */
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
if_sendq_prepend(ifp, m);
fp->eth_q_stats.mbuf_alloc_tx--;
fp->eth_q_stats.tx_queue_xoff++;
}
/* stop looking for more work */
break;
}
/* the frame was enqueued successfully */
tx_count++;
/* send a copy of the frame to any BPF listeners. */
if_etherbpfmtap(ifp, m);
tx_bd_avail = bxe_tx_avail(sc, fp);
/* handle any completions if we're running low */
if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
/* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
bxe_txeof(sc, fp);
if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
break;
}
}
}
/* all TX packets were dequeued and/or the tx ring is full */
if (tx_count > 0) {
/* reset the TX watchdog timeout timer */
fp->watchdog_timer = BXE_TX_TIMEOUT;
}
}
/* Legacy (non-RSS) dispatch routine */
static void
bxe_tx_start(if_t ifp)
{
struct bxe_softc *sc;
struct bxe_fastpath *fp;
sc = if_getsoftc(ifp);
if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
BLOGW(sc, "Interface not running, ignoring transmit request\n");
return;
}
if (!sc->link_vars.link_up) {
BLOGW(sc, "Interface link is down, ignoring transmit request\n");
return;
}
fp = &sc->fp[0];
if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
fp->eth_q_stats.tx_queue_full_return++;
return;
}
BXE_FP_TX_LOCK(fp);
bxe_tx_start_locked(sc, ifp, fp);
BXE_FP_TX_UNLOCK(fp);
}
#if __FreeBSD_version >= 901504
static int
bxe_tx_mq_start_locked(struct bxe_softc *sc,
if_t ifp,
struct bxe_fastpath *fp,
struct mbuf *m)
{
struct buf_ring *tx_br = fp->tx_br;
struct mbuf *next;
int depth, rc, tx_count;
uint16_t tx_bd_avail;
rc = tx_count = 0;
BXE_FP_TX_LOCK_ASSERT(fp);
if (sc->state != BXE_STATE_OPEN) {
fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
return ENETDOWN;
}
if (!tx_br) {
BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
return (EINVAL);
}
if (m != NULL) {
rc = drbr_enqueue(ifp, tx_br, m);
if (rc != 0) {
fp->eth_q_stats.tx_soft_errors++;
goto bxe_tx_mq_start_locked_exit;
}
}
if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
fp->eth_q_stats.tx_request_link_down_failures++;
goto bxe_tx_mq_start_locked_exit;
}
/* fetch the depth of the driver queue */
depth = drbr_inuse_drv(ifp, tx_br);
if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
}
/* keep adding entries while there are frames to send */
while ((next = drbr_peek(ifp, tx_br)) != NULL) {
/* handle any completions if we're running low */
tx_bd_avail = bxe_tx_avail(sc, fp);
if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
/* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
bxe_txeof(sc, fp);
tx_bd_avail = bxe_tx_avail(sc, fp);
if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) {
fp->eth_q_stats.bd_avail_too_less_failures++;
m_freem(next);
drbr_advance(ifp, tx_br);
rc = ENOBUFS;
break;
}
}
/* the mbuf now belongs to us */
fp->eth_q_stats.mbuf_alloc_tx++;
/*
* Put the frame into the transmit ring. If we don't have room,
* place the mbuf back at the head of the TX queue, set the
* OACTIVE flag, and wait for the NIC to drain the chain.
*/
rc = bxe_tx_encap(fp, &next);
if (__predict_false(rc != 0)) {
fp->eth_q_stats.tx_encap_failures++;
if (next != NULL) {
/* mark the TX queue as full and save the frame */
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
drbr_putback(ifp, tx_br, next);
fp->eth_q_stats.mbuf_alloc_tx--;
fp->eth_q_stats.tx_frames_deferred++;
} else
drbr_advance(ifp, tx_br);
/* stop looking for more work */
break;
}
/* the transmit frame was enqueued successfully */
tx_count++;
/* send a copy of the frame to any BPF listeners */
if_etherbpfmtap(ifp, next);
drbr_advance(ifp, tx_br);
}
/* all TX packets were dequeued and/or the tx ring is full */
if (tx_count > 0) {
/* reset the TX watchdog timeout timer */
fp->watchdog_timer = BXE_TX_TIMEOUT;
}
bxe_tx_mq_start_locked_exit:
/* If we didn't drain the drbr, enqueue a task in the future to do it. */
if (!drbr_empty(ifp, tx_br)) {
fp->eth_q_stats.tx_mq_not_empty++;
taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1);
}
return (rc);
}
static void
bxe_tx_mq_start_deferred(void *arg,
int pending)
{
struct bxe_fastpath *fp = (struct bxe_fastpath *)arg;
struct bxe_softc *sc = fp->sc;
if_t ifp = sc->ifp;
BXE_FP_TX_LOCK(fp);
bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
BXE_FP_TX_UNLOCK(fp);
}
/* Multiqueue (TSS) dispatch routine. */
static int
bxe_tx_mq_start(struct ifnet *ifp,
struct mbuf *m)
{
struct bxe_softc *sc = if_getsoftc(ifp);
struct bxe_fastpath *fp;
int fp_index, rc;
fp_index = 0; /* default is the first queue */
/* check if flowid is set */
if (BXE_VALID_FLOWID(m))
fp_index = (m->m_pkthdr.flowid % sc->num_queues);
fp = &sc->fp[fp_index];
if (sc->state != BXE_STATE_OPEN) {
fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
return ENETDOWN;
}
if (BXE_FP_TX_TRYLOCK(fp)) {
rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
BXE_FP_TX_UNLOCK(fp);
} else {
rc = drbr_enqueue(ifp, fp->tx_br, m);
taskqueue_enqueue(fp->tq, &fp->tx_task);
}
return (rc);
}
static void
bxe_mq_flush(struct ifnet *ifp)
{
struct bxe_softc *sc = if_getsoftc(ifp);
struct bxe_fastpath *fp;
struct mbuf *m;
int i;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if (fp->state != BXE_FP_STATE_IRQ) {
BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
fp->index, fp->state);
continue;
}
if (fp->tx_br != NULL) {
BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
BXE_FP_TX_LOCK(fp);
while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
m_freem(m);
}
BXE_FP_TX_UNLOCK(fp);
}
}
if_qflush(ifp);
}
#endif /* FreeBSD_version >= 901504 */
static uint16_t
bxe_cid_ilt_lines(struct bxe_softc *sc)
{
if (IS_SRIOV(sc)) {
return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
}
return (L2_ILT_LINES(sc));
}
static void
bxe_ilt_set_info(struct bxe_softc *sc)
{
struct ilt_client_info *ilt_client;
struct ecore_ilt *ilt = sc->ilt;
uint16_t line = 0;
ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
/* CDU */
ilt_client = &ilt->clients[ILT_CLIENT_CDU];
ilt_client->client_num = ILT_CLIENT_CDU;
ilt_client->page_size = CDU_ILT_PAGE_SZ;
ilt_client->flags = ILT_CLIENT_SKIP_MEM;
ilt_client->start = line;
line += bxe_cid_ilt_lines(sc);
if (CNIC_SUPPORT(sc)) {
line += CNIC_ILT_LINES;
}
ilt_client->end = (line - 1);
BLOGD(sc, DBG_LOAD,
"ilt client[CDU]: start %d, end %d, "
"psz 0x%x, flags 0x%x, hw psz %d\n",
ilt_client->start, ilt_client->end,
ilt_client->page_size,
ilt_client->flags,
ilog2(ilt_client->page_size >> 12));
/* QM */
if (QM_INIT(sc->qm_cid_count)) {
ilt_client = &ilt->clients[ILT_CLIENT_QM];
ilt_client->client_num = ILT_CLIENT_QM;
ilt_client->page_size = QM_ILT_PAGE_SZ;
ilt_client->flags = 0;
ilt_client->start = line;
/* 4 bytes for each cid */
line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
QM_ILT_PAGE_SZ);
ilt_client->end = (line - 1);
BLOGD(sc, DBG_LOAD,
"ilt client[QM]: start %d, end %d, "
"psz 0x%x, flags 0x%x, hw psz %d\n",
ilt_client->start, ilt_client->end,
ilt_client->page_size, ilt_client->flags,
ilog2(ilt_client->page_size >> 12));
}
if (CNIC_SUPPORT(sc)) {
/* SRC */
ilt_client = &ilt->clients[ILT_CLIENT_SRC];
ilt_client->client_num = ILT_CLIENT_SRC;
ilt_client->page_size = SRC_ILT_PAGE_SZ;
ilt_client->flags = 0;
ilt_client->start = line;
line += SRC_ILT_LINES;
ilt_client->end = (line - 1);
BLOGD(sc, DBG_LOAD,
"ilt client[SRC]: start %d, end %d, "
"psz 0x%x, flags 0x%x, hw psz %d\n",
ilt_client->start, ilt_client->end,
ilt_client->page_size, ilt_client->flags,
ilog2(ilt_client->page_size >> 12));
/* TM */
ilt_client = &ilt->clients[ILT_CLIENT_TM];
ilt_client->client_num = ILT_CLIENT_TM;
ilt_client->page_size = TM_ILT_PAGE_SZ;
ilt_client->flags = 0;
ilt_client->start = line;
line += TM_ILT_LINES;
ilt_client->end = (line - 1);
BLOGD(sc, DBG_LOAD,
"ilt client[TM]: start %d, end %d, "
"psz 0x%x, flags 0x%x, hw psz %d\n",
ilt_client->start, ilt_client->end,
ilt_client->page_size, ilt_client->flags,
ilog2(ilt_client->page_size >> 12));
}
KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
}
static void
bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
{
int i;
uint32_t rx_buf_size;
rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
for (i = 0; i < sc->num_queues; i++) {
if(rx_buf_size <= MCLBYTES){
sc->fp[i].rx_buf_size = rx_buf_size;
sc->fp[i].mbuf_alloc_size = MCLBYTES;
}else if (rx_buf_size <= MJUMPAGESIZE){
sc->fp[i].rx_buf_size = rx_buf_size;
sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
}else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
sc->fp[i].rx_buf_size = MCLBYTES;
sc->fp[i].mbuf_alloc_size = MCLBYTES;
}else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
sc->fp[i].rx_buf_size = MJUMPAGESIZE;
sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
}else {
sc->fp[i].rx_buf_size = MCLBYTES;
sc->fp[i].mbuf_alloc_size = MCLBYTES;
}
}
}
static int
bxe_alloc_ilt_mem(struct bxe_softc *sc)
{
int rc = 0;
if ((sc->ilt =
(struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
M_BXE_ILT,
(M_NOWAIT | M_ZERO))) == NULL) {
rc = 1;
}
return (rc);
}
static int
bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
{
int rc = 0;
if ((sc->ilt->lines =
(struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
M_BXE_ILT,
(M_NOWAIT | M_ZERO))) == NULL) {
rc = 1;
}
return (rc);
}
static void
bxe_free_ilt_mem(struct bxe_softc *sc)
{
if (sc->ilt != NULL) {
free(sc->ilt, M_BXE_ILT);
sc->ilt = NULL;
}
}
static void
bxe_free_ilt_lines_mem(struct bxe_softc *sc)
{
if (sc->ilt->lines != NULL) {
free(sc->ilt->lines, M_BXE_ILT);
sc->ilt->lines = NULL;
}
}
static void
bxe_free_mem(struct bxe_softc *sc)
{
int i;
for (i = 0; i < L2_ILT_LINES(sc); i++) {
bxe_dma_free(sc, &sc->context[i].vcxt_dma);
sc->context[i].vcxt = NULL;
sc->context[i].size = 0;
}
ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
bxe_free_ilt_lines_mem(sc);
}
static int
bxe_alloc_mem(struct bxe_softc *sc)
{
int context_size;
int allocated;
int i;
/*
* Allocate memory for CDU context:
* This memory is allocated separately and not in the generic ILT
* functions because CDU differs in few aspects:
* 1. There can be multiple entities allocating memory for context -
* regular L2, CNIC, and SRIOV drivers. Each separately controls
* its own ILT lines.
* 2. Since CDU page-size is not a single 4KB page (which is the case
* for the other ILT clients), to be efficient we want to support
* allocation of sub-page-size in the last entry.
* 3. Context pointers are used by the driver to pass to FW / update
* the context (for the other ILT clients the pointers are used just to
* free the memory during unload).
*/
context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
for (i = 0, allocated = 0; allocated < context_size; i++) {
sc->context[i].size = min(CDU_ILT_PAGE_SZ,
(context_size - allocated));
if (bxe_dma_alloc(sc, sc->context[i].size,
&sc->context[i].vcxt_dma,
"cdu context") != 0) {
bxe_free_mem(sc);
return (-1);
}
sc->context[i].vcxt =
(union cdu_context *)sc->context[i].vcxt_dma.vaddr;
allocated += sc->context[i].size;
}
bxe_alloc_ilt_lines_mem(sc);
BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
sc->ilt, sc->ilt->start_line, sc->ilt->lines);
{
for (i = 0; i < 4; i++) {
BLOGD(sc, DBG_LOAD,
"c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
i,
sc->ilt->clients[i].page_size,
sc->ilt->clients[i].start,
sc->ilt->clients[i].end,
sc->ilt->clients[i].client_num,
sc->ilt->clients[i].flags);
}
}
if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
bxe_free_mem(sc);
return (-1);
}
return (0);
}
static void
bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
{
struct bxe_softc *sc;
int i;
sc = fp->sc;
if (fp->rx_mbuf_tag == NULL) {
return;
}
/* free all mbufs and unload all maps */
for (i = 0; i < RX_BD_TOTAL; i++) {
if (fp->rx_mbuf_chain[i].m_map != NULL) {
bus_dmamap_sync(fp->rx_mbuf_tag,
fp->rx_mbuf_chain[i].m_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_mbuf_tag,
fp->rx_mbuf_chain[i].m_map);
}
if (fp->rx_mbuf_chain[i].m != NULL) {
m_freem(fp->rx_mbuf_chain[i].m);
fp->rx_mbuf_chain[i].m = NULL;
fp->eth_q_stats.mbuf_alloc_rx--;
}
}
}
static void
bxe_free_tpa_pool(struct bxe_fastpath *fp)
{
struct bxe_softc *sc;
int i, max_agg_queues;
sc = fp->sc;
if (fp->rx_mbuf_tag == NULL) {
return;
}
max_agg_queues = MAX_AGG_QS(sc);
/* release all mbufs and unload all DMA maps in the TPA pool */
for (i = 0; i < max_agg_queues; i++) {
if (fp->rx_tpa_info[i].bd.m_map != NULL) {
bus_dmamap_sync(fp->rx_mbuf_tag,
fp->rx_tpa_info[i].bd.m_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_mbuf_tag,
fp->rx_tpa_info[i].bd.m_map);
}
if (fp->rx_tpa_info[i].bd.m != NULL) {
m_freem(fp->rx_tpa_info[i].bd.m);
fp->rx_tpa_info[i].bd.m = NULL;
fp->eth_q_stats.mbuf_alloc_tpa--;
}
}
}
static void
bxe_free_sge_chain(struct bxe_fastpath *fp)
{
struct bxe_softc *sc;
int i;
sc = fp->sc;
if (fp->rx_sge_mbuf_tag == NULL) {
return;
}
/* rree all mbufs and unload all maps */
for (i = 0; i < RX_SGE_TOTAL; i++) {
if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
bus_dmamap_sync(fp->rx_sge_mbuf_tag,
fp->rx_sge_mbuf_chain[i].m_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_sge_mbuf_tag,
fp->rx_sge_mbuf_chain[i].m_map);
}
if (fp->rx_sge_mbuf_chain[i].m != NULL) {
m_freem(fp->rx_sge_mbuf_chain[i].m);
fp->rx_sge_mbuf_chain[i].m = NULL;
fp->eth_q_stats.mbuf_alloc_sge--;
}
}
}
static void
bxe_free_fp_buffers(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
#if __FreeBSD_version >= 901504
if (fp->tx_br != NULL) {
/* just in case bxe_mq_flush() wasn't called */
if (mtx_initialized(&fp->tx_mtx)) {
struct mbuf *m;
BXE_FP_TX_LOCK(fp);
while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
m_freem(m);
BXE_FP_TX_UNLOCK(fp);
}
}
#endif
/* free all RX buffers */
bxe_free_rx_bd_chain(fp);
bxe_free_tpa_pool(fp);
bxe_free_sge_chain(fp);
if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
fp->eth_q_stats.mbuf_alloc_rx);
}
if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
fp->eth_q_stats.mbuf_alloc_sge);
}
if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
fp->eth_q_stats.mbuf_alloc_tpa);
}
if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
BLOGE(sc, "failed to release tx mbufs (%d left)\n",
fp->eth_q_stats.mbuf_alloc_tx);
}
/* XXX verify all mbufs were reclaimed */
}
}
static int
bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
uint16_t prev_index,
uint16_t index)
{
struct bxe_sw_rx_bd *rx_buf;
struct eth_rx_bd *rx_bd;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
struct mbuf *m;
int nsegs, rc;
rc = 0;
/* allocate the new RX BD mbuf */
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
if (__predict_false(m == NULL)) {
fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
return (ENOBUFS);
}
fp->eth_q_stats.mbuf_alloc_rx++;
/* initialize the mbuf buffer length */
m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
/* map the mbuf into non-paged pool */
rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
fp->rx_mbuf_spare_map,
m, segs, &nsegs, BUS_DMA_NOWAIT);
if (__predict_false(rc != 0)) {
fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
m_freem(m);
fp->eth_q_stats.mbuf_alloc_rx--;
return (rc);
}
/* all mbufs must map to a single segment */
KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
/* release any existing RX BD mbuf mappings */
if (prev_index != index) {
rx_buf = &fp->rx_mbuf_chain[prev_index];
if (rx_buf->m_map != NULL) {
bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
}
/*
* We only get here from bxe_rxeof() when the maximum number
* of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
* holds the mbuf in the prev_index so it's OK to NULL it out
* here without concern of a memory leak.
*/
fp->rx_mbuf_chain[prev_index].m = NULL;
}
rx_buf = &fp->rx_mbuf_chain[index];
if (rx_buf->m_map != NULL) {
bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
}
/* save the mbuf and mapping info for a future packet */
map = (prev_index != index) ?
fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
rx_buf->m_map = fp->rx_mbuf_spare_map;
fp->rx_mbuf_spare_map = map;
bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
BUS_DMASYNC_PREREAD);
rx_buf->m = m;
rx_bd = &fp->rx_chain[index];
rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
return (rc);
}
static int
bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
int queue)
{
struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
bus_dma_segment_t segs[1];
bus_dmamap_t map;
struct mbuf *m;
int nsegs;
int rc = 0;
/* allocate the new TPA mbuf */
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
if (__predict_false(m == NULL)) {
fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
return (ENOBUFS);
}
fp->eth_q_stats.mbuf_alloc_tpa++;
/* initialize the mbuf buffer length */
m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
/* map the mbuf into non-paged pool */
rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
fp->rx_tpa_info_mbuf_spare_map,
m, segs, &nsegs, BUS_DMA_NOWAIT);
if (__predict_false(rc != 0)) {
fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
m_free(m);
fp->eth_q_stats.mbuf_alloc_tpa--;
return (rc);
}
/* all mbufs must map to a single segment */
KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
/* release any existing TPA mbuf mapping */
if (tpa_info->bd.m_map != NULL) {
bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
}
/* save the mbuf and mapping info for the TPA mbuf */
map = tpa_info->bd.m_map;
tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
fp->rx_tpa_info_mbuf_spare_map = map;
bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
BUS_DMASYNC_PREREAD);
tpa_info->bd.m = m;
tpa_info->seg = segs[0];
return (rc);
}
/*
* Allocate an mbuf and assign it to the receive scatter gather chain. The
* caller must take care to save a copy of the existing mbuf in the SG mbuf
* chain.
*/
static int
bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
uint16_t index)
{
struct bxe_sw_rx_bd *sge_buf;
struct eth_rx_sge *sge;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
struct mbuf *m;
int nsegs;
int rc = 0;
/* allocate a new SGE mbuf */
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
if (__predict_false(m == NULL)) {
fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
return (ENOMEM);
}
fp->eth_q_stats.mbuf_alloc_sge++;
/* initialize the mbuf buffer length */
m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
/* map the SGE mbuf into non-paged pool */
rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
fp->rx_sge_mbuf_spare_map,
m, segs, &nsegs, BUS_DMA_NOWAIT);
if (__predict_false(rc != 0)) {
fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
m_freem(m);
fp->eth_q_stats.mbuf_alloc_sge--;
return (rc);
}
/* all mbufs must map to a single segment */
KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
sge_buf = &fp->rx_sge_mbuf_chain[index];
/* release any existing SGE mbuf mapping */
if (sge_buf->m_map != NULL) {
bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
}
/* save the mbuf and mapping info for a future packet */
map = sge_buf->m_map;
sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
fp->rx_sge_mbuf_spare_map = map;
bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
BUS_DMASYNC_PREREAD);
sge_buf->m = m;
sge = &fp->rx_sge_chain[index];
sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
return (rc);
}
static __noinline int
bxe_alloc_fp_buffers(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i, j, rc = 0;
int ring_prod, cqe_ring_prod;
int max_agg_queues;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
ring_prod = cqe_ring_prod = 0;
fp->rx_bd_cons = 0;
fp->rx_cq_cons = 0;
/* allocate buffers for the RX BDs in RX BD chain */
for (j = 0; j < sc->max_rx_bufs; j++) {
rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
if (rc != 0) {
BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
i, rc);
goto bxe_alloc_fp_buffers_error;
}
ring_prod = RX_BD_NEXT(ring_prod);
cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
}
fp->rx_bd_prod = ring_prod;
fp->rx_cq_prod = cqe_ring_prod;
fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
max_agg_queues = MAX_AGG_QS(sc);
fp->tpa_enable = TRUE;
/* fill the TPA pool */
for (j = 0; j < max_agg_queues; j++) {
rc = bxe_alloc_rx_tpa_mbuf(fp, j);
if (rc != 0) {
BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
i, j);
fp->tpa_enable = FALSE;
goto bxe_alloc_fp_buffers_error;
}
fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
}
if (fp->tpa_enable) {
/* fill the RX SGE chain */
ring_prod = 0;
for (j = 0; j < RX_SGE_USABLE; j++) {
rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
if (rc != 0) {
BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
i, ring_prod);
fp->tpa_enable = FALSE;
ring_prod = 0;
goto bxe_alloc_fp_buffers_error;
}
ring_prod = RX_SGE_NEXT(ring_prod);
}
fp->rx_sge_prod = ring_prod;
}
}
return (0);
bxe_alloc_fp_buffers_error:
/* unwind what was already allocated */
bxe_free_rx_bd_chain(fp);
bxe_free_tpa_pool(fp);
bxe_free_sge_chain(fp);
return (ENOBUFS);
}
static void
bxe_free_fw_stats_mem(struct bxe_softc *sc)
{
bxe_dma_free(sc, &sc->fw_stats_dma);
sc->fw_stats_num = 0;
sc->fw_stats_req_size = 0;
sc->fw_stats_req = NULL;
sc->fw_stats_req_mapping = 0;
sc->fw_stats_data_size = 0;
sc->fw_stats_data = NULL;
sc->fw_stats_data_mapping = 0;
}
static int
bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
{
uint8_t num_queue_stats;
int num_groups;
/* number of queues for statistics is number of eth queues */
num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
/*
* Total number of FW statistics requests =
* 1 for port stats + 1 for PF stats + num of queues
*/
sc->fw_stats_num = (2 + num_queue_stats);
/*
* Request is built from stats_query_header and an array of
* stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
* rules. The real number or requests is configured in the
* stats_query_header.
*/
num_groups =
((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
sc->fw_stats_num, num_groups);
sc->fw_stats_req_size =
(sizeof(struct stats_query_header) +
(num_groups * sizeof(struct stats_query_cmd_group)));
/*
* Data for statistics requests + stats_counter.
* stats_counter holds per-STORM counters that are incremented when
* STORM has finished with the current request. Memory for FCoE
* offloaded statistics are counted anyway, even if they will not be sent.
* VF stats are not accounted for here as the data of VF stats is stored
* in memory allocated by the VF, not here.
*/
sc->fw_stats_data_size =
(sizeof(struct stats_counter) +
sizeof(struct per_port_stats) +
sizeof(struct per_pf_stats) +
/* sizeof(struct fcoe_statistics_params) + */
(sizeof(struct per_queue_stats) * num_queue_stats));
if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
&sc->fw_stats_dma, "fw stats") != 0) {
bxe_free_fw_stats_mem(sc);
return (-1);
}
/* set up the shortcuts */
sc->fw_stats_req =
(struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
sc->fw_stats_data =
(struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
sc->fw_stats_req_size);
sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
sc->fw_stats_req_size);
BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
(uintmax_t)sc->fw_stats_req_mapping);
BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
(uintmax_t)sc->fw_stats_data_mapping);
return (0);
}
/*
* Bits map:
* 0-7 - Engine0 load counter.
* 8-15 - Engine1 load counter.
* 16 - Engine0 RESET_IN_PROGRESS bit.
* 17 - Engine1 RESET_IN_PROGRESS bit.
* 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active
* function on the engine
* 19 - Engine1 ONE_IS_LOADED.
* 20 - Chip reset flow bit. When set none-leader must wait for both engines
* leader to complete (check for both RESET_IN_PROGRESS bits and not
* for just the one belonging to its engine).
*/
#define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
#define BXE_PATH0_LOAD_CNT_MASK 0x000000ff
#define BXE_PATH0_LOAD_CNT_SHIFT 0
#define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00
#define BXE_PATH1_LOAD_CNT_SHIFT 8
#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
#define BXE_GLOBAL_RESET_BIT 0x00040000
/* set the GLOBAL_RESET bit, should be run under rtnl lock */
static void
bxe_set_reset_global(struct bxe_softc *sc)
{
uint32_t val;
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
static void
bxe_clear_reset_global(struct bxe_softc *sc)
{
uint32_t val;
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
static uint8_t
bxe_reset_is_global(struct bxe_softc *sc)
{
uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
}
/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
static void
bxe_set_reset_done(struct bxe_softc *sc)
{
uint32_t val;
uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
BXE_PATH0_RST_IN_PROG_BIT;
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
/* Clear the bit */
val &= ~bit;
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
static void
bxe_set_reset_in_progress(struct bxe_softc *sc)
{
uint32_t val;
uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
BXE_PATH0_RST_IN_PROG_BIT;
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
/* Set the bit */
val |= bit;
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
static uint8_t
bxe_reset_is_done(struct bxe_softc *sc,
int engine)
{
uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
BXE_PATH0_RST_IN_PROG_BIT;
/* return false if bit is set */
return (val & bit) ? FALSE : TRUE;
}
/* get the load status for an engine, should be run under rtnl lock */
static uint8_t
bxe_get_load_status(struct bxe_softc *sc,
int engine)
{
uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
BXE_PATH0_LOAD_CNT_MASK;
uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
BXE_PATH0_LOAD_CNT_SHIFT;
uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
val = ((val & mask) >> shift);
BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
return (val != 0);
}
/* set pf load mark */
/* XXX needs to be under rtnl lock */
static void
bxe_set_pf_load(struct bxe_softc *sc)
{
uint32_t val;
uint32_t val1;
uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
BXE_PATH0_LOAD_CNT_MASK;
uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
BXE_PATH0_LOAD_CNT_SHIFT;
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
/* get the current counter value */
val1 = ((val & mask) >> shift);
/* set bit of this PF */
val1 |= (1 << SC_ABS_FUNC(sc));
/* clear the old value */
val &= ~mask;
/* set the new one */
val |= ((val1 << shift) & mask);
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/* clear pf load mark */
/* XXX needs to be under rtnl lock */
static uint8_t
bxe_clear_pf_load(struct bxe_softc *sc)
{
uint32_t val1, val;
uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
BXE_PATH0_LOAD_CNT_MASK;
uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
BXE_PATH0_LOAD_CNT_SHIFT;
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
/* get the current counter value */
val1 = (val & mask) >> shift;
/* clear bit of that PF */
val1 &= ~(1 << SC_ABS_FUNC(sc));
/* clear the old value */
val &= ~mask;
/* set the new one */
val |= ((val1 << shift) & mask);
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
return (val1 != 0);
}
/* send load requrest to mcp and analyze response */
static int
bxe_nic_load_request(struct bxe_softc *sc,
uint32_t *load_code)
{
/* init fw_seq */
sc->fw_seq =
(SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
DRV_MSG_SEQ_NUMBER_MASK);
BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
/* get the current FW pulse sequence */
sc->fw_drv_pulse_wr_seq =
(SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
DRV_PULSE_SEQ_MASK);
BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
sc->fw_drv_pulse_wr_seq);
/* load request */
(*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
/* if the MCP fails to respond we must abort */
if (!(*load_code)) {
BLOGE(sc, "MCP response failure!\n");
return (-1);
}
/* if MCP refused then must abort */
if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
BLOGE(sc, "MCP refused load request\n");
return (-1);
}
return (0);
}
/*
* Check whether another PF has already loaded FW to chip. In virtualized
* environments a pf from anoth VM may have already initialized the device
* including loading FW.
*/
static int
bxe_nic_load_analyze_req(struct bxe_softc *sc,
uint32_t load_code)
{
uint32_t my_fw, loaded_fw;
/* is another pf loaded on this engine? */
if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
(load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
/* build my FW version dword */
my_fw = (BCM_5710_FW_MAJOR_VERSION +
(BCM_5710_FW_MINOR_VERSION << 8 ) +
(BCM_5710_FW_REVISION_VERSION << 16) +
(BCM_5710_FW_ENGINEERING_VERSION << 24));
/* read loaded FW from chip */
loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
loaded_fw, my_fw);
/* abort nic load if version mismatch */
if (my_fw != loaded_fw) {
BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
loaded_fw, my_fw);
return (-1);
}
}
return (0);
}
/* mark PMF if applicable */
static void
bxe_nic_load_pmf(struct bxe_softc *sc,
uint32_t load_code)
{
uint32_t ncsi_oem_data_addr;
if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
(load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
(load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
/*
* Barrier here for ordering between the writing to sc->port.pmf here
* and reading it from the periodic task.
*/
sc->port.pmf = 1;
mb();
} else {
sc->port.pmf = 0;
}
BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
/* XXX needed? */
if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
if (ncsi_oem_data_addr) {
REG_WR(sc,
(ncsi_oem_data_addr +
offsetof(struct glob_ncsi_oem_data, driver_version)),
0);
}
}
}
}
static void
bxe_read_mf_cfg(struct bxe_softc *sc)
{
int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
int abs_func;
int vn;
if (BXE_NOMCP(sc)) {
return; /* what should be the default bvalue in this case */
}
/*
* The formula for computing the absolute function number is...
* For 2 port configuration (4 functions per port):
* abs_func = 2 * vn + SC_PORT + SC_PATH
* For 4 port configuration (2 functions per port):
* abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
*/
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
if (abs_func >= E1H_FUNC_MAX) {
break;
}
sc->devinfo.mf_info.mf_config[vn] =
MFCFG_RD(sc, func_mf_config[abs_func].config);
}
if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
FUNC_MF_CFG_FUNC_DISABLED) {
BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
sc->flags |= BXE_MF_FUNC_DIS;
} else {
BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
sc->flags &= ~BXE_MF_FUNC_DIS;
}
}
/* acquire split MCP access lock register */
static int bxe_acquire_alr(struct bxe_softc *sc)
{
uint32_t j, val;
for (j = 0; j < 1000; j++) {
val = (1UL << 31);
REG_WR(sc, GRCBASE_MCP + 0x9c, val);
val = REG_RD(sc, GRCBASE_MCP + 0x9c);
if (val & (1L << 31))
break;
DELAY(5000);
}
if (!(val & (1L << 31))) {
BLOGE(sc, "Cannot acquire MCP access lock register\n");
return (-1);
}
return (0);
}
/* release split MCP access lock register */
static void bxe_release_alr(struct bxe_softc *sc)
{
REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
}
static void
bxe_fan_failure(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
uint32_t ext_phy_config;
/* mark the failure */
ext_phy_config =
SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
ext_phy_config);
/* log the failure */
BLOGW(sc, "Fan Failure has caused the driver to shutdown "
"the card to prevent permanent damage. "
"Please contact OEM Support for assistance\n");
/* XXX */
#if 1
bxe_panic(sc, ("Schedule task to handle fan failure\n"));
#else
/*
* Schedule device reset (unload)
* This is due to some boards consuming sufficient power when driver is
* up to overheat if fan fails.
*/
bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
schedule_delayed_work(&sc->sp_rtnl_task, 0);
#endif
}
/* this function is called upon a link interrupt */
static void
bxe_link_attn(struct bxe_softc *sc)
{
uint32_t pause_enabled = 0;
struct host_port_stats *pstats;
int cmng_fns;
struct bxe_fastpath *fp;
int i;
/* Make sure that we are synced with the current statistics */
bxe_stats_handle(sc, STATS_EVENT_STOP);
BLOGD(sc, DBG_LOAD, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags);
elink_link_update(&sc->link_params, &sc->link_vars);
if (sc->link_vars.link_up) {
/* dropless flow control */
if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
pause_enabled = 0;
if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
pause_enabled = 1;
}
REG_WR(sc,
(BAR_USTRORM_INTMEM +
USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
pause_enabled);
}
if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
pstats = BXE_SP(sc, port_stats);
/* reset old mac stats */
memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
}
if (sc->state == BXE_STATE_OPEN) {
bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
/* Restart tx when the link comes back. */
FOR_EACH_ETH_QUEUE(sc, i) {
fp = &sc->fp[i];
taskqueue_enqueue(fp->tq, &fp->tx_task);
}
}
}
if (sc->link_vars.link_up && sc->link_vars.line_speed) {
cmng_fns = bxe_get_cmng_fns_mode(sc);
if (cmng_fns != CMNG_FNS_NONE) {
bxe_cmng_fns_init(sc, FALSE, cmng_fns);
storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
} else {
/* rate shaping and fairness are disabled */
BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
}
}
bxe_link_report_locked(sc);
if (IS_MF(sc)) {
; // XXX bxe_link_sync_notify(sc);
}
}
static void
bxe_attn_int_asserted(struct bxe_softc *sc,
uint32_t asserted)
{
int port = SC_PORT(sc);
uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0;
uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
NIG_REG_MASK_INTERRUPT_PORT0;
uint32_t aeu_mask;
uint32_t nig_mask = 0;
uint32_t reg_addr;
uint32_t igu_acked;
uint32_t cnt;
if (sc->attn_state & asserted) {
BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
}
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
aeu_mask = REG_RD(sc, aeu_addr);
BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
aeu_mask, asserted);
aeu_mask &= ~(asserted & 0x3ff);
BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
REG_WR(sc, aeu_addr, aeu_mask);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
sc->attn_state |= asserted;
BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
if (asserted & ATTN_HARD_WIRED_MASK) {
if (asserted & ATTN_NIG_FOR_FUNC) {
bxe_acquire_phy_lock(sc);
/* save nig interrupt mask */
nig_mask = REG_RD(sc, nig_int_mask_addr);
/* If nig_mask is not set, no need to call the update function */
if (nig_mask) {
REG_WR(sc, nig_int_mask_addr, 0);
bxe_link_attn(sc);
}
/* handle unicore attn? */
}
if (asserted & ATTN_SW_TIMER_4_FUNC) {
BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
}
if (asserted & GPIO_2_FUNC) {
BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
}
if (asserted & GPIO_3_FUNC) {
BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
}
if (asserted & GPIO_4_FUNC) {
BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
}
if (port == 0) {
if (asserted & ATTN_GENERAL_ATTN_1) {
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_2) {
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_3) {
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
}
} else {
if (asserted & ATTN_GENERAL_ATTN_4) {
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_5) {
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_6) {
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
}
}
} /* hardwired */
if (sc->devinfo.int_block == INT_BLOCK_HC) {
reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
} else {
reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
}
BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
asserted,
(sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
REG_WR(sc, reg_addr, asserted);
/* now set back the mask */
if (asserted & ATTN_NIG_FOR_FUNC) {
/*
* Verify that IGU ack through BAR was written before restoring
* NIG mask. This loop should exit after 2-3 iterations max.
*/
if (sc->devinfo.int_block != INT_BLOCK_HC) {
cnt = 0;
do {
igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
(++cnt < MAX_IGU_ATTN_ACK_TO));
if (!igu_acked) {
BLOGE(sc, "Failed to verify IGU ack on time\n");
}
mb();
}
REG_WR(sc, nig_int_mask_addr, nig_mask);
bxe_release_phy_lock(sc);
}
}
static void
bxe_print_next_block(struct bxe_softc *sc,
int idx,
const char *blk)
{
BLOGI(sc, "%s%s", idx ? ", " : "", blk);
}
static int
bxe_check_blocks_with_parity0(struct bxe_softc *sc,
uint32_t sig,
int par_num,
uint8_t print)
{
uint32_t cur_bit = 0;
int i = 0;
for (i = 0; sig; i++) {
cur_bit = ((uint32_t)0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "BRB");
break;
case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "PARSER");
break;
case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "TSDM");
break;
case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "SEARCHER");
break;
case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "TCM");
break;
case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "TSEMI");
break;
case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "XPB");
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return (par_num);
}
static int
bxe_check_blocks_with_parity1(struct bxe_softc *sc,
uint32_t sig,
int par_num,
uint8_t *global,
uint8_t print)
{
int i = 0;
uint32_t cur_bit = 0;
for (i = 0; sig; i++) {
cur_bit = ((uint32_t)0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "PBF");
break;
case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "QM");
break;
case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "TM");
break;
case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "XSDM");
break;
case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "XCM");
break;
case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "XSEMI");
break;
case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "DOORBELLQ");
break;
case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "NIG");
break;
case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
*global = TRUE;
break;
case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "DEBUG");
break;
case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "USDM");
break;
case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "UCM");
break;
case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "USEMI");
break;
case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "UPB");
break;
case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "CSDM");
break;
case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "CCM");
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return (par_num);
}
static int
bxe_check_blocks_with_parity2(struct bxe_softc *sc,
uint32_t sig,
int par_num,
uint8_t print)
{
uint32_t cur_bit = 0;
int i = 0;
for (i = 0; sig; i++) {
cur_bit = ((uint32_t)0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "CSEMI");
break;
case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "PXP");
break;
case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
break;
case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "CFC");
break;
case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "CDU");
break;
case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "DMAE");
break;
case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "IGU");
break;
case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "MISC");
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return (par_num);
}
static int
bxe_check_blocks_with_parity3(struct bxe_softc *sc,
uint32_t sig,
int par_num,
uint8_t *global,
uint8_t print)
{
uint32_t cur_bit = 0;
int i = 0;
for (i = 0; sig; i++) {
cur_bit = ((uint32_t)0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
if (print)
bxe_print_next_block(sc, par_num++, "MCP ROM");
*global = TRUE;
break;
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
if (print)
bxe_print_next_block(sc, par_num++,
"MCP UMP RX");
*global = TRUE;
break;
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
if (print)
bxe_print_next_block(sc, par_num++,
"MCP UMP TX");
*global = TRUE;
break;
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
if (print)
bxe_print_next_block(sc, par_num++,
"MCP SCPAD");
*global = TRUE;
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return (par_num);
}
static int
bxe_check_blocks_with_parity4(struct bxe_softc *sc,
uint32_t sig,
int par_num,
uint8_t print)
{
uint32_t cur_bit = 0;
int i = 0;
for (i = 0; sig; i++) {
cur_bit = ((uint32_t)0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "PGLUE_B");
break;
case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
if (print)
bxe_print_next_block(sc, par_num++, "ATC");
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return (par_num);
}
static uint8_t
bxe_parity_attn(struct bxe_softc *sc,
uint8_t *global,
uint8_t print,
uint32_t *sig)
{
int par_num = 0;
if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
(sig[1] & HW_PRTY_ASSERT_SET_1) ||
(sig[2] & HW_PRTY_ASSERT_SET_2) ||
(sig[3] & HW_PRTY_ASSERT_SET_3) ||
(sig[4] & HW_PRTY_ASSERT_SET_4)) {
BLOGE(sc, "Parity error: HW block parity attention:\n"
"[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
(uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
(uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
(uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
(uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
(uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
if (print)
BLOGI(sc, "Parity errors detected in blocks: ");
par_num =
bxe_check_blocks_with_parity0(sc, sig[0] &
HW_PRTY_ASSERT_SET_0,
par_num, print);
par_num =
bxe_check_blocks_with_parity1(sc, sig[1] &
HW_PRTY_ASSERT_SET_1,
par_num, global, print);
par_num =
bxe_check_blocks_with_parity2(sc, sig[2] &
HW_PRTY_ASSERT_SET_2,
par_num, print);
par_num =
bxe_check_blocks_with_parity3(sc, sig[3] &
HW_PRTY_ASSERT_SET_3,
par_num, global, print);
par_num =
bxe_check_blocks_with_parity4(sc, sig[4] &
HW_PRTY_ASSERT_SET_4,
par_num, print);
if (print)
BLOGI(sc, "\n");
if( *global == TRUE ) {
BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
}
return (TRUE);
}
return (FALSE);
}
static uint8_t
bxe_chk_parity_attn(struct bxe_softc *sc,
uint8_t *global,
uint8_t print)
{
struct attn_route attn = { {0} };
int port = SC_PORT(sc);
if(sc->state != BXE_STATE_OPEN)
return FALSE;
attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
/*
* Since MCP attentions can't be disabled inside the block, we need to
* read AEU registers to see whether they're currently disabled
*/
attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
: MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
MISC_AEU_ENABLE_MCP_PRTY_BITS) |
~MISC_AEU_ENABLE_MCP_PRTY_BITS);
if (!CHIP_IS_E1x(sc))
attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
return (bxe_parity_attn(sc, global, print, attn.sig));
}
static void
bxe_attn_int_deasserted4(struct bxe_softc *sc,
uint32_t attn)
{
uint32_t val;
boolean_t err_flg = FALSE;
if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
err_flg = TRUE;
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
}
if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
BLOGE(sc, "ATC hw attention 0x%08x\n", val);
err_flg = TRUE;
if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
}
if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
(uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
err_flg = TRUE;
}
if (err_flg) {
BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
}
}
static void
bxe_e1h_disable(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
bxe_tx_disable(sc);
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
}
static void
bxe_e1h_enable(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
// XXX bxe_tx_enable(sc);
}
/*
* called due to MCP event (on pmf):
* reread new bandwidth configuration
* configure FW
* notify others function about the change
*/
static void
bxe_config_mf_bw(struct bxe_softc *sc)
{
if (sc->link_vars.link_up) {
bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
// XXX bxe_link_sync_notify(sc);
}
storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
}
static void
bxe_set_mf_bw(struct bxe_softc *sc)
{
bxe_config_mf_bw(sc);
bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
}
static void
bxe_handle_eee_event(struct bxe_softc *sc)
{
BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
}
#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
static void
bxe_drv_info_ether_stat(struct bxe_softc *sc)
{
struct eth_stats_info *ether_stat =
&sc->sp->drv_info_to_mcp.ether_stat;
strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
ETH_STAT_INFO_VERSION_LEN);
/* XXX (+ MAC_PAD) taken from other driver... verify this is right */
sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
ether_stat->mac_local + MAC_PAD,
MAC_PAD, ETH_ALEN);
ether_stat->mtu_size = sc->mtu;
ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
}
// XXX ether_stat->feature_flags |= ???;
ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
ether_stat->txq_size = sc->tx_ring_size;
ether_stat->rxq_size = sc->rx_ring_size;
}
static void
bxe_handle_drv_info_req(struct bxe_softc *sc)
{
enum drv_info_opcode op_code;
uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
/* if drv_info version supported by MFW doesn't match - send NACK */
if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
return;
}
op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
DRV_INFO_CONTROL_OP_CODE_SHIFT);
memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
switch (op_code) {
case ETH_STATS_OPCODE:
bxe_drv_info_ether_stat(sc);
break;
case FCOE_STATS_OPCODE:
case ISCSI_STATS_OPCODE:
default:
/* if op code isn't supported - send NACK */
bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
return;
}
/*
* If we got drv_info attn from MFW then these fields are defined in
* shmem2 for sure
*/
SHMEM2_WR(sc, drv_info_host_addr_lo,
U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
SHMEM2_WR(sc, drv_info_host_addr_hi,
U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
}
static void
bxe_dcc_event(struct bxe_softc *sc,
uint32_t dcc_event)
{
BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
/*
* This is the only place besides the function initialization
* where the sc->flags can change so it is done without any
* locks
*/
if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
sc->flags |= BXE_MF_FUNC_DIS;
bxe_e1h_disable(sc);
} else {
BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
sc->flags &= ~BXE_MF_FUNC_DIS;
bxe_e1h_enable(sc);
}
dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
}
if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
bxe_config_mf_bw(sc);
dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
}
/* Report results to MCP */
if (dcc_event)
bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
else
bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
}
static void
bxe_pmf_update(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
uint32_t val;
sc->port.pmf = 1;
BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
/*
* We need the mb() to ensure the ordering between the writing to
* sc->port.pmf here and reading it from the bxe_periodic_task().
*/
mb();
/* queue a periodic task */
// XXX schedule task...
// XXX bxe_dcbx_pmf_update(sc);
/* enable nig attention */
val = (0xff0f | (1 << (SC_VN(sc) + 4)));
if (sc->devinfo.int_block == INT_BLOCK_HC) {
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
} else if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
}
bxe_stats_handle(sc, STATS_EVENT_PMF);
}
static int
bxe_mc_assert(struct bxe_softc *sc)
{
char last_idx;
int i, rc = 0;
uint32_t row0, row1, row2, row3;
/* XSTORM */
last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx)
BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
/* print the asserts */
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
i, row3, row2, row1, row0);
rc++;
} else {
break;
}
}
/* TSTORM */
last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx) {
BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
}
/* print the asserts */
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
i, row3, row2, row1, row0);
rc++;
} else {
break;
}
}
/* CSTORM */
last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx) {
BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
}
/* print the asserts */
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
i, row3, row2, row1, row0);
rc++;
} else {
break;
}
}
/* USTORM */
last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx) {
BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
}
/* print the asserts */
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
i, row3, row2, row1, row0);
rc++;
} else {
break;
}
}
return (rc);
}
static void
bxe_attn_int_deasserted3(struct bxe_softc *sc,
uint32_t attn)
{
int func = SC_FUNC(sc);
uint32_t val;
if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
if (attn & BXE_PMF_LINK_ASSERT(sc)) {
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
bxe_read_mf_cfg(sc);
sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
if (val & DRV_STATUS_DCC_EVENT_MASK)
bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
if (val & DRV_STATUS_SET_MF_BW)
bxe_set_mf_bw(sc);
if (val & DRV_STATUS_DRV_INFO_REQ)
bxe_handle_drv_info_req(sc);
if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
bxe_pmf_update(sc);
if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
bxe_handle_eee_event(sc);
if (sc->link_vars.periodic_flags &
ELINK_PERIODIC_FLAGS_LINK_EVENT) {
/* sync with link */
bxe_acquire_phy_lock(sc);
sc->link_vars.periodic_flags &=
~ELINK_PERIODIC_FLAGS_LINK_EVENT;
bxe_release_phy_lock(sc);
if (IS_MF(sc))
; // XXX bxe_link_sync_notify(sc);
bxe_link_report(sc);
}
/*
* Always call it here: bxe_link_report() will
* prevent the link indication duplication.
*/
bxe_link_status_update(sc);
} else if (attn & BXE_MC_ASSERT_BITS) {
BLOGE(sc, "MC assert!\n");
bxe_mc_assert(sc);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
bxe_int_disable(sc);
BXE_SET_ERROR_BIT(sc, BXE_ERR_MC_ASSERT);
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
} else if (attn & BXE_MCP_ASSERT) {
BLOGE(sc, "MCP assert!\n");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
BXE_SET_ERROR_BIT(sc, BXE_ERR_MCP_ASSERT);
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
bxe_int_disable(sc); /*avoid repetive assert alert */
} else {
BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
}
}
if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
if (attn & BXE_GRC_TIMEOUT) {
val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
BLOGE(sc, "GRC time-out 0x%08x\n", val);
}
if (attn & BXE_GRC_RSV) {
val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
BLOGE(sc, "GRC reserved 0x%08x\n", val);
}
REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
}
}
static void
bxe_attn_int_deasserted2(struct bxe_softc *sc,
uint32_t attn)
{
int port = SC_PORT(sc);
int reg_offset;
uint32_t val0, mask0, val1, mask1;
uint32_t val;
boolean_t err_flg = FALSE;
if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
BLOGE(sc, "CFC hw attention 0x%08x\n", val);
/* CFC error attention */
if (val & 0x2) {
BLOGE(sc, "FATAL error from CFC\n");
err_flg = TRUE;
}
}
if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
/* RQ_USDMDP_FIFO_OVERFLOW */
if (val & 0x18000) {
BLOGE(sc, "FATAL error from PXP\n");
err_flg = TRUE;
}
if (!CHIP_IS_E1x(sc)) {
val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
err_flg = TRUE;
}
}
#define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
if (attn & AEU_PXP2_HW_INT_BIT) {
/* CQ47854 workaround do not panic on
* PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
*/
if (!CHIP_IS_E1x(sc)) {
mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
/*
* If the only PXP2_EOP_ERROR_BIT is set in
* STS0 and STS1 - clear it
*
* probably we lose additional attentions between
* STS0 and STS_CLR0, in this case user will not
* be notified about them
*/
if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
!(val1 & mask1))
val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
/* print the register, since no one can restore it */
BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
/*
* if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
* then notify
*/
if (val0 & PXP2_EOP_ERROR_BIT) {
BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
err_flg = TRUE;
/*
* if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
* set then clear attention from PXP2 block without panic
*/
if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
((val1 & mask1) == 0))
attn &= ~AEU_PXP2_HW_INT_BIT;
}
}
}
if (attn & HW_INTERRUT_ASSERT_SET_2) {
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
val = REG_RD(sc, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
REG_WR(sc, reg_offset, val);
BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
(uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
err_flg = TRUE;
bxe_panic(sc, ("HW block attention set2\n"));
}
if(err_flg) {
BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
}
}
static void
bxe_attn_int_deasserted1(struct bxe_softc *sc,
uint32_t attn)
{
int port = SC_PORT(sc);
int reg_offset;
uint32_t val;
boolean_t err_flg = FALSE;
if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
BLOGE(sc, "DB hw attention 0x%08x\n", val);
/* DORQ discard attention */
if (val & 0x2) {
BLOGE(sc, "FATAL error from DORQ\n");
err_flg = TRUE;
}
}
if (attn & HW_INTERRUT_ASSERT_SET_1) {
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
val = REG_RD(sc, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
REG_WR(sc, reg_offset, val);
BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
(uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
err_flg = TRUE;
bxe_panic(sc, ("HW block attention set1\n"));
}
if(err_flg) {
BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
}
}
static void
bxe_attn_int_deasserted0(struct bxe_softc *sc,
uint32_t attn)
{
int port = SC_PORT(sc);
int reg_offset;
uint32_t val;
reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
val = REG_RD(sc, reg_offset);
val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
REG_WR(sc, reg_offset, val);
BLOGW(sc, "SPIO5 hw attention\n");
/* Fan failure attention */
elink_hw_reset_phy(&sc->link_params);
bxe_fan_failure(sc);
}
if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
bxe_acquire_phy_lock(sc);
elink_handle_module_detect_int(&sc->link_params);
bxe_release_phy_lock(sc);
}
if (attn & HW_INTERRUT_ASSERT_SET_0) {
val = REG_RD(sc, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
REG_WR(sc, reg_offset, val);
BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
(attn & HW_INTERRUT_ASSERT_SET_0)));
}
}
static void
bxe_attn_int_deasserted(struct bxe_softc *sc,
uint32_t deasserted)
{
struct attn_route attn;
struct attn_route *group_mask;
int port = SC_PORT(sc);
int index;
uint32_t reg_addr;
uint32_t val;
uint32_t aeu_mask;
uint8_t global = FALSE;
/*
* Need to take HW lock because MCP or other port might also
* try to handle this event.
*/
bxe_acquire_alr(sc);
if (bxe_chk_parity_attn(sc, &global, TRUE)) {
/* XXX
* In case of parity errors don't handle attentions so that
* other function would "see" parity errors.
*/
// XXX schedule a recovery task...
/* disable HW interrupts */
bxe_int_disable(sc);
BXE_SET_ERROR_BIT(sc, BXE_ERR_PARITY);
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
bxe_release_alr(sc);
return;
}
attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
if (!CHIP_IS_E1x(sc)) {
attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
} else {
attn.sig[4] = 0;
}
BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
if (deasserted & (1 << index)) {
group_mask = &sc->attn_group[index];
BLOGD(sc, DBG_INTR,
"group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
group_mask->sig[0], group_mask->sig[1],
group_mask->sig[2], group_mask->sig[3],
group_mask->sig[4]);
bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
}
}
bxe_release_alr(sc);
if (sc->devinfo.int_block == INT_BLOCK_HC) {
reg_addr = (HC_REG_COMMAND_REG + port*32 +
COMMAND_REG_ATTN_BITS_CLR);
} else {
reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
}
val = ~deasserted;
BLOGD(sc, DBG_INTR,
"about to mask 0x%08x at %s addr 0x%08x\n", val,
(sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
REG_WR(sc, reg_addr, val);
if (~sc->attn_state & deasserted) {
BLOGE(sc, "IGU error\n");
}
reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0;
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
aeu_mask = REG_RD(sc, reg_addr);
BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
aeu_mask, deasserted);
aeu_mask |= (deasserted & 0x3ff);
BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
REG_WR(sc, reg_addr, aeu_mask);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
sc->attn_state &= ~deasserted;
BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
}
static void
bxe_attn_int(struct bxe_softc *sc)
{
/* read local copy of bits */
uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
uint32_t attn_state = sc->attn_state;
/* look for changed bits */
uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
BLOGD(sc, DBG_INTR,
"attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
attn_bits, attn_ack, asserted, deasserted);
if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
BLOGE(sc, "BAD attention state\n");
}
/* handle bits that were raised */
if (asserted) {
bxe_attn_int_asserted(sc, asserted);
}
if (deasserted) {
bxe_attn_int_deasserted(sc, deasserted);
}
}
static uint16_t
bxe_update_dsb_idx(struct bxe_softc *sc)
{
struct host_sp_status_block *def_sb = sc->def_sb;
uint16_t rc = 0;
mb(); /* status block is written to by the chip */
if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
rc |= BXE_DEF_SB_ATT_IDX;
}
if (sc->def_idx != def_sb->sp_sb.running_index) {
sc->def_idx = def_sb->sp_sb.running_index;
rc |= BXE_DEF_SB_IDX;
}
mb();
return (rc);
}
static inline struct ecore_queue_sp_obj *
bxe_cid_to_q_obj(struct bxe_softc *sc,
uint32_t cid)
{
BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
}
static void
bxe_handle_mcast_eqe(struct bxe_softc *sc)
{
struct ecore_mcast_ramrod_params rparam;
int rc;
memset(&rparam, 0, sizeof(rparam));
rparam.mcast_obj = &sc->mcast_obj;
BXE_MCAST_LOCK(sc);
/* clear pending state for the last command */
sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
/* if there are pending mcast commands - send them */
if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
if (rc < 0) {
BLOGD(sc, DBG_SP,
"ERROR: Failed to send pending mcast commands (%d)\n", rc);
}
}
BXE_MCAST_UNLOCK(sc);
}
static void
bxe_handle_classification_eqe(struct bxe_softc *sc,
union event_ring_elem *elem)
{
unsigned long ramrod_flags = 0;
int rc = 0;
uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
struct ecore_vlan_mac_obj *vlan_mac_obj;
/* always push next commands out, don't wait here */
bit_set(&ramrod_flags, RAMROD_CONT);
switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
case ECORE_FILTER_MAC_PENDING:
BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
break;
case ECORE_FILTER_MCAST_PENDING:
BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
/*
* This is only relevant for 57710 where multicast MACs are
* configured as unicast MACs using the same ramrod.
*/
bxe_handle_mcast_eqe(sc);
return;
default:
BLOGE(sc, "Unsupported classification command: %d\n",
elem->message.data.eth_event.echo);
return;
}
rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
if (rc < 0) {
BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
} else if (rc > 0) {
BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
}
}
static void
bxe_handle_rx_mode_eqe(struct bxe_softc *sc,
union event_ring_elem *elem)
{
bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
/* send rx_mode command again if was requested */
if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
&sc->sp_state)) {
bxe_set_storm_rx_mode(sc);
}
}
static void
bxe_update_eq_prod(struct bxe_softc *sc,
uint16_t prod)
{
storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
wmb(); /* keep prod updates ordered */
}
static void
bxe_eq_int(struct bxe_softc *sc)
{
uint16_t hw_cons, sw_cons, sw_prod;
union event_ring_elem *elem;
uint8_t echo;
uint32_t cid;
uint8_t opcode;
int spqe_cnt = 0;
struct ecore_queue_sp_obj *q_obj;
struct ecore_func_sp_obj *f_obj = &sc->func_obj;
struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
hw_cons = le16toh(*sc->eq_cons_sb);
/*
* The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
* when we get to the next-page we need to adjust so the loop
* condition below will be met. The next element is the size of a
* regular element and hence incrementing by 1
*/
if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
hw_cons++;
}
/*
* This function may never run in parallel with itself for a
* specific sc and no need for a read memory barrier here.
*/
sw_cons = sc->eq_cons;
sw_prod = sc->eq_prod;
BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
for (;
sw_cons != hw_cons;
sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
elem = &sc->eq[EQ_DESC(sw_cons)];
/* elem CID originates from FW, actually LE */
cid = SW_CID(elem->message.data.cfc_del_event.cid);
opcode = elem->message.opcode;
/* handle eq element */
switch (opcode) {
case EVENT_RING_OPCODE_STAT_QUERY:
BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
sc->stats_comp++);
/* nothing to do with stats comp */
goto next_spqe;
case EVENT_RING_OPCODE_CFC_DEL:
/* handle according to cid range */
/* we may want to verify here that the sc state is HALTING */
BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
q_obj = bxe_cid_to_q_obj(sc, cid);
if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
break;
}
goto next_spqe;
case EVENT_RING_OPCODE_STOP_TRAFFIC:
BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
break;
}
// XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
goto next_spqe;
case EVENT_RING_OPCODE_START_TRAFFIC:
BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
break;
}
// XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
goto next_spqe;
case EVENT_RING_OPCODE_FUNCTION_UPDATE:
echo = elem->message.data.function_update_event.echo;
if (echo == SWITCH_UPDATE) {
BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
if (f_obj->complete_cmd(sc, f_obj,
ECORE_F_CMD_SWITCH_UPDATE)) {
break;
}
}
else {
BLOGD(sc, DBG_SP,
"AFEX: ramrod completed FUNCTION_UPDATE\n");
}
goto next_spqe;
case EVENT_RING_OPCODE_FORWARD_SETUP:
q_obj = &bxe_fwd_sp_obj(sc, q_obj);
if (q_obj->complete_cmd(sc, q_obj,
ECORE_Q_CMD_SETUP_TX_ONLY)) {
break;
}
goto next_spqe;
case EVENT_RING_OPCODE_FUNCTION_START:
BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
break;
}
goto next_spqe;
case EVENT_RING_OPCODE_FUNCTION_STOP:
BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
break;
}
goto next_spqe;
}
switch (opcode | sc->state) {
case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
rss_raw->clear_pending(rss_raw);
break;
case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
bxe_handle_classification_eqe(sc, elem);
break;
case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
BLOGD(sc, DBG_SP, "got mcast ramrod\n");
bxe_handle_mcast_eqe(sc);
break;
case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
bxe_handle_rx_mode_eqe(sc, elem);
break;
default:
/* unknown event log error and continue */
BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
elem->message.opcode, sc->state);
}
next_spqe:
spqe_cnt++;
} /* for */
mb();
atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
sc->eq_cons = sw_cons;
sc->eq_prod = sw_prod;
/* make sure that above mem writes were issued towards the memory */
wmb();
/* update producer */
bxe_update_eq_prod(sc, sc->eq_prod);
}
static void
bxe_handle_sp_tq(void *context,
int pending)
{
struct bxe_softc *sc = (struct bxe_softc *)context;
uint16_t status;
BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
/* what work needs to be performed? */
status = bxe_update_dsb_idx(sc);
BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
/* HW attentions */
if (status & BXE_DEF_SB_ATT_IDX) {
BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
bxe_attn_int(sc);
status &= ~BXE_DEF_SB_ATT_IDX;
}
/* SP events: STAT_QUERY and others */
if (status & BXE_DEF_SB_IDX) {
/* handle EQ completions */
BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
bxe_eq_int(sc);
bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
le16toh(sc->def_idx), IGU_INT_NOP, 1);
status &= ~BXE_DEF_SB_IDX;
}
/* if status is non zero then something went wrong */
if (__predict_false(status)) {
BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
}
/* ack status block only if something was actually handled */
bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
/*
* Must be called after the EQ processing (since eq leads to sriov
* ramrod completion flows).
* This flow may have been scheduled by the arrival of a ramrod
* completion, or by the sriov code rescheduling itself.
*/
// XXX bxe_iov_sp_task(sc);
}
static void
bxe_handle_fp_tq(void *context,
int pending)
{
struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
struct bxe_softc *sc = fp->sc;
uint8_t more_tx = FALSE;
uint8_t more_rx = FALSE;
BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
/* XXX
* IFF_DRV_RUNNING state can't be checked here since we process
* slowpath events on a client queue during setup. Instead
* we need to add a "process/continue" flag here that the driver
* can use to tell the task here not to do anything.
*/
#if 0
if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
return;
}
#endif
/* update the fastpath index */
bxe_update_fp_sb_idx(fp);
/* XXX add loop here if ever support multiple tx CoS */
/* fp->txdata[cos] */
if (bxe_has_tx_work(fp)) {
BXE_FP_TX_LOCK(fp);
more_tx = bxe_txeof(sc, fp);
BXE_FP_TX_UNLOCK(fp);
}
if (bxe_has_rx_work(fp)) {
more_rx = bxe_rxeof(sc, fp);
}
if (more_rx /*|| more_tx*/) {
/* still more work to do */
taskqueue_enqueue(fp->tq, &fp->tq_task);
return;
}
bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
}
static void
bxe_task_fp(struct bxe_fastpath *fp)
{
struct bxe_softc *sc = fp->sc;
uint8_t more_tx = FALSE;
uint8_t more_rx = FALSE;
BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
/* update the fastpath index */
bxe_update_fp_sb_idx(fp);
/* XXX add loop here if ever support multiple tx CoS */
/* fp->txdata[cos] */
if (bxe_has_tx_work(fp)) {
BXE_FP_TX_LOCK(fp);
more_tx = bxe_txeof(sc, fp);
BXE_FP_TX_UNLOCK(fp);
}
if (bxe_has_rx_work(fp)) {
more_rx = bxe_rxeof(sc, fp);
}
if (more_rx /*|| more_tx*/) {
/* still more work to do, bail out if this ISR and process later */
taskqueue_enqueue(fp->tq, &fp->tq_task);
return;
}
/*
* Here we write the fastpath index taken before doing any tx or rx work.
* It is very well possible other hw events occurred up to this point and
* they were actually processed accordingly above. Since we're going to
* write an older fastpath index, an interrupt is coming which we might
* not do any work in.
*/
bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
}
/*
* Legacy interrupt entry point.
*
* Verifies that the controller generated the interrupt and
* then calls a separate routine to handle the various
* interrupt causes: link, RX, and TX.
*/
static void
bxe_intr_legacy(void *xsc)
{
struct bxe_softc *sc = (struct bxe_softc *)xsc;
struct bxe_fastpath *fp;
uint16_t status, mask;
int i;
BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
/*
* 0 for ustorm, 1 for cstorm
* the bits returned from ack_int() are 0-15
* bit 0 = attention status block
* bit 1 = fast path status block
* a mask of 0x2 or more = tx/rx event
* a mask of 1 = slow path event
*/
status = bxe_ack_int(sc);
/* the interrupt is not for us */
if (__predict_false(status == 0)) {
BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
return;
}
BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
FOR_EACH_ETH_QUEUE(sc, i) {
fp = &sc->fp[i];
mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
if (status & mask) {
/* acknowledge and disable further fastpath interrupts */
bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
bxe_task_fp(fp);
status &= ~mask;
}
}
if (__predict_false(status & 0x1)) {
/* acknowledge and disable further slowpath interrupts */
bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
/* schedule slowpath handler */
taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
status &= ~0x1;
}
if (__predict_false(status)) {
BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
}
}
/* slowpath interrupt entry point */
static void
bxe_intr_sp(void *xsc)
{
struct bxe_softc *sc = (struct bxe_softc *)xsc;
BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
/* acknowledge and disable further slowpath interrupts */
bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
/* schedule slowpath handler */
taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
}
/* fastpath interrupt entry point */
static void
bxe_intr_fp(void *xfp)
{
struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
struct bxe_softc *sc = fp->sc;
BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
BLOGD(sc, DBG_INTR,
"(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
/* acknowledge and disable further fastpath interrupts */
bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
bxe_task_fp(fp);
}
/* Release all interrupts allocated by the driver. */
static void
bxe_interrupt_free(struct bxe_softc *sc)
{
int i;
switch (sc->interrupt_mode) {
case INTR_MODE_INTX:
BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
if (sc->intr[0].resource != NULL) {
bus_release_resource(sc->dev,
SYS_RES_IRQ,
sc->intr[0].rid,
sc->intr[0].resource);
}
break;
case INTR_MODE_MSI:
for (i = 0; i < sc->intr_count; i++) {
BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
if (sc->intr[i].resource && sc->intr[i].rid) {
bus_release_resource(sc->dev,
SYS_RES_IRQ,
sc->intr[i].rid,
sc->intr[i].resource);
}
}
pci_release_msi(sc->dev);
break;
case INTR_MODE_MSIX:
for (i = 0; i < sc->intr_count; i++) {
BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
if (sc->intr[i].resource && sc->intr[i].rid) {
bus_release_resource(sc->dev,
SYS_RES_IRQ,
sc->intr[i].rid,
sc->intr[i].resource);
}
}
pci_release_msi(sc->dev);
break;
default:
/* nothing to do as initial allocation failed */
break;
}
}
/*
* This function determines and allocates the appropriate
* interrupt based on system capabilites and user request.
*
* The user may force a particular interrupt mode, specify
* the number of receive queues, specify the method for
* distribuitng received frames to receive queues, or use
* the default settings which will automatically select the
* best supported combination. In addition, the OS may or
* may not support certain combinations of these settings.
* This routine attempts to reconcile the settings requested
* by the user with the capabilites available from the system
* to select the optimal combination of features.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_interrupt_alloc(struct bxe_softc *sc)
{
int msix_count = 0;
int msi_count = 0;
int num_requested = 0;
int num_allocated = 0;
int rid, i, j;
int rc;
/* get the number of available MSI/MSI-X interrupts from the OS */
if (sc->interrupt_mode > 0) {
if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
msix_count = pci_msix_count(sc->dev);
}
if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
msi_count = pci_msi_count(sc->dev);
}
BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
msi_count, msix_count);
}
do { /* try allocating MSI-X interrupt resources (at least 2) */
if (sc->interrupt_mode != INTR_MODE_MSIX) {
break;
}
if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
(msix_count < 2)) {
sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
break;
}
/* ask for the necessary number of MSI-X vectors */
num_requested = min((sc->num_queues + 1), msix_count);
BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
num_allocated = num_requested;
if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
break;
}
if (num_allocated < 2) { /* possible? */
BLOGE(sc, "MSI-X allocation less than 2!\n");
sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
pci_release_msi(sc->dev);
break;
}
BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
num_requested, num_allocated);
/* best effort so use the number of vectors allocated to us */
sc->intr_count = num_allocated;
sc->num_queues = num_allocated - 1;
rid = 1; /* initial resource identifier */
/* allocate the MSI-X vectors */
for (i = 0; i < num_allocated; i++) {
sc->intr[i].rid = (rid + i);
if ((sc->intr[i].resource =
bus_alloc_resource_any(sc->dev,
SYS_RES_IRQ,
&sc->intr[i].rid,
RF_ACTIVE)) == NULL) {
BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
i, (rid + i));
for (j = (i - 1); j >= 0; j--) {
bus_release_resource(sc->dev,
SYS_RES_IRQ,
sc->intr[j].rid,
sc->intr[j].resource);
}
sc->intr_count = 0;
sc->num_queues = 0;
sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
pci_release_msi(sc->dev);
break;
}
BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
}
} while (0);
do { /* try allocating MSI vector resources (at least 2) */
if (sc->interrupt_mode != INTR_MODE_MSI) {
break;
}
if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
(msi_count < 1)) {
sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
break;
}
/* ask for a single MSI vector */
num_requested = 1;
BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
num_allocated = num_requested;
if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
break;
}
if (num_allocated != 1) { /* possible? */
BLOGE(sc, "MSI allocation is not 1!\n");
sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
pci_release_msi(sc->dev);
break;
}
BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
num_requested, num_allocated);
/* best effort so use the number of vectors allocated to us */
sc->intr_count = num_allocated;
sc->num_queues = num_allocated;
rid = 1; /* initial resource identifier */
sc->intr[0].rid = rid;
if ((sc->intr[0].resource =
bus_alloc_resource_any(sc->dev,
SYS_RES_IRQ,
&sc->intr[0].rid,
RF_ACTIVE)) == NULL) {
BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
sc->intr_count = 0;
sc->num_queues = 0;
sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
pci_release_msi(sc->dev);
break;
}
BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
} while (0);
do { /* try allocating INTx vector resources */
if (sc->interrupt_mode != INTR_MODE_INTX) {
break;
}
BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
/* only one vector for INTx */
sc->intr_count = 1;
sc->num_queues = 1;
rid = 0; /* initial resource identifier */
sc->intr[0].rid = rid;
if ((sc->intr[0].resource =
bus_alloc_resource_any(sc->dev,
SYS_RES_IRQ,
&sc->intr[0].rid,
(RF_ACTIVE | RF_SHAREABLE))) == NULL) {
BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
sc->intr_count = 0;
sc->num_queues = 0;
sc->interrupt_mode = -1; /* Failed! */
break;
}
BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
} while (0);
if (sc->interrupt_mode == -1) {
BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
rc = 1;
} else {
BLOGD(sc, DBG_LOAD,
"Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
sc->interrupt_mode, sc->num_queues);
rc = 0;
}
return (rc);
}
static void
bxe_interrupt_detach(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i;
/* release interrupt resources */
for (i = 0; i < sc->intr_count; i++) {
if (sc->intr[i].resource && sc->intr[i].tag) {
BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
}
}
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if (fp->tq) {
taskqueue_drain(fp->tq, &fp->tq_task);
taskqueue_drain(fp->tq, &fp->tx_task);
while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task,
NULL))
taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task);
}
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if (fp->tq != NULL) {
taskqueue_free(fp->tq);
fp->tq = NULL;
}
}
}
if (sc->sp_tq) {
taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
taskqueue_free(sc->sp_tq);
sc->sp_tq = NULL;
}
}
/*
* Enables interrupts and attach to the ISR.
*
* When using multiple MSI/MSI-X vectors the first vector
* is used for slowpath operations while all remaining
* vectors are used for fastpath operations. If only a
* single MSI/MSI-X vector is used (SINGLE_ISR) then the
* ISR must look for both slowpath and fastpath completions.
*/
static int
bxe_interrupt_attach(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int rc = 0;
int i;
snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
"bxe%d_sp_tq", sc->unit);
TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT,
taskqueue_thread_enqueue,
&sc->sp_tq);
taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
"%s", sc->sp_tq_name);
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
snprintf(fp->tq_name, sizeof(fp->tq_name),
"bxe%d_fp%d_tq", sc->unit, i);
TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp);
fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT,
taskqueue_thread_enqueue,
&fp->tq);
TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0,
bxe_tx_mq_start_deferred, fp);
taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
"%s", fp->tq_name);
}
/* setup interrupt handlers */
if (sc->interrupt_mode == INTR_MODE_MSIX) {
BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
/*
* Setup the interrupt handler. Note that we pass the driver instance
* to the interrupt handler for the slowpath.
*/
if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
(INTR_TYPE_NET | INTR_MPSAFE),
NULL, bxe_intr_sp, sc,
&sc->intr[0].tag)) != 0) {
BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
goto bxe_interrupt_attach_exit;
}
bus_describe_intr(sc->dev, sc->intr[0].resource,
sc->intr[0].tag, "sp");
/* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
/* initialize the fastpath vectors (note the first was used for sp) */
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
/*
* Setup the interrupt handler. Note that we pass the
* fastpath context to the interrupt handler in this
* case.
*/
if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
(INTR_TYPE_NET | INTR_MPSAFE),
NULL, bxe_intr_fp, fp,
&sc->intr[i + 1].tag)) != 0) {
BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
(i + 1), rc);
goto bxe_interrupt_attach_exit;
}
bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
sc->intr[i + 1].tag, "fp%02d", i);
/* bind the fastpath instance to a cpu */
if (sc->num_queues > 1) {
bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
}
fp->state = BXE_FP_STATE_IRQ;
}
} else if (sc->interrupt_mode == INTR_MODE_MSI) {
BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
/*
* Setup the interrupt handler. Note that we pass the
* driver instance to the interrupt handler which
* will handle both the slowpath and fastpath.
*/
if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
(INTR_TYPE_NET | INTR_MPSAFE),
NULL, bxe_intr_legacy, sc,
&sc->intr[0].tag)) != 0) {
BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
goto bxe_interrupt_attach_exit;
}
} else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
/*
* Setup the interrupt handler. Note that we pass the
* driver instance to the interrupt handler which
* will handle both the slowpath and fastpath.
*/
if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
(INTR_TYPE_NET | INTR_MPSAFE),
NULL, bxe_intr_legacy, sc,
&sc->intr[0].tag)) != 0) {
BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
goto bxe_interrupt_attach_exit;
}
}
bxe_interrupt_attach_exit:
return (rc);
}
static int bxe_init_hw_common_chip(struct bxe_softc *sc);
static int bxe_init_hw_common(struct bxe_softc *sc);
static int bxe_init_hw_port(struct bxe_softc *sc);
static int bxe_init_hw_func(struct bxe_softc *sc);
static void bxe_reset_common(struct bxe_softc *sc);
static void bxe_reset_port(struct bxe_softc *sc);
static void bxe_reset_func(struct bxe_softc *sc);
static int bxe_gunzip_init(struct bxe_softc *sc);
static void bxe_gunzip_end(struct bxe_softc *sc);
static int bxe_init_firmware(struct bxe_softc *sc);
static void bxe_release_firmware(struct bxe_softc *sc);
static struct
ecore_func_sp_drv_ops bxe_func_sp_drv = {
.init_hw_cmn_chip = bxe_init_hw_common_chip,
.init_hw_cmn = bxe_init_hw_common,
.init_hw_port = bxe_init_hw_port,
.init_hw_func = bxe_init_hw_func,
.reset_hw_cmn = bxe_reset_common,
.reset_hw_port = bxe_reset_port,
.reset_hw_func = bxe_reset_func,
.gunzip_init = bxe_gunzip_init,
.gunzip_end = bxe_gunzip_end,
.init_fw = bxe_init_firmware,
.release_fw = bxe_release_firmware,
};
static void
bxe_init_func_obj(struct bxe_softc *sc)
{
sc->dmae_ready = 0;
ecore_init_func_obj(sc,
&sc->func_obj,
BXE_SP(sc, func_rdata),
BXE_SP_MAPPING(sc, func_rdata),
BXE_SP(sc, func_afex_rdata),
BXE_SP_MAPPING(sc, func_afex_rdata),
&bxe_func_sp_drv);
}
static int
bxe_init_hw(struct bxe_softc *sc,
uint32_t load_code)
{
struct ecore_func_state_params func_params = { NULL };
int rc;
/* prepare the parameters for function state transitions */
bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
func_params.f_obj = &sc->func_obj;
func_params.cmd = ECORE_F_CMD_HW_INIT;
func_params.params.hw_init.load_phase = load_code;
/*
* Via a plethora of function pointers, we will eventually reach
* bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
*/
rc = ecore_func_state_change(sc, &func_params);
return (rc);
}
static void
bxe_fill(struct bxe_softc *sc,
uint32_t addr,
int fill,
uint32_t len)
{
uint32_t i;
if (!(len % 4) && !(addr % 4)) {
for (i = 0; i < len; i += 4) {
REG_WR(sc, (addr + i), fill);
}
} else {
for (i = 0; i < len; i++) {
REG_WR8(sc, (addr + i), fill);
}
}
}
/* writes FP SP data to FW - data_size in dwords */
static void
bxe_wr_fp_sb_data(struct bxe_softc *sc,
int fw_sb_id,
uint32_t *sb_data_p,
uint32_t data_size)
{
int index;
for (index = 0; index < data_size; index++) {
REG_WR(sc,
(BAR_CSTRORM_INTMEM +
CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
(sizeof(uint32_t) * index)),
*(sb_data_p + index));
}
}
static void
bxe_zero_fp_sb(struct bxe_softc *sc,
int fw_sb_id)
{
struct hc_status_block_data_e2 sb_data_e2;
struct hc_status_block_data_e1x sb_data_e1x;
uint32_t *sb_data_p;
uint32_t data_size = 0;
if (!CHIP_IS_E1x(sc)) {
memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
sb_data_e2.common.state = SB_DISABLED;
sb_data_e2.common.p_func.vf_valid = FALSE;
sb_data_p = (uint32_t *)&sb_data_e2;
data_size = (sizeof(struct hc_status_block_data_e2) /
sizeof(uint32_t));
} else {
memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
sb_data_e1x.common.state = SB_DISABLED;
sb_data_e1x.common.p_func.vf_valid = FALSE;
sb_data_p = (uint32_t *)&sb_data_e1x;
data_size = (sizeof(struct hc_status_block_data_e1x) /
sizeof(uint32_t));
}
bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
0, CSTORM_STATUS_BLOCK_SIZE);
bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
0, CSTORM_SYNC_BLOCK_SIZE);
}
static void
bxe_wr_sp_sb_data(struct bxe_softc *sc,
struct hc_sp_status_block_data *sp_sb_data)
{
int i;
for (i = 0;
i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
i++) {
REG_WR(sc,
(BAR_CSTRORM_INTMEM +
CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
(i * sizeof(uint32_t))),
*((uint32_t *)sp_sb_data + i));
}
}
static void
bxe_zero_sp_sb(struct bxe_softc *sc)
{
struct hc_sp_status_block_data sp_sb_data;
memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
sp_sb_data.state = SB_DISABLED;
sp_sb_data.p_func.vf_valid = FALSE;
bxe_wr_sp_sb_data(sc, &sp_sb_data);
bxe_fill(sc,
(BAR_CSTRORM_INTMEM +
CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
0, CSTORM_SP_STATUS_BLOCK_SIZE);
bxe_fill(sc,
(BAR_CSTRORM_INTMEM +
CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
0, CSTORM_SP_SYNC_BLOCK_SIZE);
}
static void
bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
int igu_sb_id,
int igu_seg_id)
{
hc_sm->igu_sb_id = igu_sb_id;
hc_sm->igu_seg_id = igu_seg_id;
hc_sm->timer_value = 0xFF;
hc_sm->time_to_expire = 0xFFFFFFFF;
}
static void
bxe_map_sb_state_machines(struct hc_index_data *index_data)
{
/* zero out state machine indices */
/* rx indices */
index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
/* tx indices */
index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
/* map indices */
/* rx indices */
index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
(SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
/* tx indices */
index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
(SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
(SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
(SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
(SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
}
static void
bxe_init_sb(struct bxe_softc *sc,
bus_addr_t busaddr,
int vfid,
uint8_t vf_valid,
int fw_sb_id,
int igu_sb_id)
{
struct hc_status_block_data_e2 sb_data_e2;
struct hc_status_block_data_e1x sb_data_e1x;
struct hc_status_block_sm *hc_sm_p;
uint32_t *sb_data_p;
int igu_seg_id;
int data_size;
if (CHIP_INT_MODE_IS_BC(sc)) {
igu_seg_id = HC_SEG_ACCESS_NORM;
} else {
igu_seg_id = IGU_SEG_ACCESS_NORM;
}
bxe_zero_fp_sb(sc, fw_sb_id);
if (!CHIP_IS_E1x(sc)) {
memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
sb_data_e2.common.state = SB_ENABLED;
sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
sb_data_e2.common.p_func.vf_id = vfid;
sb_data_e2.common.p_func.vf_valid = vf_valid;
sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
sb_data_e2.common.same_igu_sb_1b = TRUE;
sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
hc_sm_p = sb_data_e2.common.state_machine;
sb_data_p = (uint32_t *)&sb_data_e2;
data_size = (sizeof(struct hc_status_block_data_e2) /
sizeof(uint32_t));
bxe_map_sb_state_machines(sb_data_e2.index_data);
} else {
memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
sb_data_e1x.common.state = SB_ENABLED;
sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
sb_data_e1x.common.p_func.vf_id = 0xff;
sb_data_e1x.common.p_func.vf_valid = FALSE;
sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
sb_data_e1x.common.same_igu_sb_1b = TRUE;
sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
hc_sm_p = sb_data_e1x.common.state_machine;
sb_data_p = (uint32_t *)&sb_data_e1x;
data_size = (sizeof(struct hc_status_block_data_e1x) /
sizeof(uint32_t));
bxe_map_sb_state_machines(sb_data_e1x.index_data);
}
bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
/* write indices to HW - PCI guarantees endianity of regpairs */
bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
}
static inline uint8_t
bxe_fp_qzone_id(struct bxe_fastpath *fp)
{
if (CHIP_IS_E1x(fp->sc)) {
return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
} else {
return (fp->cl_id);
}
}
static inline uint32_t
bxe_rx_ustorm_prods_offset(struct bxe_softc *sc,
struct bxe_fastpath *fp)
{
uint32_t offset = BAR_USTRORM_INTMEM;
if (!CHIP_IS_E1x(sc)) {
offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
} else {
offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
}
return (offset);
}
static void
bxe_init_eth_fp(struct bxe_softc *sc,
int idx)
{
struct bxe_fastpath *fp = &sc->fp[idx];
uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
unsigned long q_type = 0;
int cos;
fp->sc = sc;
fp->index = idx;
fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
fp->cl_id = (CHIP_IS_E1x(sc)) ?
(SC_L_ID(sc) + idx) :
/* want client ID same as IGU SB ID for non-E1 */
fp->igu_sb_id;
fp->cl_qzone_id = bxe_fp_qzone_id(fp);
/* setup sb indices */
if (!CHIP_IS_E1x(sc)) {
fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
} else {
fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
}
/* init shortcut */
fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
/*
* XXX If multiple CoS is ever supported then each fastpath structure
* will need to maintain tx producer/consumer/dma/etc values *per* CoS.
*/
for (cos = 0; cos < sc->max_cos; cos++) {
cids[cos] = idx;
}
fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
/* nothing more for a VF to do */
if (IS_VF(sc)) {
return;
}
bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
fp->fw_sb_id, fp->igu_sb_id);
bxe_update_fp_sb_idx(fp);
/* Configure Queue State object */
bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
ecore_init_queue_obj(sc,
&sc->sp_objs[idx].q_obj,
fp->cl_id,
cids,
sc->max_cos,
SC_FUNC(sc),
BXE_SP(sc, q_rdata),
BXE_SP_MAPPING(sc, q_rdata),
q_type);
/* configure classification DBs */
ecore_init_mac_obj(sc,
&sc->sp_objs[idx].mac_obj,
fp->cl_id,
idx,
SC_FUNC(sc),
BXE_SP(sc, mac_rdata),
BXE_SP_MAPPING(sc, mac_rdata),
ECORE_FILTER_MAC_PENDING,
&sc->sp_state,
ECORE_OBJ_TYPE_RX_TX,
&sc->macs_pool);
BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
}
static inline void
bxe_update_rx_prod(struct bxe_softc *sc,
struct bxe_fastpath *fp,
uint16_t rx_bd_prod,
uint16_t rx_cq_prod,
uint16_t rx_sge_prod)
{
struct ustorm_eth_rx_producers rx_prods = { 0 };
uint32_t i;
/* update producers */
rx_prods.bd_prod = rx_bd_prod;
rx_prods.cqe_prod = rx_cq_prod;
rx_prods.sge_prod = rx_sge_prod;
/*
* Make sure that the BD and SGE data is updated before updating the
* producers since FW might read the BD/SGE right after the producer
* is updated.
* This is only applicable for weak-ordered memory model archs such
* as IA-64. The following barrier is also mandatory since FW will
* assumes BDs must have buffers.
*/
wmb();
for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
REG_WR(sc,
(fp->ustorm_rx_prods_offset + (i * 4)),
((uint32_t *)&rx_prods)[i]);
}
wmb(); /* keep prod updates ordered */
BLOGD(sc, DBG_RX,
"RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
}
static void
bxe_init_rx_rings(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
fp->rx_bd_cons = 0;
/*
* Activate the BD ring...
* Warning, this will generate an interrupt (to the TSTORM)
* so this can only be done after the chip is initialized
*/
bxe_update_rx_prod(sc, fp,
fp->rx_bd_prod,
fp->rx_cq_prod,
fp->rx_sge_prod);
if (i != 0) {
continue;
}
if (CHIP_IS_E1(sc)) {
REG_WR(sc,
(BAR_USTRORM_INTMEM +
USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
U64_LO(fp->rcq_dma.paddr));
REG_WR(sc,
(BAR_USTRORM_INTMEM +
USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
U64_HI(fp->rcq_dma.paddr));
}
}
}
static void
bxe_init_tx_ring_one(struct bxe_fastpath *fp)
{
SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
fp->tx_db.data.zero_fill1 = 0;
fp->tx_db.data.prod = 0;
fp->tx_pkt_prod = 0;
fp->tx_pkt_cons = 0;
fp->tx_bd_prod = 0;
fp->tx_bd_cons = 0;
fp->eth_q_stats.tx_pkts = 0;
}
static inline void
bxe_init_tx_rings(struct bxe_softc *sc)
{
int i;
for (i = 0; i < sc->num_queues; i++) {
bxe_init_tx_ring_one(&sc->fp[i]);
}
}
static void
bxe_init_def_sb(struct bxe_softc *sc)
{
struct host_sp_status_block *def_sb = sc->def_sb;
bus_addr_t mapping = sc->def_sb_dma.paddr;
int igu_sp_sb_index;
int igu_seg_id;
int port = SC_PORT(sc);
int func = SC_FUNC(sc);
int reg_offset, reg_offset_en5;
uint64_t section;
int index, sindex;
struct hc_sp_status_block_data sp_sb_data;
memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
if (CHIP_INT_MODE_IS_BC(sc)) {
igu_sp_sb_index = DEF_SB_IGU_ID;
igu_seg_id = HC_SEG_ACCESS_DEF;
} else {
igu_sp_sb_index = sc->igu_dsb_id;
igu_seg_id = IGU_SEG_ACCESS_DEF;
}
/* attentions */
section = ((uint64_t)mapping +
offsetof(struct host_sp_status_block, atten_status_block));
def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
sc->attn_state = 0;
reg_offset = (port) ?
MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
reg_offset_en5 = (port) ?
MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
/* take care of sig[0]..sig[4] */
for (sindex = 0; sindex < 4; sindex++) {
sc->attn_group[index].sig[sindex] =
REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
}
if (!CHIP_IS_E1x(sc)) {
/*
* enable5 is separate from the rest of the registers,
* and the address skip is 4 and not 16 between the
* different groups
*/
sc->attn_group[index].sig[4] =
REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
} else {
sc->attn_group[index].sig[4] = 0;
}
}
if (sc->devinfo.int_block == INT_BLOCK_HC) {
reg_offset = (port) ?
HC_REG_ATTN_MSG1_ADDR_L :
HC_REG_ATTN_MSG0_ADDR_L;
REG_WR(sc, reg_offset, U64_LO(section));
REG_WR(sc, (reg_offset + 4), U64_HI(section));
} else if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
}
section = ((uint64_t)mapping +
offsetof(struct host_sp_status_block, sp_sb));
bxe_zero_sp_sb(sc);
/* PCI guarantees endianity of regpair */
sp_sb_data.state = SB_ENABLED;
sp_sb_data.host_sb_addr.lo = U64_LO(section);
sp_sb_data.host_sb_addr.hi = U64_HI(section);
sp_sb_data.igu_sb_id = igu_sp_sb_index;
sp_sb_data.igu_seg_id = igu_seg_id;
sp_sb_data.p_func.pf_id = func;
sp_sb_data.p_func.vnic_id = SC_VN(sc);
sp_sb_data.p_func.vf_id = 0xff;
bxe_wr_sp_sb_data(sc, &sp_sb_data);
bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
}
static void
bxe_init_sp_ring(struct bxe_softc *sc)
{
atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
sc->spq_prod_idx = 0;
sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
sc->spq_prod_bd = sc->spq;
sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
}
static void
bxe_init_eq_ring(struct bxe_softc *sc)
{
union event_ring_elem *elem;
int i;
for (i = 1; i <= NUM_EQ_PAGES; i++) {
elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
BCM_PAGE_SIZE *
(i % NUM_EQ_PAGES)));
elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
BCM_PAGE_SIZE *
(i % NUM_EQ_PAGES)));
}
sc->eq_cons = 0;
sc->eq_prod = NUM_EQ_DESC;
sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
atomic_store_rel_long(&sc->eq_spq_left,
(min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
NUM_EQ_DESC) - 1));
}
static void
bxe_init_internal_common(struct bxe_softc *sc)
{
int i;
/*
* Zero this manually as its initialization is currently missing
* in the initTool.
*/
for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
REG_WR(sc,
(BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
0);
}
if (!CHIP_IS_E1x(sc)) {
REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
}
}
static void
bxe_init_internal(struct bxe_softc *sc,
uint32_t load_code)
{
switch (load_code) {
case FW_MSG_CODE_DRV_LOAD_COMMON:
case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
bxe_init_internal_common(sc);
/* no break */
case FW_MSG_CODE_DRV_LOAD_PORT:
/* nothing to do */
/* no break */
case FW_MSG_CODE_DRV_LOAD_FUNCTION:
/* internal memory per function is initialized inside bxe_pf_init */
break;
default:
BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
break;
}
}
static void
storm_memset_func_cfg(struct bxe_softc *sc,
struct tstorm_eth_function_common_config *tcfg,
uint16_t abs_fid)
{
uint32_t addr;
size_t size;
addr = (BAR_TSTRORM_INTMEM +
TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
size = sizeof(struct tstorm_eth_function_common_config);
ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
}
static void
bxe_func_init(struct bxe_softc *sc,
struct bxe_func_init_params *p)
{
struct tstorm_eth_function_common_config tcfg = { 0 };
if (CHIP_IS_E1x(sc)) {
storm_memset_func_cfg(sc, &tcfg, p->func_id);
}
/* Enable the function in the FW */
storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
storm_memset_func_en(sc, p->func_id, 1);
/* spq */
if (p->func_flgs & FUNC_FLG_SPQ) {
storm_memset_spq_addr(sc, p->spq_map, p->func_id);
REG_WR(sc,
(XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
p->spq_prod);
}
}
/*
* Calculates the sum of vn_min_rates.
* It's needed for further normalizing of the min_rates.
* Returns:
* sum of vn_min_rates.
* or
* 0 - if all the min_rates are 0.
* In the later case fainess algorithm should be deactivated.
* If all min rates are not zero then those that are zeroes will be set to 1.
*/
static void
bxe_calc_vn_min(struct bxe_softc *sc,
struct cmng_init_input *input)
{
uint32_t vn_cfg;
uint32_t vn_min_rate;
int all_zero = 1;
int vn;
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
vn_cfg = sc->devinfo.mf_info.mf_config[vn];
vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
/* skip hidden VNs */
vn_min_rate = 0;
} else if (!vn_min_rate) {
/* If min rate is zero - set it to 100 */
vn_min_rate = DEF_MIN_RATE;
} else {
all_zero = 0;
}
input->vnic_min_rate[vn] = vn_min_rate;
}
/* if ETS or all min rates are zeros - disable fairness */
if (BXE_IS_ETS_ENABLED(sc)) {
input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
} else if (all_zero) {
input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
BLOGD(sc, DBG_LOAD,
"Fariness disabled (all MIN values are zeroes)\n");
} else {
input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
}
}
static inline uint16_t
bxe_extract_max_cfg(struct bxe_softc *sc,
uint32_t mf_cfg)
{
uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
FUNC_MF_CFG_MAX_BW_SHIFT);
if (!max_cfg) {
BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
max_cfg = 100;
}
return (max_cfg);
}
static void
bxe_calc_vn_max(struct bxe_softc *sc,
int vn,
struct cmng_init_input *input)
{
uint16_t vn_max_rate;
uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
uint32_t max_cfg;
if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
vn_max_rate = 0;
} else {
max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
if (IS_MF_SI(sc)) {
/* max_cfg in percents of linkspeed */
vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
} else { /* SD modes */
/* max_cfg is absolute in 100Mb units */
vn_max_rate = (max_cfg * 100);
}
}
BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
input->vnic_max_rate[vn] = vn_max_rate;
}
static void
bxe_cmng_fns_init(struct bxe_softc *sc,
uint8_t read_cfg,
uint8_t cmng_type)
{
struct cmng_init_input input;
int vn;
memset(&input, 0, sizeof(struct cmng_init_input));
input.port_rate = sc->link_vars.line_speed;
if (cmng_type == CMNG_FNS_MINMAX) {
/* read mf conf from shmem */
if (read_cfg) {
bxe_read_mf_cfg(sc);
}
/* get VN min rate and enable fairness if not 0 */
bxe_calc_vn_min(sc, &input);
/* get VN max rate */
if (sc->port.pmf) {
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
bxe_calc_vn_max(sc, vn, &input);
}
}
/* always enable rate shaping and fairness */
input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
ecore_init_cmng(&input, &sc->cmng);
return;
}
/* rate shaping and fairness are disabled */
BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
}
static int
bxe_get_cmng_fns_mode(struct bxe_softc *sc)
{
if (CHIP_REV_IS_SLOW(sc)) {
return (CMNG_FNS_NONE);
}
if (IS_MF(sc)) {
return (CMNG_FNS_MINMAX);
}
return (CMNG_FNS_NONE);
}
static void
storm_memset_cmng(struct bxe_softc *sc,
struct cmng_init *cmng,
uint8_t port)
{
int vn;
int func;
uint32_t addr;
size_t size;
addr = (BAR_XSTRORM_INTMEM +
XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
size = sizeof(struct cmng_struct_per_port);
ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
func = func_by_vn(sc, vn);
addr = (BAR_XSTRORM_INTMEM +
XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
size = sizeof(struct rate_shaping_vars_per_vn);
ecore_storm_memset_struct(sc, addr, size,
(uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
addr = (BAR_XSTRORM_INTMEM +
XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
size = sizeof(struct fairness_vars_per_vn);
ecore_storm_memset_struct(sc, addr, size,
(uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
}
}
static void
bxe_pf_init(struct bxe_softc *sc)
{
struct bxe_func_init_params func_init = { 0 };
struct event_ring_data eq_data = { { 0 } };
uint16_t flags;
if (!CHIP_IS_E1x(sc)) {
/* reset IGU PF statistics: MSIX + ATTN */
/* PF */
REG_WR(sc,
(IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
(BXE_IGU_STAS_MSG_VF_CNT * 4) +
((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
0);
/* ATTN */
REG_WR(sc,
(IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
(BXE_IGU_STAS_MSG_VF_CNT * 4) +
(BXE_IGU_STAS_MSG_PF_CNT * 4) +
((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
0);
}
/* function setup flags */
flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
/*
* This flag is relevant for E1x only.
* E2 doesn't have a TPA configuration in a function level.
*/
flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
func_init.func_flgs = flags;
func_init.pf_id = SC_FUNC(sc);
func_init.func_id = SC_FUNC(sc);
func_init.spq_map = sc->spq_dma.paddr;
func_init.spq_prod = sc->spq_prod_idx;
bxe_func_init(sc, &func_init);
memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
/*
* Congestion management values depend on the link rate.
* There is no active link so initial link rate is set to 10Gbps.
* When the link comes up the congestion management values are
* re-calculated according to the actual link rate.
*/
sc->link_vars.line_speed = SPEED_10000;
bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
/* Only the PMF sets the HW */
if (sc->port.pmf) {
storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
}
/* init Event Queue - PCI bus guarantees correct endainity */
eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
eq_data.producer = sc->eq_prod;
eq_data.index_id = HC_SP_INDEX_EQ_CONS;
eq_data.sb_id = DEF_SB_ID;
storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
}
static void
bxe_hc_int_enable(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
uint32_t val = REG_RD(sc, addr);
uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
(sc->intr_count == 1)) ? TRUE : FALSE;
uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
if (msix) {
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0);
val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
if (single_msix) {
val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
}
} else if (msi) {
val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
} else {
val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
if (!CHIP_IS_E1(sc)) {
BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
val, port, addr);
REG_WR(sc, addr, val);
val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
}
}
if (CHIP_IS_E1(sc)) {
REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
}
BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
REG_WR(sc, addr, val);
/* ensure that HC_CONFIG is written before leading/trailing edge config */
mb();
if (!CHIP_IS_E1(sc)) {
/* init leading/trailing edge */
if (IS_MF(sc)) {
val = (0xee0f | (1 << (SC_VN(sc) + 4)));
if (sc->port.pmf) {
/* enable nig and gpio3 attention */
val |= 0x1100;
}
} else {
val = 0xffff;
}
REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
}
/* make sure that interrupts are indeed enabled from here on */
mb();
}
static void
bxe_igu_int_enable(struct bxe_softc *sc)
{
uint32_t val;
uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
(sc->intr_count == 1)) ? TRUE : FALSE;
uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
if (msix) {
val &= ~(IGU_PF_CONF_INT_LINE_EN |
IGU_PF_CONF_SINGLE_ISR_EN);
val |= (IGU_PF_CONF_MSI_MSIX_EN |
IGU_PF_CONF_ATTN_BIT_EN);
if (single_msix) {
val |= IGU_PF_CONF_SINGLE_ISR_EN;
}
} else if (msi) {
val &= ~IGU_PF_CONF_INT_LINE_EN;
val |= (IGU_PF_CONF_MSI_MSIX_EN |
IGU_PF_CONF_ATTN_BIT_EN |
IGU_PF_CONF_SINGLE_ISR_EN);
} else {
val &= ~IGU_PF_CONF_MSI_MSIX_EN;
val |= (IGU_PF_CONF_INT_LINE_EN |
IGU_PF_CONF_ATTN_BIT_EN |
IGU_PF_CONF_SINGLE_ISR_EN);
}
/* clean previous status - need to configure igu prior to ack*/
if ((!msix) || single_msix) {
REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
bxe_ack_int(sc);
}
val |= IGU_PF_CONF_FUNC_EN;
BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
mb();
/* init leading/trailing edge */
if (IS_MF(sc)) {
val = (0xee0f | (1 << (SC_VN(sc) + 4)));
if (sc->port.pmf) {
/* enable nig and gpio3 attention */
val |= 0x1100;
}
} else {
val = 0xffff;
}
REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
/* make sure that interrupts are indeed enabled from here on */
mb();
}
static void
bxe_int_enable(struct bxe_softc *sc)
{
if (sc->devinfo.int_block == INT_BLOCK_HC) {
bxe_hc_int_enable(sc);
} else {
bxe_igu_int_enable(sc);
}
}
static void
bxe_hc_int_disable(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
uint32_t val = REG_RD(sc, addr);
/*
* In E1 we must use only PCI configuration space to disable MSI/MSIX
* capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
* block
*/
if (CHIP_IS_E1(sc)) {
/*
* Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
* to prevent from HC sending interrupts after we exit the function
*/
REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
} else {
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
}
BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
/* flush all outstanding writes */
mb();
REG_WR(sc, addr, val);
if (REG_RD(sc, addr) != val) {
BLOGE(sc, "proper val not read from HC IGU!\n");
}
}
static void
bxe_igu_int_disable(struct bxe_softc *sc)
{
uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
IGU_PF_CONF_INT_LINE_EN |
IGU_PF_CONF_ATTN_BIT_EN);
BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
/* flush all outstanding writes */
mb();
REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
BLOGE(sc, "proper val not read from IGU!\n");
}
}
static void
bxe_int_disable(struct bxe_softc *sc)
{
if (sc->devinfo.int_block == INT_BLOCK_HC) {
bxe_hc_int_disable(sc);
} else {
bxe_igu_int_disable(sc);
}
}
static void
bxe_nic_init(struct bxe_softc *sc,
int load_code)
{
int i;
for (i = 0; i < sc->num_queues; i++) {
bxe_init_eth_fp(sc, i);
}
rmb(); /* ensure status block indices were read */
bxe_init_rx_rings(sc);
bxe_init_tx_rings(sc);
if (IS_VF(sc)) {
return;
}
/* initialize MOD_ABS interrupts */
elink_init_mod_abs_int(sc, &sc->link_vars,
sc->devinfo.chip_id,
sc->devinfo.shmem_base,
sc->devinfo.shmem2_base,
SC_PORT(sc));
bxe_init_def_sb(sc);
bxe_update_dsb_idx(sc);
bxe_init_sp_ring(sc);
bxe_init_eq_ring(sc);
bxe_init_internal(sc, load_code);
bxe_pf_init(sc);
bxe_stats_init(sc);
/* flush all before enabling interrupts */
mb();
bxe_int_enable(sc);
/* check for SPIO5 */
bxe_attn_int_deasserted0(sc,
REG_RD(sc,
(MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
SC_PORT(sc)*4)) &
AEU_INPUTS_ATTN_BITS_SPIO5);
}
static inline void
bxe_init_objs(struct bxe_softc *sc)
{
/* mcast rules must be added to tx if tx switching is enabled */
ecore_obj_type o_type =
(sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
ECORE_OBJ_TYPE_RX;
/* RX_MODE controlling object */
ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
/* multicast configuration controlling object */
ecore_init_mcast_obj(sc,
&sc->mcast_obj,
sc->fp[0].cl_id,
sc->fp[0].index,
SC_FUNC(sc),
SC_FUNC(sc),
BXE_SP(sc, mcast_rdata),
BXE_SP_MAPPING(sc, mcast_rdata),
ECORE_FILTER_MCAST_PENDING,
&sc->sp_state,
o_type);
/* Setup CAM credit pools */
ecore_init_mac_credit_pool(sc,
&sc->macs_pool,
SC_FUNC(sc),
CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
VNICS_PER_PATH(sc));
ecore_init_vlan_credit_pool(sc,
&sc->vlans_pool,
SC_ABS_FUNC(sc) >> 1,
CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
VNICS_PER_PATH(sc));
/* RSS configuration object */
ecore_init_rss_config_obj(sc,
&sc->rss_conf_obj,
sc->fp[0].cl_id,
sc->fp[0].index,
SC_FUNC(sc),
SC_FUNC(sc),
BXE_SP(sc, rss_rdata),
BXE_SP_MAPPING(sc, rss_rdata),
ECORE_FILTER_RSS_CONF_PENDING,
&sc->sp_state, ECORE_OBJ_TYPE_RX);
}
/*
* Initialize the function. This must be called before sending CLIENT_SETUP
* for the first client.
*/
static inline int
bxe_func_start(struct bxe_softc *sc)
{
struct ecore_func_state_params func_params = { NULL };
struct ecore_func_start_params *start_params = &func_params.params.start;
/* Prepare parameters for function state transitions */
bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
func_params.f_obj = &sc->func_obj;
func_params.cmd = ECORE_F_CMD_START;
/* Function parameters */
start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
start_params->sd_vlan_tag = OVLAN(sc);
if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
start_params->network_cos_mode = STATIC_COS;
} else { /* CHIP_IS_E1X */
start_params->network_cos_mode = FW_WRR;
}
//start_params->gre_tunnel_mode = 0;
//start_params->gre_tunnel_rss = 0;
return (ecore_func_state_change(sc, &func_params));
}
static int
bxe_set_power_state(struct bxe_softc *sc,
uint8_t state)
{
uint16_t pmcsr;
/* If there is no power capability, silently succeed */
if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
BLOGW(sc, "No power capability\n");
return (0);
}
pmcsr = pci_read_config(sc->dev,
(sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
2);
switch (state) {
case PCI_PM_D0:
pci_write_config(sc->dev,
(sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
if (pmcsr & PCIM_PSTAT_DMASK) {
/* delay required during transition out of D3hot */
DELAY(20000);
}
break;
case PCI_PM_D3hot:
/* XXX if there are other clients above don't shut down the power */
/* don't shut down the power for emulation and FPGA */
if (CHIP_REV_IS_SLOW(sc)) {
return (0);
}
pmcsr &= ~PCIM_PSTAT_DMASK;
pmcsr |= PCIM_PSTAT_D3;
if (sc->wol) {
pmcsr |= PCIM_PSTAT_PMEENABLE;
}
pci_write_config(sc->dev,
(sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
pmcsr, 4);
/*
* No more memory access after this point until device is brought back
* to D0 state.
*/
break;
default:
BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
state, pmcsr);
return (-1);
}
return (0);
}
/* return true if succeeded to acquire the lock */
static uint8_t
bxe_trylock_hw_lock(struct bxe_softc *sc,
uint32_t resource)
{
uint32_t lock_status;
uint32_t resource_bit = (1 << resource);
int func = SC_FUNC(sc);
uint32_t hw_lock_control_reg;
BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
/* Validating that the resource is within range */
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
BLOGD(sc, DBG_LOAD,
"resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
resource, HW_LOCK_MAX_RESOURCE_VALUE);
return (FALSE);
}
if (func <= 5) {
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
} else {
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
}
/* try to acquire the lock */
REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
lock_status = REG_RD(sc, hw_lock_control_reg);
if (lock_status & resource_bit) {
return (TRUE);
}
BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
"lock_status 0x%x resource_bit 0x%x\n", resource, func,
lock_status, resource_bit);
return (FALSE);
}
/*
* Get the recovery leader resource id according to the engine this function
* belongs to. Currently only only 2 engines is supported.
*/
static int
bxe_get_leader_lock_resource(struct bxe_softc *sc)
{
if (SC_PATH(sc)) {
return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
} else {
return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
}
}
/* try to acquire a leader lock for current engine */
static uint8_t
bxe_trylock_leader_lock(struct bxe_softc *sc)
{
return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
}
static int
bxe_release_leader_lock(struct bxe_softc *sc)
{
return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
}
/* close gates #2, #3 and #4 */
static void
bxe_set_234_gates(struct bxe_softc *sc,
uint8_t close)
{
uint32_t val;
/* gates #2 and #4a are closed/opened for "not E1" only */
if (!CHIP_IS_E1(sc)) {
/* #4 */
REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
/* #2 */
REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
}
/* #3 */
if (CHIP_IS_E1x(sc)) {
/* prevent interrupts from HC on both ports */
val = REG_RD(sc, HC_REG_CONFIG_1);
REG_WR(sc, HC_REG_CONFIG_1,
(!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
(val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
val = REG_RD(sc, HC_REG_CONFIG_0);
REG_WR(sc, HC_REG_CONFIG_0,
(!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
(val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
} else {
/* Prevent incoming interrupts in IGU */
val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
(!close) ?
(val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
(val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
}
BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
close ? "closing" : "opening");
wmb();
}
/* poll for pending writes bit, it should get cleared in no more than 1s */
static int
bxe_er_poll_igu_vq(struct bxe_softc *sc)
{
uint32_t cnt = 1000;
uint32_t pend_bits = 0;
do {
pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
if (pend_bits == 0) {
break;
}
DELAY(1000);
} while (--cnt > 0);
if (cnt == 0) {
BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
return (-1);
}
return (0);
}
#define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */
static void
bxe_clp_reset_prep(struct bxe_softc *sc,
uint32_t *magic_val)
{
/* Do some magic... */
uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
*magic_val = val & SHARED_MF_CLP_MAGIC;
MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
}
/* restore the value of the 'magic' bit */
static void
bxe_clp_reset_done(struct bxe_softc *sc,
uint32_t magic_val)
{
/* Restore the 'magic' bit value... */
uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
MFCFG_WR(sc, shared_mf_config.clp_mb,
(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
}
/* prepare for MCP reset, takes care of CLP configurations */
static void
bxe_reset_mcp_prep(struct bxe_softc *sc,
uint32_t *magic_val)
{
uint32_t shmem;
uint32_t validity_offset;
/* set `magic' bit in order to save MF config */
if (!CHIP_IS_E1(sc)) {
bxe_clp_reset_prep(sc, magic_val);
}
/* get shmem offset */
shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
validity_offset =
offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
/* Clear validity map flags */
if (shmem > 0) {
REG_WR(sc, shmem + validity_offset, 0);
}
}
#define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
#define MCP_ONE_TIMEOUT 100 /* 100 ms */
static void
bxe_mcp_wait_one(struct bxe_softc *sc)
{
/* special handling for emulation and FPGA (10 times longer) */
if (CHIP_REV_IS_SLOW(sc)) {
DELAY((MCP_ONE_TIMEOUT*10) * 1000);
} else {
DELAY((MCP_ONE_TIMEOUT) * 1000);
}
}
/* initialize shmem_base and waits for validity signature to appear */
static int
bxe_init_shmem(struct bxe_softc *sc)
{
int cnt = 0;
uint32_t val = 0;
do {
sc->devinfo.shmem_base =
sc->link_params.shmem_base =
REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
if (sc->devinfo.shmem_base) {
val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
if (val & SHR_MEM_VALIDITY_MB)
return (0);
}
bxe_mcp_wait_one(sc);
} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
BLOGE(sc, "BAD MCP validity signature\n");
return (-1);
}
static int
bxe_reset_mcp_comp(struct bxe_softc *sc,
uint32_t magic_val)
{
int rc = bxe_init_shmem(sc);
/* Restore the `magic' bit value */
if (!CHIP_IS_E1(sc)) {
bxe_clp_reset_done(sc, magic_val);
}
return (rc);
}
static void
bxe_pxp_prep(struct bxe_softc *sc)
{
if (!CHIP_IS_E1(sc)) {
REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
wmb();
}
}
/*
* Reset the whole chip except for:
* - PCIE core
* - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
* - IGU
* - MISC (including AEU)
* - GRC
* - RBCN, RBCP
*/
static void
bxe_process_kill_chip_reset(struct bxe_softc *sc,
uint8_t global)
{
uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
uint32_t global_bits2, stay_reset2;
/*
* Bits that have to be set in reset_mask2 if we want to reset 'global'
* (per chip) blocks.
*/
global_bits2 =
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
/*
* Don't reset the following blocks.
* Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
* reset, as in 4 port device they might still be owned
* by the MCP (there is only one leader per path).
*/
not_reset_mask1 =
MISC_REGISTERS_RESET_REG_1_RST_HC |
MISC_REGISTERS_RESET_REG_1_RST_PXPV |
MISC_REGISTERS_RESET_REG_1_RST_PXP;
not_reset_mask2 =
MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
MISC_REGISTERS_RESET_REG_2_RST_RBCN |
MISC_REGISTERS_RESET_REG_2_RST_GRC |
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
MISC_REGISTERS_RESET_REG_2_RST_ATC |
MISC_REGISTERS_RESET_REG_2_PGLC |
MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
MISC_REGISTERS_RESET_REG_2_UMAC0 |
MISC_REGISTERS_RESET_REG_2_UMAC1;
/*
* Keep the following blocks in reset:
* - all xxMACs are handled by the elink code.
*/
stay_reset2 =
MISC_REGISTERS_RESET_REG_2_XMAC |
MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
/* Full reset masks according to the chip */
reset_mask1 = 0xffffffff;
if (CHIP_IS_E1(sc))
reset_mask2 = 0xffff;
else if (CHIP_IS_E1H(sc))
reset_mask2 = 0x1ffff;
else if (CHIP_IS_E2(sc))
reset_mask2 = 0xfffff;
else /* CHIP_IS_E3 */
reset_mask2 = 0x3ffffff;
/* Don't reset global blocks unless we need to */
if (!global)
reset_mask2 &= ~global_bits2;
/*
* In case of attention in the QM, we need to reset PXP
* (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
* because otherwise QM reset would release 'close the gates' shortly
* before resetting the PXP, then the PSWRQ would send a write
* request to PGLUE. Then when PXP is reset, PGLUE would try to
* read the payload data from PSWWR, but PSWWR would not
* respond. The write queue in PGLUE would stuck, dmae commands
* would not return. Therefore it's important to reset the second
* reset register (containing the
* MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
* first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
* bit).
*/
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
reset_mask2 & (~not_reset_mask2));
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
reset_mask1 & (~not_reset_mask1));
mb();
wmb();
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
reset_mask2 & (~stay_reset2));
mb();
wmb();
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
wmb();
}
static int
bxe_process_kill(struct bxe_softc *sc,
uint8_t global)
{
int cnt = 1000;
uint32_t val = 0;
uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
uint32_t tags_63_32 = 0;
/* Empty the Tetris buffer, wait for 1s */
do {
sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
if (CHIP_IS_E3(sc)) {
tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
}
if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
((port_is_idle_0 & 0x1) == 0x1) &&
((port_is_idle_1 & 0x1) == 0x1) &&
(pgl_exp_rom2 == 0xffffffff) &&
(!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
break;
DELAY(1000);
} while (cnt-- > 0);
if (cnt <= 0) {
BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
"are still outstanding read requests after 1s! "
"sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
"port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
sr_cnt, blk_cnt, port_is_idle_0,
port_is_idle_1, pgl_exp_rom2);
return (-1);
}
mb();
/* Close gates #2, #3 and #4 */
bxe_set_234_gates(sc, TRUE);
/* Poll for IGU VQs for 57712 and newer chips */
if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
return (-1);
}
/* XXX indicate that "process kill" is in progress to MCP */
/* clear "unprepared" bit */
REG_WR(sc, MISC_REG_UNPREPARED, 0);
mb();
/* Make sure all is written to the chip before the reset */
wmb();
/*
* Wait for 1ms to empty GLUE and PCI-E core queues,
* PSWHST, GRC and PSWRD Tetris buffer.
*/
DELAY(1000);
/* Prepare to chip reset: */
/* MCP */
if (global) {
bxe_reset_mcp_prep(sc, &val);
}
/* PXP */
bxe_pxp_prep(sc);
mb();
/* reset the chip */
bxe_process_kill_chip_reset(sc, global);
mb();
/* clear errors in PGB */
if (!CHIP_IS_E1(sc))
REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
/* Recover after reset: */
/* MCP */
if (global && bxe_reset_mcp_comp(sc, val)) {
return (-1);
}
/* XXX add resetting the NO_MCP mode DB here */
/* Open the gates #2, #3 and #4 */
bxe_set_234_gates(sc, FALSE);
/* XXX
* IGU/AEU preparation bring back the AEU/IGU to a reset state
* re-enable attentions
*/
return (0);
}
static int
bxe_leader_reset(struct bxe_softc *sc)
{
int rc = 0;
uint8_t global = bxe_reset_is_global(sc);
uint32_t load_code;
/*
* If not going to reset MCP, load "fake" driver to reset HW while
* driver is owner of the HW.
*/
if (!global && !BXE_NOMCP(sc)) {
load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
if (!load_code) {
BLOGE(sc, "MCP response failure, aborting\n");
rc = -1;
goto exit_leader_reset;
}
if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
(load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
BLOGE(sc, "MCP unexpected response, aborting\n");
rc = -1;
goto exit_leader_reset2;
}
load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
if (!load_code) {
BLOGE(sc, "MCP response failure, aborting\n");
rc = -1;
goto exit_leader_reset2;
}
}
/* try to recover after the failure */
if (bxe_process_kill(sc, global)) {
BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
rc = -1;
goto exit_leader_reset2;
}
/*
* Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
* state.
*/
bxe_set_reset_done(sc);
if (global) {
bxe_clear_reset_global(sc);
}
exit_leader_reset2:
/* unload "fake driver" if it was loaded */
if (!global && !BXE_NOMCP(sc)) {
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
}
exit_leader_reset:
sc->is_leader = 0;
bxe_release_leader_lock(sc);
mb();
return (rc);
}
/*
* prepare INIT transition, parameters configured:
* - HC configuration
* - Queue's CDU context
*/
static void
bxe_pf_q_prep_init(struct bxe_softc *sc,
struct bxe_fastpath *fp,
struct ecore_queue_init_params *init_params)
{
uint8_t cos;
int cxt_index, cxt_offset;
bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
/* HC rate */
init_params->rx.hc_rate =
sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
init_params->tx.hc_rate =
sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
/* FW SB ID */
init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
/* CQ index among the SB indices */
init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
/* set maximum number of COSs supported by this queue */
init_params->max_cos = sc->max_cos;
BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
fp->index, init_params->max_cos);
/* set the context pointers queue object */
for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
/* XXX change index/cid here if ever support multiple tx CoS */
/* fp->txdata[cos]->cid */
cxt_index = fp->index / ILT_PAGE_CIDS;
cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
}
}
/* set flags that are common for the Tx-only and not normal connections */
static unsigned long
bxe_get_common_flags(struct bxe_softc *sc,
struct bxe_fastpath *fp,
uint8_t zero_stats)
{
unsigned long flags = 0;
/* PF driver will always initialize the Queue to an ACTIVE state */
bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
/*
* tx only connections collect statistics (on the same index as the
* parent connection). The statistics are zeroed when the parent
* connection is initialized.
*/
bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
if (zero_stats) {
bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
}
/*
* tx only connections can support tx-switching, though their
* CoS-ness doesn't survive the loopback
*/
if (sc->flags & BXE_TX_SWITCHING) {
bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
}
bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
return (flags);
}
static unsigned long
bxe_get_q_flags(struct bxe_softc *sc,
struct bxe_fastpath *fp,
uint8_t leading)
{
unsigned long flags = 0;
if (IS_MF_SD(sc)) {
bxe_set_bit(ECORE_Q_FLG_OV, &flags);
}
if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
#if __FreeBSD_version >= 800000
bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
#endif
}
if (leading) {
bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
}
bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
/* merge with common flags */
return (flags | bxe_get_common_flags(sc, fp, TRUE));
}
static void
bxe_pf_q_prep_general(struct bxe_softc *sc,
struct bxe_fastpath *fp,
struct ecore_general_setup_params *gen_init,
uint8_t cos)
{
gen_init->stat_id = bxe_stats_id(fp);
gen_init->spcl_id = fp->cl_id;
gen_init->mtu = sc->mtu;
gen_init->cos = cos;
}
static void
bxe_pf_rx_q_prep(struct bxe_softc *sc,
struct bxe_fastpath *fp,
struct rxq_pause_params *pause,
struct ecore_rxq_setup_params *rxq_init)
{
uint8_t max_sge = 0;
uint16_t sge_sz = 0;
uint16_t tpa_agg_size = 0;
pause->sge_th_lo = SGE_TH_LO(sc);
pause->sge_th_hi = SGE_TH_HI(sc);
/* validate SGE ring has enough to cross high threshold */
if (sc->dropless_fc &&
(pause->sge_th_hi + FW_PREFETCH_CNT) >
(RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
BLOGW(sc, "sge ring threshold limit\n");
}
/* minimum max_aggregation_size is 2*MTU (two full buffers) */
tpa_agg_size = (2 * sc->mtu);
if (tpa_agg_size < sc->max_aggregation_size) {
tpa_agg_size = sc->max_aggregation_size;
}
max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
max_sge = ((max_sge + PAGES_PER_SGE - 1) &
(~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
/* pause - not for e1 */
if (!CHIP_IS_E1(sc)) {
pause->bd_th_lo = BD_TH_LO(sc);
pause->bd_th_hi = BD_TH_HI(sc);
pause->rcq_th_lo = RCQ_TH_LO(sc);
pause->rcq_th_hi = RCQ_TH_HI(sc);
/* validate rings have enough entries to cross high thresholds */
if (sc->dropless_fc &&
pause->bd_th_hi + FW_PREFETCH_CNT >
sc->rx_ring_size) {
BLOGW(sc, "rx bd ring threshold limit\n");
}
if (sc->dropless_fc &&
pause->rcq_th_hi + FW_PREFETCH_CNT >
RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
BLOGW(sc, "rcq ring threshold limit\n");
}
pause->pri_map = 1;
}
/* rxq setup */
rxq_init->dscr_map = fp->rx_dma.paddr;
rxq_init->sge_map = fp->rx_sge_dma.paddr;
rxq_init->rcq_map = fp->rcq_dma.paddr;
rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
/*
* This should be a maximum number of data bytes that may be
* placed on the BD (not including paddings).
*/
rxq_init->buf_sz = (fp->rx_buf_size -
IP_HEADER_ALIGNMENT_PADDING);
rxq_init->cl_qzone_id = fp->cl_qzone_id;
rxq_init->tpa_agg_sz = tpa_agg_size;
rxq_init->sge_buf_sz = sge_sz;
rxq_init->max_sges_pkt = max_sge;
rxq_init->rss_engine_id = SC_FUNC(sc);
rxq_init->mcast_engine_id = SC_FUNC(sc);
/*
* Maximum number or simultaneous TPA aggregation for this Queue.
* For PF Clients it should be the maximum available number.
* VF driver(s) may want to define it to a smaller value.
*/
rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
rxq_init->fw_sb_id = fp->fw_sb_id;
rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
/*
* configure silent vlan removal
* if multi function mode is afex, then mask default vlan
*/
if (IS_MF_AFEX(sc)) {
rxq_init->silent_removal_value =
sc->devinfo.mf_info.afex_def_vlan_tag;
rxq_init->silent_removal_mask = EVL_VLID_MASK;
}
}
static void
bxe_pf_tx_q_prep(struct bxe_softc *sc,
struct bxe_fastpath *fp,
struct ecore_txq_setup_params *txq_init,
uint8_t cos)
{
/*
* XXX If multiple CoS is ever supported then each fastpath structure
* will need to maintain tx producer/consumer/dma/etc values *per* CoS.
* fp->txdata[cos]->tx_dma.paddr;
*/
txq_init->dscr_map = fp->tx_dma.paddr;
txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
txq_init->fw_sb_id = fp->fw_sb_id;
/*
* set the TSS leading client id for TX classfication to the
* leading RSS client id
*/
txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
}
/*
* This function performs 2 steps in a queue state machine:
* 1) RESET->INIT
* 2) INIT->SETUP
*/
static int
bxe_setup_queue(struct bxe_softc *sc,
struct bxe_fastpath *fp,
uint8_t leading)
{
struct ecore_queue_state_params q_params = { NULL };
struct ecore_queue_setup_params *setup_params =
&q_params.params.setup;
int rc;
BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
/* we want to wait for completion in this context */
bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
/* prepare the INIT parameters */
bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
/* Set the command */
q_params.cmd = ECORE_Q_CMD_INIT;
/* Change the state to INIT */
rc = ecore_queue_state_change(sc, &q_params);
if (rc) {
BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
return (rc);
}
BLOGD(sc, DBG_LOAD, "init complete\n");
/* now move the Queue to the SETUP state */
memset(setup_params, 0, sizeof(*setup_params));
/* set Queue flags */
setup_params->flags = bxe_get_q_flags(sc, fp, leading);
/* set general SETUP parameters */
bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
FIRST_TX_COS_INDEX);
bxe_pf_rx_q_prep(sc, fp,
&setup_params->pause_params,
&setup_params->rxq_params);
bxe_pf_tx_q_prep(sc, fp,
&setup_params->txq_params,
FIRST_TX_COS_INDEX);
/* Set the command */
q_params.cmd = ECORE_Q_CMD_SETUP;
/* change the state to SETUP */
rc = ecore_queue_state_change(sc, &q_params);
if (rc) {
BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
return (rc);
}
return (rc);
}
static int
bxe_setup_leading(struct bxe_softc *sc)
{
return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
}
static int
bxe_config_rss_pf(struct bxe_softc *sc,
struct ecore_rss_config_obj *rss_obj,
uint8_t config_hash)
{
struct ecore_config_rss_params params = { NULL };
int i;
/*
* Although RSS is meaningless when there is a single HW queue we
* still need it enabled in order to have HW Rx hash generated.
*/
params.rss_obj = rss_obj;
bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
/* RSS configuration */
bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
if (rss_obj->udp_rss_v4) {
bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
}
if (rss_obj->udp_rss_v6) {
bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
}
/* Hash bits */
params.rss_result_mask = MULTI_MASK;
memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
if (config_hash) {
/* RSS keys */
for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
params.rss_key[i] = arc4random();
}
bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
}
return (ecore_config_rss(sc, &params));
}
static int
bxe_config_rss_eth(struct bxe_softc *sc,
uint8_t config_hash)
{
return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
}
static int
bxe_init_rss_pf(struct bxe_softc *sc)
{
uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
int i;
/*
* Prepare the initial contents of the indirection table if
* RSS is enabled
*/
for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
sc->rss_conf_obj.ind_table[i] =
(sc->fp->cl_id + (i % num_eth_queues));
}
if (sc->udp_rss) {
sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
}
/*
* For 57710 and 57711 SEARCHER configuration (rss_keys) is
* per-port, so if explicit configuration is needed, do it only
* for a PMF.
*
* For 57712 and newer it's a per-function configuration.
*/
return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
}
static int
bxe_set_mac_one(struct bxe_softc *sc,
uint8_t *mac,
struct ecore_vlan_mac_obj *obj,
uint8_t set,
int mac_type,
unsigned long *ramrod_flags)
{
struct ecore_vlan_mac_ramrod_params ramrod_param;
int rc;
memset(&ramrod_param, 0, sizeof(ramrod_param));
/* fill in general parameters */
ramrod_param.vlan_mac_obj = obj;
ramrod_param.ramrod_flags = *ramrod_flags;
/* fill a user request section if needed */
if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
/* Set the command: ADD or DEL */
ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
ECORE_VLAN_MAC_DEL;
}
rc = ecore_config_vlan_mac(sc, &ramrod_param);
if (rc == ECORE_EXISTS) {
BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
/* do not treat adding same MAC as error */
rc = 0;
} else if (rc < 0) {
BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
}
return (rc);
}
static int
bxe_set_eth_mac(struct bxe_softc *sc,
uint8_t set)
{
unsigned long ramrod_flags = 0;
BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
/* Eth MAC is set on RSS leading client (fp[0]) */
return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
&sc->sp_objs->mac_obj,
set, ECORE_ETH_MAC, &ramrod_flags));
}
static int
bxe_get_cur_phy_idx(struct bxe_softc *sc)
{
uint32_t sel_phy_idx = 0;
if (sc->link_params.num_phys <= 1) {
return (ELINK_INT_PHY);
}
if (sc->link_vars.link_up) {
sel_phy_idx = ELINK_EXT_PHY1;
/* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
(sc->link_params.phy[ELINK_EXT_PHY2].supported &
ELINK_SUPPORTED_FIBRE))
sel_phy_idx = ELINK_EXT_PHY2;
} else {
switch (elink_phy_selection(&sc->link_params)) {
case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
sel_phy_idx = ELINK_EXT_PHY1;
break;
case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
sel_phy_idx = ELINK_EXT_PHY2;
break;
}
}
return (sel_phy_idx);
}
static int
bxe_get_link_cfg_idx(struct bxe_softc *sc)
{
uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
/*
* The selected activated PHY is always after swapping (in case PHY
* swapping is enabled). So when swapping is enabled, we need to reverse
* the configuration
*/
if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
if (sel_phy_idx == ELINK_EXT_PHY1)
sel_phy_idx = ELINK_EXT_PHY2;
else if (sel_phy_idx == ELINK_EXT_PHY2)
sel_phy_idx = ELINK_EXT_PHY1;
}
return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
}
static void
bxe_set_requested_fc(struct bxe_softc *sc)
{
/*
* Initialize link parameters structure variables
* It is recommended to turn off RX FC for jumbo frames
* for better performance
*/
if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
} else {
sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
}
}
static void
bxe_calc_fc_adv(struct bxe_softc *sc)
{
uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
ADVERTISED_Pause);
switch (sc->link_vars.ieee_fc &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
ADVERTISED_Pause);
break;
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
break;
default:
break;
}
}
static uint16_t
bxe_get_mf_speed(struct bxe_softc *sc)
{
uint16_t line_speed = sc->link_vars.line_speed;
if (IS_MF(sc)) {
uint16_t maxCfg =
bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
/* calculate the current MAX line speed limit for the MF devices */
if (IS_MF_SI(sc)) {
line_speed = (line_speed * maxCfg) / 100;
} else { /* SD mode */
uint16_t vn_max_rate = maxCfg * 100;
if (vn_max_rate < line_speed) {
line_speed = vn_max_rate;
}
}
}
return (line_speed);
}
static void
bxe_fill_report_data(struct bxe_softc *sc,
struct bxe_link_report_data *data)
{
uint16_t line_speed = bxe_get_mf_speed(sc);
memset(data, 0, sizeof(*data));
/* fill the report data with the effective line speed */
data->line_speed = line_speed;
/* Link is down */
if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
}
/* Full DUPLEX */
if (sc->link_vars.duplex == DUPLEX_FULL) {
bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
}
/* Rx Flow Control is ON */
if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
}
/* Tx Flow Control is ON */
if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
}
}
/* report link status to OS, should be called under phy_lock */
static void
bxe_link_report_locked(struct bxe_softc *sc)
{
struct bxe_link_report_data cur_data;
/* reread mf_cfg */
if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
bxe_read_mf_cfg(sc);
}
/* Read the current link report info */
bxe_fill_report_data(sc, &cur_data);
/* Don't report link down or exactly the same link status twice */
if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
(bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
&sc->last_reported_link.link_report_flags) &&
bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
&cur_data.link_report_flags))) {
return;
}
ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n",
cur_data.link_report_flags, sc->last_reported_link.link_report_flags);
sc->link_cnt++;
ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt);
/* report new link params and remember the state for the next time */
memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
&cur_data.link_report_flags)) {
if_link_state_change(sc->ifp, LINK_STATE_DOWN);
} else {
const char *duplex;
const char *flow;
if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
&cur_data.link_report_flags)) {
duplex = "full";
ELINK_DEBUG_P0(sc, "link set to full duplex\n");
} else {
duplex = "half";
ELINK_DEBUG_P0(sc, "link set to half duplex\n");
}
/*
* Handle the FC at the end so that only these flags would be
* possibly set. This way we may easily check if there is no FC
* enabled.
*/
if (cur_data.link_report_flags) {
if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
&cur_data.link_report_flags) &&
bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
&cur_data.link_report_flags)) {
flow = "ON - receive & transmit";
} else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
&cur_data.link_report_flags) &&
!bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
&cur_data.link_report_flags)) {
flow = "ON - receive";
} else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
&cur_data.link_report_flags) &&
bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
&cur_data.link_report_flags)) {
flow = "ON - transmit";
} else {
flow = "none"; /* possible? */
}
} else {
flow = "none";
}
if_link_state_change(sc->ifp, LINK_STATE_UP);
BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
cur_data.line_speed, duplex, flow);
}
}
static void
bxe_link_report(struct bxe_softc *sc)
{
bxe_acquire_phy_lock(sc);
bxe_link_report_locked(sc);
bxe_release_phy_lock(sc);
}
static void
bxe_link_status_update(struct bxe_softc *sc)
{
if (sc->state != BXE_STATE_OPEN) {
return;
}
if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
elink_link_status_update(&sc->link_params, &sc->link_vars);
} else {
sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
ELINK_SUPPORTED_10baseT_Full |
ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full |
ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_2500baseX_Full |
ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_TP |
ELINK_SUPPORTED_FIBRE |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause);
sc->port.advertising[0] = sc->port.supported[0];
sc->link_params.sc = sc;
sc->link_params.port = SC_PORT(sc);
sc->link_params.req_duplex[0] = DUPLEX_FULL;
sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
sc->link_params.req_line_speed[0] = SPEED_10000;
sc->link_params.speed_cap_mask[0] = 0x7f0000;
sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
if (CHIP_REV_IS_FPGA(sc)) {
sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
sc->link_vars.line_speed = ELINK_SPEED_1000;
sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
} else {
sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
sc->link_vars.line_speed = ELINK_SPEED_10000;
sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
}
sc->link_vars.link_up = 1;
sc->link_vars.duplex = DUPLEX_FULL;
sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
if (IS_PF(sc)) {
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
bxe_link_report(sc);
}
}
if (IS_PF(sc)) {
if (sc->link_vars.link_up) {
bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
} else {
bxe_stats_handle(sc, STATS_EVENT_STOP);
}
bxe_link_report(sc);
} else {
bxe_link_report(sc);
bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
}
}
static int
bxe_initial_phy_init(struct bxe_softc *sc,
int load_mode)
{
int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
struct elink_params *lp = &sc->link_params;
bxe_set_requested_fc(sc);
if (CHIP_REV_IS_SLOW(sc)) {
uint32_t bond = CHIP_BOND_ID(sc);
uint32_t feat = 0;
if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
} else if (bond & 0x4) {
if (CHIP_IS_E3(sc)) {
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
} else {
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
}
} else if (bond & 0x8) {
if (CHIP_IS_E3(sc)) {
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
} else {
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
}
}
/* disable EMAC for E3 and above */
if (bond & 0x2) {
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
}
sc->link_params.feature_config_flags |= feat;
}
bxe_acquire_phy_lock(sc);
if (load_mode == LOAD_DIAG) {
lp->loopback_mode = ELINK_LOOPBACK_XGXS;
/* Prefer doing PHY loopback at 10G speed, if possible */
if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
if (lp->speed_cap_mask[cfg_idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
} else {
lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
}
}
}
if (load_mode == LOAD_LOOPBACK_EXT) {
lp->loopback_mode = ELINK_LOOPBACK_EXT;
}
rc = elink_phy_init(&sc->link_params, &sc->link_vars);
bxe_release_phy_lock(sc);
bxe_calc_fc_adv(sc);
if (sc->link_vars.link_up) {
bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
bxe_link_report(sc);
}
if (!CHIP_REV_IS_SLOW(sc)) {
bxe_periodic_start(sc);
}
sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
return (rc);
}
/* must be called under IF_ADDR_LOCK */
static int
bxe_init_mcast_macs_list(struct bxe_softc *sc,
struct ecore_mcast_ramrod_params *p)
{
if_t ifp = sc->ifp;
int mc_count = 0;
struct ifmultiaddr *ifma;
struct ecore_mcast_list_elem *mc_mac;
ifnet: Replace if_addr_lock rwlock with epoch + mutex Run on LLNW canaries and tested by pho@ gallatin: Using a 14-core, 28-HTT single socket E5-2697 v3 with a 40GbE MLX5 based ConnectX 4-LX NIC, I see an almost 12% improvement in received packet rate, and a larger improvement in bytes delivered all the way to userspace. When the host receiving 64 streams of netperf -H $DUT -t UDP_STREAM -- -m 1, I see, using nstat -I mce0 1 before the patch: InMpps OMpps InGbs OGbs err TCP Est %CPU syscalls csw irq GBfree 4.98 0.00 4.42 0.00 4235592 33 83.80 4720653 2149771 1235 247.32 4.73 0.00 4.20 0.00 4025260 33 82.99 4724900 2139833 1204 247.32 4.72 0.00 4.20 0.00 4035252 33 82.14 4719162 2132023 1264 247.32 4.71 0.00 4.21 0.00 4073206 33 83.68 4744973 2123317 1347 247.32 4.72 0.00 4.21 0.00 4061118 33 80.82 4713615 2188091 1490 247.32 4.72 0.00 4.21 0.00 4051675 33 85.29 4727399 2109011 1205 247.32 4.73 0.00 4.21 0.00 4039056 33 84.65 4724735 2102603 1053 247.32 After the patch InMpps OMpps InGbs OGbs err TCP Est %CPU syscalls csw irq GBfree 5.43 0.00 4.20 0.00 3313143 33 84.96 5434214 1900162 2656 245.51 5.43 0.00 4.20 0.00 3308527 33 85.24 5439695 1809382 2521 245.51 5.42 0.00 4.19 0.00 3316778 33 87.54 5416028 1805835 2256 245.51 5.42 0.00 4.19 0.00 3317673 33 90.44 5426044 1763056 2332 245.51 5.42 0.00 4.19 0.00 3314839 33 88.11 5435732 1792218 2499 245.52 5.44 0.00 4.19 0.00 3293228 33 91.84 5426301 1668597 2121 245.52 Similarly, netperf reports 230Mb/s before the patch, and 270Mb/s after the patch Reviewed by: gallatin Sponsored by: Limelight Networks Differential Revision: https://reviews.freebsd.org/D15366
2018-05-18 20:13:34 +00:00
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK) {
continue;
}
mc_count++;
}
ECORE_LIST_INIT(&p->mcast_list);
p->mcast_list_len = 0;
if (!mc_count) {
return (0);
}
mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
(M_NOWAIT | M_ZERO));
if (!mc_mac) {
BLOGE(sc, "Failed to allocate temp mcast list\n");
return (-1);
}
bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
ifnet: Replace if_addr_lock rwlock with epoch + mutex Run on LLNW canaries and tested by pho@ gallatin: Using a 14-core, 28-HTT single socket E5-2697 v3 with a 40GbE MLX5 based ConnectX 4-LX NIC, I see an almost 12% improvement in received packet rate, and a larger improvement in bytes delivered all the way to userspace. When the host receiving 64 streams of netperf -H $DUT -t UDP_STREAM -- -m 1, I see, using nstat -I mce0 1 before the patch: InMpps OMpps InGbs OGbs err TCP Est %CPU syscalls csw irq GBfree 4.98 0.00 4.42 0.00 4235592 33 83.80 4720653 2149771 1235 247.32 4.73 0.00 4.20 0.00 4025260 33 82.99 4724900 2139833 1204 247.32 4.72 0.00 4.20 0.00 4035252 33 82.14 4719162 2132023 1264 247.32 4.71 0.00 4.21 0.00 4073206 33 83.68 4744973 2123317 1347 247.32 4.72 0.00 4.21 0.00 4061118 33 80.82 4713615 2188091 1490 247.32 4.72 0.00 4.21 0.00 4051675 33 85.29 4727399 2109011 1205 247.32 4.73 0.00 4.21 0.00 4039056 33 84.65 4724735 2102603 1053 247.32 After the patch InMpps OMpps InGbs OGbs err TCP Est %CPU syscalls csw irq GBfree 5.43 0.00 4.20 0.00 3313143 33 84.96 5434214 1900162 2656 245.51 5.43 0.00 4.20 0.00 3308527 33 85.24 5439695 1809382 2521 245.51 5.42 0.00 4.19 0.00 3316778 33 87.54 5416028 1805835 2256 245.51 5.42 0.00 4.19 0.00 3317673 33 90.44 5426044 1763056 2332 245.51 5.42 0.00 4.19 0.00 3314839 33 88.11 5435732 1792218 2499 245.52 5.44 0.00 4.19 0.00 3293228 33 91.84 5426301 1668597 2121 245.52 Similarly, netperf reports 230Mb/s before the patch, and 270Mb/s after the patch Reviewed by: gallatin Sponsored by: Limelight Networks Differential Revision: https://reviews.freebsd.org/D15366
2018-05-18 20:13:34 +00:00
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK) {
continue;
}
mc_mac->mac = (uint8_t *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list);
BLOGD(sc, DBG_LOAD,
"Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X and mc_count %d\n",
mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5], mc_count);
mc_mac++;
}
p->mcast_list_len = mc_count;
return (0);
}
static void
bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
{
struct ecore_mcast_list_elem *mc_mac =
ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
struct ecore_mcast_list_elem,
link);
if (mc_mac) {
/* only a single free as all mc_macs are in the same heap array */
free(mc_mac, M_DEVBUF);
}
}
static int
bxe_set_mc_list(struct bxe_softc *sc)
{
struct ecore_mcast_ramrod_params rparam = { NULL };
int rc = 0;
rparam.mcast_obj = &sc->mcast_obj;
BXE_MCAST_LOCK(sc);
/* first, clear all configured multicast MACs */
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
if (rc < 0) {
BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
/* Manual backport parts of FreeBSD upstream r284470. */
BXE_MCAST_UNLOCK(sc);
return (rc);
}
/* configure a new MACs list */
rc = bxe_init_mcast_macs_list(sc, &rparam);
if (rc) {
BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
BXE_MCAST_UNLOCK(sc);
return (rc);
}
/* Now add the new MACs */
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
if (rc < 0) {
BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
}
bxe_free_mcast_macs_list(&rparam);
BXE_MCAST_UNLOCK(sc);
return (rc);
}
static int
bxe_set_uc_list(struct bxe_softc *sc)
{
if_t ifp = sc->ifp;
struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
struct ifaddr *ifa;
unsigned long ramrod_flags = 0;
int rc;
#if __FreeBSD_version < 800000
IF_ADDR_LOCK(ifp);
#else
if_addr_rlock(ifp);
#endif
/* first schedule a cleanup up of old configuration */
rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
if (rc < 0) {
BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
#if __FreeBSD_version < 800000
IF_ADDR_UNLOCK(ifp);
#else
if_addr_runlock(ifp);
#endif
return (rc);
}
ifa = if_getifaddr(ifp); /* XXX Is this structure */
while (ifa) {
if (ifa->ifa_addr->sa_family != AF_LINK) {
ifnet: Replace if_addr_lock rwlock with epoch + mutex Run on LLNW canaries and tested by pho@ gallatin: Using a 14-core, 28-HTT single socket E5-2697 v3 with a 40GbE MLX5 based ConnectX 4-LX NIC, I see an almost 12% improvement in received packet rate, and a larger improvement in bytes delivered all the way to userspace. When the host receiving 64 streams of netperf -H $DUT -t UDP_STREAM -- -m 1, I see, using nstat -I mce0 1 before the patch: InMpps OMpps InGbs OGbs err TCP Est %CPU syscalls csw irq GBfree 4.98 0.00 4.42 0.00 4235592 33 83.80 4720653 2149771 1235 247.32 4.73 0.00 4.20 0.00 4025260 33 82.99 4724900 2139833 1204 247.32 4.72 0.00 4.20 0.00 4035252 33 82.14 4719162 2132023 1264 247.32 4.71 0.00 4.21 0.00 4073206 33 83.68 4744973 2123317 1347 247.32 4.72 0.00 4.21 0.00 4061118 33 80.82 4713615 2188091 1490 247.32 4.72 0.00 4.21 0.00 4051675 33 85.29 4727399 2109011 1205 247.32 4.73 0.00 4.21 0.00 4039056 33 84.65 4724735 2102603 1053 247.32 After the patch InMpps OMpps InGbs OGbs err TCP Est %CPU syscalls csw irq GBfree 5.43 0.00 4.20 0.00 3313143 33 84.96 5434214 1900162 2656 245.51 5.43 0.00 4.20 0.00 3308527 33 85.24 5439695 1809382 2521 245.51 5.42 0.00 4.19 0.00 3316778 33 87.54 5416028 1805835 2256 245.51 5.42 0.00 4.19 0.00 3317673 33 90.44 5426044 1763056 2332 245.51 5.42 0.00 4.19 0.00 3314839 33 88.11 5435732 1792218 2499 245.52 5.44 0.00 4.19 0.00 3293228 33 91.84 5426301 1668597 2121 245.52 Similarly, netperf reports 230Mb/s before the patch, and 270Mb/s after the patch Reviewed by: gallatin Sponsored by: Limelight Networks Differential Revision: https://reviews.freebsd.org/D15366
2018-05-18 20:13:34 +00:00
ifa = CK_STAILQ_NEXT(ifa, ifa_link);
continue;
}
rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
if (rc == -EEXIST) {
BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
/* do not treat adding same MAC as an error */
rc = 0;
} else if (rc < 0) {
BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
#if __FreeBSD_version < 800000
IF_ADDR_UNLOCK(ifp);
#else
if_addr_runlock(ifp);
#endif
return (rc);
}
ifnet: Replace if_addr_lock rwlock with epoch + mutex Run on LLNW canaries and tested by pho@ gallatin: Using a 14-core, 28-HTT single socket E5-2697 v3 with a 40GbE MLX5 based ConnectX 4-LX NIC, I see an almost 12% improvement in received packet rate, and a larger improvement in bytes delivered all the way to userspace. When the host receiving 64 streams of netperf -H $DUT -t UDP_STREAM -- -m 1, I see, using nstat -I mce0 1 before the patch: InMpps OMpps InGbs OGbs err TCP Est %CPU syscalls csw irq GBfree 4.98 0.00 4.42 0.00 4235592 33 83.80 4720653 2149771 1235 247.32 4.73 0.00 4.20 0.00 4025260 33 82.99 4724900 2139833 1204 247.32 4.72 0.00 4.20 0.00 4035252 33 82.14 4719162 2132023 1264 247.32 4.71 0.00 4.21 0.00 4073206 33 83.68 4744973 2123317 1347 247.32 4.72 0.00 4.21 0.00 4061118 33 80.82 4713615 2188091 1490 247.32 4.72 0.00 4.21 0.00 4051675 33 85.29 4727399 2109011 1205 247.32 4.73 0.00 4.21 0.00 4039056 33 84.65 4724735 2102603 1053 247.32 After the patch InMpps OMpps InGbs OGbs err TCP Est %CPU syscalls csw irq GBfree 5.43 0.00 4.20 0.00 3313143 33 84.96 5434214 1900162 2656 245.51 5.43 0.00 4.20 0.00 3308527 33 85.24 5439695 1809382 2521 245.51 5.42 0.00 4.19 0.00 3316778 33 87.54 5416028 1805835 2256 245.51 5.42 0.00 4.19 0.00 3317673 33 90.44 5426044 1763056 2332 245.51 5.42 0.00 4.19 0.00 3314839 33 88.11 5435732 1792218 2499 245.52 5.44 0.00 4.19 0.00 3293228 33 91.84 5426301 1668597 2121 245.52 Similarly, netperf reports 230Mb/s before the patch, and 270Mb/s after the patch Reviewed by: gallatin Sponsored by: Limelight Networks Differential Revision: https://reviews.freebsd.org/D15366
2018-05-18 20:13:34 +00:00
ifa = CK_STAILQ_NEXT(ifa, ifa_link);
}
#if __FreeBSD_version < 800000
IF_ADDR_UNLOCK(ifp);
#else
if_addr_runlock(ifp);
#endif
/* Execute the pending commands */
bit_set(&ramrod_flags, RAMROD_CONT);
return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
ECORE_UC_LIST_MAC, &ramrod_flags));
}
static void
bxe_set_rx_mode(struct bxe_softc *sc)
{
if_t ifp = sc->ifp;
uint32_t rx_mode = BXE_RX_MODE_NORMAL;
if (sc->state != BXE_STATE_OPEN) {
BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
return;
}
BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
if (if_getflags(ifp) & IFF_PROMISC) {
rx_mode = BXE_RX_MODE_PROMISC;
} else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
CHIP_IS_E1(sc))) {
rx_mode = BXE_RX_MODE_ALLMULTI;
} else {
if (IS_PF(sc)) {
/* some multicasts */
if (bxe_set_mc_list(sc) < 0) {
rx_mode = BXE_RX_MODE_ALLMULTI;
}
if (bxe_set_uc_list(sc) < 0) {
rx_mode = BXE_RX_MODE_PROMISC;
}
}
}
sc->rx_mode = rx_mode;
/* schedule the rx_mode command */
if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
return;
}
if (IS_PF(sc)) {
bxe_set_storm_rx_mode(sc);
}
}
/* update flags in shmem */
static void
bxe_update_drv_flags(struct bxe_softc *sc,
uint32_t flags,
uint32_t set)
{
uint32_t drv_flags;
if (SHMEM2_HAS(sc, drv_flags)) {
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
drv_flags = SHMEM2_RD(sc, drv_flags);
if (set) {
SET_FLAGS(drv_flags, flags);
} else {
RESET_FLAGS(drv_flags, flags);
}
SHMEM2_WR(sc, drv_flags, drv_flags);
BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
}
}
/* periodic timer callout routine, only runs when the interface is up */
static void
bxe_periodic_callout_func(void *xsc)
{
struct bxe_softc *sc = (struct bxe_softc *)xsc;
int i;
if (!BXE_CORE_TRYLOCK(sc)) {
/* just bail and try again next time */
if ((sc->state == BXE_STATE_OPEN) &&
(atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
/* schedule the next periodic callout */
callout_reset(&sc->periodic_callout, hz,
bxe_periodic_callout_func, sc);
}
return;
}
if ((sc->state != BXE_STATE_OPEN) ||
(atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
BXE_CORE_UNLOCK(sc);
return;
}
/* Check for TX timeouts on any fastpath. */
FOR_EACH_QUEUE(sc, i) {
if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
/* Ruh-Roh, chip was reset! */
break;
}
}
if (!CHIP_REV_IS_SLOW(sc)) {
/*
* This barrier is needed to ensure the ordering between the writing
* to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
* the reading here.
*/
mb();
if (sc->port.pmf) {
bxe_acquire_phy_lock(sc);
elink_period_func(&sc->link_params, &sc->link_vars);
bxe_release_phy_lock(sc);
}
}
if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
int mb_idx = SC_FW_MB_IDX(sc);
uint32_t drv_pulse;
uint32_t mcp_pulse;
++sc->fw_drv_pulse_wr_seq;
sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
drv_pulse = sc->fw_drv_pulse_wr_seq;
bxe_drv_pulse(sc);
mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
MCP_PULSE_SEQ_MASK);
/*
* The delta between driver pulse and mcp response should
* be 1 (before mcp response) or 0 (after mcp response).
*/
if ((drv_pulse != mcp_pulse) &&
(drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
/* someone lost a heartbeat... */
BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
drv_pulse, mcp_pulse);
}
}
/* state is BXE_STATE_OPEN */
bxe_stats_handle(sc, STATS_EVENT_UPDATE);
BXE_CORE_UNLOCK(sc);
if ((sc->state == BXE_STATE_OPEN) &&
(atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
/* schedule the next periodic callout */
callout_reset(&sc->periodic_callout, hz,
bxe_periodic_callout_func, sc);
}
}
static void
bxe_periodic_start(struct bxe_softc *sc)
{
atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
}
static void
bxe_periodic_stop(struct bxe_softc *sc)
{
atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
callout_drain(&sc->periodic_callout);
}
void
bxe_parity_recover(struct bxe_softc *sc)
{
uint8_t global = FALSE;
uint32_t error_recovered, error_unrecovered;
bool is_parity;
if ((sc->recovery_state == BXE_RECOVERY_FAILED) &&
(sc->state == BXE_STATE_ERROR)) {
BLOGE(sc, "RECOVERY failed, "
"stack notified driver is NOT running! "
"Please reboot/power cycle the system.\n");
return;
}
while (1) {
BLOGD(sc, DBG_SP,
"%s sc=%p state=0x%x rec_state=0x%x error_status=%x\n",
__func__, sc, sc->state, sc->recovery_state, sc->error_status);
switch(sc->recovery_state) {
case BXE_RECOVERY_INIT:
is_parity = bxe_chk_parity_attn(sc, &global, FALSE);
if ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ||
(sc->error_status & BXE_ERR_MCP_ASSERT) ||
(sc->error_status & BXE_ERR_GLOBAL)) {
BXE_CORE_LOCK(sc);
if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
bxe_periodic_stop(sc);
}
bxe_nic_unload(sc, UNLOAD_RECOVERY, false);
sc->state = BXE_STATE_ERROR;
sc->recovery_state = BXE_RECOVERY_FAILED;
BLOGE(sc, " No Recovery tried for error 0x%x"
" stack notified driver is NOT running!"
" Please reboot/power cycle the system.\n",
sc->error_status);
BXE_CORE_UNLOCK(sc);
return;
}
/* Try to get a LEADER_LOCK HW lock */
if (bxe_trylock_leader_lock(sc)) {
bxe_set_reset_in_progress(sc);
/*
* Check if there is a global attention and if
* there was a global attention, set the global
* reset bit.
*/
if (global) {
bxe_set_reset_global(sc);
}
sc->is_leader = 1;
}
/* If interface has been removed - break */
if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
bxe_periodic_stop(sc);
}
BXE_CORE_LOCK(sc);
bxe_nic_unload(sc,UNLOAD_RECOVERY, false);
sc->recovery_state = BXE_RECOVERY_WAIT;
BXE_CORE_UNLOCK(sc);
/*
* Ensure "is_leader", MCP command sequence and
* "recovery_state" update values are seen on other
* CPUs.
*/
mb();
break;
case BXE_RECOVERY_WAIT:
if (sc->is_leader) {
int other_engine = SC_PATH(sc) ? 0 : 1;
bool other_load_status =
bxe_get_load_status(sc, other_engine);
bool load_status =
bxe_get_load_status(sc, SC_PATH(sc));
global = bxe_reset_is_global(sc);
/*
* In case of a parity in a global block, let
* the first leader that performs a
* leader_reset() reset the global blocks in
* order to clear global attentions. Otherwise
* the gates will remain closed for that
* engine.
*/
if (load_status ||
(global && other_load_status)) {
/*
* Wait until all other functions get
* down.
*/
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
return;
} else {
/*
* If all other functions got down
* try to bring the chip back to
* normal. In any case it's an exit
* point for a leader.
*/
if (bxe_leader_reset(sc)) {
BLOGE(sc, "RECOVERY failed, "
"stack notified driver is NOT running!\n");
sc->recovery_state = BXE_RECOVERY_FAILED;
sc->state = BXE_STATE_ERROR;
mb();
return;
}
/*
* If we are here, means that the
* leader has succeeded and doesn't
* want to be a leader any more. Try
* to continue as a none-leader.
*/
break;
}
} else { /* non-leader */
if (!bxe_reset_is_done(sc, SC_PATH(sc))) {
/*
* Try to get a LEADER_LOCK HW lock as
* long as a former leader may have
* been unloaded by the user or
* released a leadership by another
* reason.
*/
if (bxe_trylock_leader_lock(sc)) {
/*
* I'm a leader now! Restart a
* switch case.
*/
sc->is_leader = 1;
break;
}
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
return;
} else {
/*
* If there was a global attention, wait
* for it to be cleared.
*/
if (bxe_reset_is_global(sc)) {
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->sp_err_timeout_task, hz/10);
return;
}
error_recovered =
sc->eth_stats.recoverable_error;
error_unrecovered =
sc->eth_stats.unrecoverable_error;
BXE_CORE_LOCK(sc);
sc->recovery_state =
BXE_RECOVERY_NIC_LOADING;
if (bxe_nic_load(sc, LOAD_NORMAL)) {
error_unrecovered++;
sc->recovery_state = BXE_RECOVERY_FAILED;
sc->state = BXE_STATE_ERROR;
BLOGE(sc, "Recovery is NOT successfull, "
" state=0x%x recovery_state=0x%x error=%x\n",
sc->state, sc->recovery_state, sc->error_status);
sc->error_status = 0;
} else {
sc->recovery_state =
BXE_RECOVERY_DONE;
error_recovered++;
BLOGI(sc, "Recovery is successfull from errors %x,"
" state=0x%x"
" recovery_state=0x%x \n", sc->error_status,
sc->state, sc->recovery_state);
mb();
}
sc->error_status = 0;
BXE_CORE_UNLOCK(sc);
sc->eth_stats.recoverable_error =
error_recovered;
sc->eth_stats.unrecoverable_error =
error_unrecovered;
return;
}
}
default:
return;
}
}
}
void
bxe_handle_error(struct bxe_softc * sc)
{
if(sc->recovery_state == BXE_RECOVERY_WAIT) {
return;
}
if(sc->error_status) {
if (sc->state == BXE_STATE_OPEN) {
bxe_int_disable(sc);
}
if (sc->link_vars.link_up) {
if_link_state_change(sc->ifp, LINK_STATE_DOWN);
}
sc->recovery_state = BXE_RECOVERY_INIT;
BLOGI(sc, "bxe%d: Recovery started errors 0x%x recovery state 0x%x\n",
sc->unit, sc->error_status, sc->recovery_state);
bxe_parity_recover(sc);
}
}
static void
bxe_sp_err_timeout_task(void *arg, int pending)
{
struct bxe_softc *sc = (struct bxe_softc *)arg;
BLOGD(sc, DBG_SP,
"%s state = 0x%x rec state=0x%x error_status=%x\n",
__func__, sc->state, sc->recovery_state, sc->error_status);
if((sc->recovery_state == BXE_RECOVERY_FAILED) &&
(sc->state == BXE_STATE_ERROR)) {
return;
}
/* if can be taken */
if ((sc->error_status) && (sc->trigger_grcdump)) {
bxe_grc_dump(sc);
}
if (sc->recovery_state != BXE_RECOVERY_DONE) {
bxe_handle_error(sc);
bxe_parity_recover(sc);
} else if (sc->error_status) {
bxe_handle_error(sc);
}
return;
}
/* start the controller */
static __noinline int
bxe_nic_load(struct bxe_softc *sc,
int load_mode)
{
uint32_t val;
int load_code = 0;
int i, rc = 0;
BXE_CORE_LOCK_ASSERT(sc);
BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
sc->state = BXE_STATE_OPENING_WAITING_LOAD;
if (IS_PF(sc)) {
/* must be called before memory allocation and HW init */
bxe_ilt_set_info(sc);
}
sc->last_reported_link_state = LINK_STATE_UNKNOWN;
bxe_set_fp_rx_buf_size(sc);
if (bxe_alloc_fp_buffers(sc) != 0) {
BLOGE(sc, "Failed to allocate fastpath memory\n");
sc->state = BXE_STATE_CLOSED;
rc = ENOMEM;
goto bxe_nic_load_error0;
}
if (bxe_alloc_mem(sc) != 0) {
sc->state = BXE_STATE_CLOSED;
rc = ENOMEM;
goto bxe_nic_load_error0;
}
if (bxe_alloc_fw_stats_mem(sc) != 0) {
sc->state = BXE_STATE_CLOSED;
rc = ENOMEM;
goto bxe_nic_load_error0;
}
if (IS_PF(sc)) {
/* set pf load just before approaching the MCP */
bxe_set_pf_load(sc);
/* if MCP exists send load request and analyze response */
if (!BXE_NOMCP(sc)) {
/* attempt to load pf */
if (bxe_nic_load_request(sc, &load_code) != 0) {
sc->state = BXE_STATE_CLOSED;
rc = ENXIO;
goto bxe_nic_load_error1;
}
/* what did the MCP say? */
if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
sc->state = BXE_STATE_CLOSED;
rc = ENXIO;
goto bxe_nic_load_error2;
}
} else {
BLOGI(sc, "Device has no MCP!\n");
load_code = bxe_nic_load_no_mcp(sc);
}
/* mark PMF if applicable */
bxe_nic_load_pmf(sc, load_code);
/* Init Function state controlling object */
bxe_init_func_obj(sc);
/* Initialize HW */
if (bxe_init_hw(sc, load_code) != 0) {
BLOGE(sc, "HW init failed\n");
bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
sc->state = BXE_STATE_CLOSED;
rc = ENXIO;
goto bxe_nic_load_error2;
}
}
/* set ALWAYS_ALIVE bit in shmem */
sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
bxe_drv_pulse(sc);
sc->flags |= BXE_NO_PULSE;
/* attach interrupts */
if (bxe_interrupt_attach(sc) != 0) {
sc->state = BXE_STATE_CLOSED;
rc = ENXIO;
goto bxe_nic_load_error2;
}
bxe_nic_init(sc, load_code);
/* Init per-function objects */
if (IS_PF(sc)) {
bxe_init_objs(sc);
// XXX bxe_iov_nic_init(sc);
/* set AFEX default VLAN tag to an invalid value */
sc->devinfo.mf_info.afex_def_vlan_tag = -1;
// XXX bxe_nic_load_afex_dcc(sc, load_code);
sc->state = BXE_STATE_OPENING_WAITING_PORT;
rc = bxe_func_start(sc);
if (rc) {
BLOGE(sc, "Function start failed! rc = %d\n", rc);
bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
sc->state = BXE_STATE_ERROR;
goto bxe_nic_load_error3;
}
/* send LOAD_DONE command to MCP */
if (!BXE_NOMCP(sc)) {
load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
if (!load_code) {
BLOGE(sc, "MCP response failure, aborting\n");
sc->state = BXE_STATE_ERROR;
rc = ENXIO;
goto bxe_nic_load_error3;
}
}
rc = bxe_setup_leading(sc);
if (rc) {
BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
sc->state = BXE_STATE_ERROR;
goto bxe_nic_load_error3;
}
FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
if (rc) {
BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
sc->state = BXE_STATE_ERROR;
goto bxe_nic_load_error3;
}
}
rc = bxe_init_rss_pf(sc);
if (rc) {
BLOGE(sc, "PF RSS init failed\n");
sc->state = BXE_STATE_ERROR;
goto bxe_nic_load_error3;
}
}
/* XXX VF */
/* now when Clients are configured we are ready to work */
sc->state = BXE_STATE_OPEN;
/* Configure a ucast MAC */
if (IS_PF(sc)) {
rc = bxe_set_eth_mac(sc, TRUE);
}
if (rc) {
BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
sc->state = BXE_STATE_ERROR;
goto bxe_nic_load_error3;
}
if (sc->port.pmf) {
rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
if (rc) {
sc->state = BXE_STATE_ERROR;
goto bxe_nic_load_error3;
}
}
sc->link_params.feature_config_flags &=
~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
/* start fast path */
/* Initialize Rx filter */
bxe_set_rx_mode(sc);
/* start the Tx */
switch (/* XXX load_mode */LOAD_OPEN) {
case LOAD_NORMAL:
case LOAD_OPEN:
break;
case LOAD_DIAG:
case LOAD_LOOPBACK_EXT:
sc->state = BXE_STATE_DIAG;
break;
default:
break;
}
if (sc->port.pmf) {
bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
} else {
bxe_link_status_update(sc);
}
/* start the periodic timer callout */
bxe_periodic_start(sc);
if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
/* mark driver is loaded in shmem2 */
val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
(val |
DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
DRV_FLAGS_CAPABILITIES_LOADED_L2));
}
/* wait for all pending SP commands to complete */
if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
bxe_periodic_stop(sc);
bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
return (ENXIO);
}
/* Tell the stack the driver is running! */
if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
return (0);
bxe_nic_load_error3:
if (IS_PF(sc)) {
bxe_int_disable_sync(sc, 1);
/* clean out queued objects */
bxe_squeeze_objects(sc);
}
bxe_interrupt_detach(sc);
bxe_nic_load_error2:
if (IS_PF(sc) && !BXE_NOMCP(sc)) {
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
}
sc->port.pmf = 0;
bxe_nic_load_error1:
/* clear pf_load status, as it was already set */
if (IS_PF(sc)) {
bxe_clear_pf_load(sc);
}
bxe_nic_load_error0:
bxe_free_fw_stats_mem(sc);
bxe_free_fp_buffers(sc);
bxe_free_mem(sc);
return (rc);
}
static int
bxe_init_locked(struct bxe_softc *sc)
{
int other_engine = SC_PATH(sc) ? 0 : 1;
uint8_t other_load_status, load_status;
uint8_t global = FALSE;
int rc;
BXE_CORE_LOCK_ASSERT(sc);
/* check if the driver is already running */
if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
return (0);
}
if((sc->state == BXE_STATE_ERROR) &&
(sc->recovery_state == BXE_RECOVERY_FAILED)) {
BLOGE(sc, "Initialization not done, "
"as previous recovery failed."
"Reboot/Power-cycle the system\n" );
return (ENXIO);
}
bxe_set_power_state(sc, PCI_PM_D0);
/*
* If parity occurred during the unload, then attentions and/or
* RECOVERY_IN_PROGRES may still be set. If so we want the first function
* loaded on the current engine to complete the recovery. Parity recovery
* is only relevant for PF driver.
*/
if (IS_PF(sc)) {
other_load_status = bxe_get_load_status(sc, other_engine);
load_status = bxe_get_load_status(sc, SC_PATH(sc));
if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
bxe_chk_parity_attn(sc, &global, TRUE)) {
do {
/*
* If there are attentions and they are in global blocks, set
* the GLOBAL_RESET bit regardless whether it will be this
* function that will complete the recovery or not.
*/
if (global) {
bxe_set_reset_global(sc);
}
/*
* Only the first function on the current engine should try
* to recover in open. In case of attentions in global blocks
* only the first in the chip should try to recover.
*/
if ((!load_status && (!global || !other_load_status)) &&
bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
BLOGI(sc, "Recovered during init\n");
break;
}
/* recovery has failed... */
bxe_set_power_state(sc, PCI_PM_D3hot);
sc->recovery_state = BXE_RECOVERY_FAILED;
BLOGE(sc, "Recovery flow hasn't properly "
"completed yet, try again later. "
"If you still see this message after a "
"few retries then power cycle is required.\n");
rc = ENXIO;
goto bxe_init_locked_done;
} while (0);
}
}
sc->recovery_state = BXE_RECOVERY_DONE;
rc = bxe_nic_load(sc, LOAD_OPEN);
bxe_init_locked_done:
if (rc) {
/* Tell the stack the driver is NOT running! */
BLOGE(sc, "Initialization failed, "
"stack notified driver is NOT running!\n");
if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
}
return (rc);
}
static int
bxe_stop_locked(struct bxe_softc *sc)
{
BXE_CORE_LOCK_ASSERT(sc);
return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
}
/*
* Handles controller initialization when called from an unlocked routine.
* ifconfig calls this function.
*
* Returns:
* void
*/
static void
bxe_init(void *xsc)
{
struct bxe_softc *sc = (struct bxe_softc *)xsc;
BXE_CORE_LOCK(sc);
bxe_init_locked(sc);
BXE_CORE_UNLOCK(sc);
}
static int
bxe_init_ifnet(struct bxe_softc *sc)
{
if_t ifp;
int capabilities;
/* ifconfig entrypoint for media type/status reporting */
ifmedia_init(&sc->ifmedia, IFM_IMASK,
bxe_ifmedia_update,
bxe_ifmedia_status);
/* set the default interface values */
ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media);
/* allocate the ifnet structure */
if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
BLOGE(sc, "Interface allocation failed!\n");
return (ENXIO);
}
if_setsoftc(ifp, sc);
if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
if_setioctlfn(ifp, bxe_ioctl);
if_setstartfn(ifp, bxe_tx_start);
if_setgetcounterfn(ifp, bxe_get_counter);
#if __FreeBSD_version >= 901504
if_settransmitfn(ifp, bxe_tx_mq_start);
if_setqflushfn(ifp, bxe_mq_flush);
#endif
#ifdef FreeBSD8_0
if_settimer(ifp, 0);
#endif
if_setinitfn(ifp, bxe_init);
if_setmtu(ifp, sc->mtu);
if_sethwassist(ifp, (CSUM_IP |
CSUM_TCP |
CSUM_UDP |
CSUM_TSO |
CSUM_TCP_IPV6 |
CSUM_UDP_IPV6));
capabilities =
#if __FreeBSD_version < 700000
(IFCAP_VLAN_MTU |
IFCAP_VLAN_HWTAGGING |
IFCAP_HWCSUM |
IFCAP_JUMBO_MTU |
IFCAP_LRO);
#else
(IFCAP_VLAN_MTU |
IFCAP_VLAN_HWTAGGING |
IFCAP_VLAN_HWTSO |
IFCAP_VLAN_HWFILTER |
IFCAP_VLAN_HWCSUM |
IFCAP_HWCSUM |
IFCAP_JUMBO_MTU |
IFCAP_LRO |
IFCAP_TSO4 |
IFCAP_TSO6 |
IFCAP_WOL_MAGIC);
#endif
if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
if_setcapenable(ifp, if_getcapabilities(ifp));
if_setbaudrate(ifp, IF_Gbps(10));
/* XXX */
if_setsendqlen(ifp, sc->tx_ring_size);
if_setsendqready(ifp);
/* XXX */
sc->ifp = ifp;
/* attach to the Ethernet interface list */
ether_ifattach(ifp, sc->link_params.mac_addr);
Split out a more generic debugnet(4) from netdump(4) Debugnet is a simplistic and specialized panic- or debug-time reliable datagram transport. It can drive a single connection at a time and is currently unidirectional (debug/panic machine transmit to remote server only). It is mostly a verbatim code lift from netdump(4). Netdump(4) remains the only consumer (until the rest of this patch series lands). The INET-specific logic has been extracted somewhat more thoroughly than previously in netdump(4), into debugnet_inet.c. UDP-layer logic and up, as much as possible as is protocol-independent, remains in debugnet.c. The separation is not perfect and future improvement is welcome. Supporting INET6 is a long-term goal. Much of the diff is "gratuitous" renaming from 'netdump_' or 'nd_' to 'debugnet_' or 'dn_' -- sorry. I thought keeping the netdump name on the generic module would be more confusing than the refactoring. The only functional change here is the mbuf allocation / tracking. Instead of initiating solely on netdump-configured interface(s) at dumpon(8) configuration time, we watch for any debugnet-enabled NIC for link activation and query it for mbuf parameters at that time. If they exceed the existing high-water mark allocation, we re-allocate and track the new high-water mark. Otherwise, we leave the pre-panic mbuf allocation alone. In a future patch in this series, this will allow initiating netdump from panic ddb(4) without pre-panic configuration. No other functional change intended. Reviewed by: markj (earlier version) Some discussion with: emaste, jhb Objection from: marius Differential Revision: https://reviews.freebsd.org/D21421
2019-10-17 16:23:03 +00:00
/* Attach driver debugnet methods. */
DEBUGNET_SET(ifp, bxe);
return (0);
}
static void
bxe_deallocate_bars(struct bxe_softc *sc)
{
int i;
for (i = 0; i < MAX_BARS; i++) {
if (sc->bar[i].resource != NULL) {
bus_release_resource(sc->dev,
SYS_RES_MEMORY,
sc->bar[i].rid,
sc->bar[i].resource);
BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
i, PCIR_BAR(i));
}
}
}
static int
bxe_allocate_bars(struct bxe_softc *sc)
{
u_int flags;
int i;
memset(sc->bar, 0, sizeof(sc->bar));
for (i = 0; i < MAX_BARS; i++) {
/* memory resources reside at BARs 0, 2, 4 */
/* Run `pciconf -lb` to see mappings */
if ((i != 0) && (i != 2) && (i != 4)) {
continue;
}
sc->bar[i].rid = PCIR_BAR(i);
flags = RF_ACTIVE;
if (i == 0) {
flags |= RF_SHAREABLE;
}
if ((sc->bar[i].resource =
bus_alloc_resource_any(sc->dev,
SYS_RES_MEMORY,
&sc->bar[i].rid,
flags)) == NULL) {
return (0);
}
sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource);
sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %#jx-%#jx (%jd) -> %#jx\n",
i, PCIR_BAR(i),
rman_get_start(sc->bar[i].resource),
rman_get_end(sc->bar[i].resource),
rman_get_size(sc->bar[i].resource),
(uintmax_t)sc->bar[i].kva);
}
return (0);
}
static void
bxe_get_function_num(struct bxe_softc *sc)
{
uint32_t val = 0;
/*
* Read the ME register to get the function number. The ME register
* holds the relative-function number and absolute-function number. The
* absolute-function number appears only in E2 and above. Before that
* these bits always contained zero, therefore we cannot blindly use them.
*/
val = REG_RD(sc, BAR_ME_REGISTER);
sc->pfunc_rel =
(uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
sc->path_id =
(uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
} else {
sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
}
BLOGD(sc, DBG_LOAD,
"Relative function %d, Absolute function %d, Path %d\n",
sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
}
static uint32_t
bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
{
uint32_t shmem2_size;
uint32_t offset;
uint32_t mf_cfg_offset_value;
/* Non 57712 */
offset = (SHMEM_RD(sc, func_mb) +
(MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
/* 57712 plus */
if (sc->devinfo.shmem2_base != 0) {
shmem2_size = SHMEM2_RD(sc, size);
if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
offset = mf_cfg_offset_value;
}
}
}
return (offset);
}
static uint32_t
bxe_pcie_capability_read(struct bxe_softc *sc,
int reg,
int width)
{
int pcie_reg;
/* ensure PCIe capability is enabled */
if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
if (pcie_reg != 0) {
BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
return (pci_read_config(sc->dev, (pcie_reg + reg), width));
}
}
BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
return (0);
}
static uint8_t
bxe_is_pcie_pending(struct bxe_softc *sc)
{
return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
PCIM_EXP_STA_TRANSACTION_PND);
}
/*
* Walk the PCI capabiites list for the device to find what features are
* supported. These capabilites may be enabled/disabled by firmware so it's
* best to walk the list rather than make assumptions.
*/
static void
bxe_probe_pci_caps(struct bxe_softc *sc)
{
uint16_t link_status;
int reg;
/* check if PCI Power Management is enabled */
if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
if (reg != 0) {
BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
}
}
link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
/* handle PCIe 2.0 workarounds for 57710 */
if (CHIP_IS_E1(sc)) {
/* workaround for 57710 errata E4_57710_27462 */
sc->devinfo.pcie_link_speed =
(REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
/* workaround for 57710 errata E4_57710_27488 */
sc->devinfo.pcie_link_width =
((link_status & PCIM_LINK_STA_WIDTH) >> 4);
if (sc->devinfo.pcie_link_speed > 1) {
sc->devinfo.pcie_link_width =
((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
}
} else {
sc->devinfo.pcie_link_speed =
(link_status & PCIM_LINK_STA_SPEED);
sc->devinfo.pcie_link_width =
((link_status & PCIM_LINK_STA_WIDTH) >> 4);
}
BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
/* check if MSI capability is enabled */
if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
if (reg != 0) {
BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
}
}
/* check if MSI-X capability is enabled */
if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
if (reg != 0) {
BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
}
}
}
static int
bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
{
struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
uint32_t val;
/* get the outer vlan if we're in switch-dependent mode */
val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
mf_info->ext_id = (uint16_t)val;
mf_info->multi_vnics_mode = 1;
if (!VALID_OVLAN(mf_info->ext_id)) {
BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
return (1);
}
/* get the capabilities */
if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
FUNC_MF_CFG_PROTOCOL_ISCSI) {
mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
} else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
FUNC_MF_CFG_PROTOCOL_FCOE) {
mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
} else {
mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
}
mf_info->vnics_per_port =
(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
return (0);
}
static uint32_t
bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
{
uint32_t retval = 0;
uint32_t val;
val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
retval |= MF_PROTO_SUPPORT_ETHERNET;
}
if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
retval |= MF_PROTO_SUPPORT_ISCSI;
}
if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
retval |= MF_PROTO_SUPPORT_FCOE;
}
}
return (retval);
}
static int
bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
{
struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
uint32_t val;
/*
* There is no outer vlan if we're in switch-independent mode.
* If the mac is valid then assume multi-function.
*/
val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
mf_info->vnics_per_port =
(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
return (0);
}
static int
bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
{
struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
uint32_t e1hov_tag;
uint32_t func_config;
uint32_t niv_config;
mf_info->multi_vnics_mode = 1;
e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
mf_info->ext_id =
(uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
FUNC_MF_CFG_E1HOV_TAG_SHIFT);
mf_info->default_vlan =
(uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
FUNC_MF_CFG_AFEX_VLAN_SHIFT);
mf_info->niv_allowed_priorities =
(uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
mf_info->niv_default_cos =
(uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
mf_info->afex_vlan_mode =
((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
mf_info->niv_mba_enabled =
((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
mf_info->vnics_per_port =
(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
return (0);
}
static int
bxe_check_valid_mf_cfg(struct bxe_softc *sc)
{
struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
uint32_t mf_cfg1;
uint32_t mf_cfg2;
uint32_t ovlan1;
uint32_t ovlan2;
uint8_t i, j;
BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
SC_PORT(sc));
BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
mf_info->mf_config[SC_VN(sc)]);
BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
mf_info->multi_vnics_mode);
BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
mf_info->vnics_per_port);
BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
mf_info->ext_id);
BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
mf_info->min_bw[0], mf_info->min_bw[1],
mf_info->min_bw[2], mf_info->min_bw[3]);
BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
mf_info->max_bw[0], mf_info->max_bw[1],
mf_info->max_bw[2], mf_info->max_bw[3]);
BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
sc->mac_addr_str);
/* various MF mode sanity checks... */
if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
BLOGE(sc, "Enumerated function %d is marked as hidden\n",
SC_PORT(sc));
return (1);
}
if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
mf_info->vnics_per_port, mf_info->multi_vnics_mode);
return (1);
}
if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
/* vnic id > 0 must have valid ovlan in switch-dependent mode */
if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
SC_VN(sc), OVLAN(sc));
return (1);
}
if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
mf_info->multi_vnics_mode, OVLAN(sc));
return (1);
}
/*
* Verify all functions are either MF or SF mode. If MF, make sure
* sure that all non-hidden functions have a valid ovlan. If SF,
* make sure that all non-hidden functions have an invalid ovlan.
*/
FOREACH_ABS_FUNC_IN_PORT(sc, i) {
mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
(((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
BLOGE(sc, "mf_mode=SD function %d MF config "
"mismatch, multi_vnics_mode=%d ovlan=%d\n",
i, mf_info->multi_vnics_mode, ovlan1);
return (1);
}
}
/* Verify all funcs on the same port each have a different ovlan. */
FOREACH_ABS_FUNC_IN_PORT(sc, i) {
mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
/* iterate from the next function on the port to the max func */
for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
VALID_OVLAN(ovlan1) &&
!(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
VALID_OVLAN(ovlan2) &&
(ovlan1 == ovlan2)) {
BLOGE(sc, "mf_mode=SD functions %d and %d "
"have the same ovlan (%d)\n",
i, j, ovlan1);
return (1);
}
}
}
} /* MULTI_FUNCTION_SD */
return (0);
}
static int
bxe_get_mf_cfg_info(struct bxe_softc *sc)
{
struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
uint32_t val, mac_upper;
uint8_t i, vnic;
/* initialize mf_info defaults */
mf_info->vnics_per_port = 1;
mf_info->multi_vnics_mode = FALSE;
mf_info->path_has_ovlan = FALSE;
mf_info->mf_mode = SINGLE_FUNCTION;
if (!CHIP_IS_MF_CAP(sc)) {
return (0);
}
if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
BLOGE(sc, "Invalid mf_cfg_base!\n");
return (1);
}
/* get the MF mode (switch dependent / independent / single-function) */
val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
{
case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
/* check for legal upper mac bytes */
if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
mf_info->mf_mode = MULTI_FUNCTION_SI;
} else {
BLOGE(sc, "Invalid config for Switch Independent mode\n");
}
break;
case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
/* get outer vlan configuration */
val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
mf_info->mf_mode = MULTI_FUNCTION_SD;
} else {
BLOGE(sc, "Invalid config for Switch Dependent mode\n");
}
break;
case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
/* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
return (0);
case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
/*
* Mark MF mode as NIV if MCP version includes NPAR-SD support
* and the MAC address is valid.
*/
mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
if ((SHMEM2_HAS(sc, afex_driver_support)) &&
(mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
mf_info->mf_mode = MULTI_FUNCTION_AFEX;
} else {
BLOGE(sc, "Invalid config for AFEX mode\n");
}
break;
default:
BLOGE(sc, "Unknown MF mode (0x%08x)\n",
(val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
return (1);
}
/* set path mf_mode (which could be different than function mf_mode) */
if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
mf_info->path_has_ovlan = TRUE;
} else if (mf_info->mf_mode == SINGLE_FUNCTION) {
/*
* Decide on path multi vnics mode. If we're not in MF mode and in
* 4-port mode, this is good enough to check vnic-0 of the other port
* on the same path
*/
if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
uint8_t other_port = !(PORT_ID(sc) & 1);
uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
}
}
if (mf_info->mf_mode == SINGLE_FUNCTION) {
/* invalid MF config */
if (SC_VN(sc) >= 1) {
BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
return (1);
}
return (0);
}
/* get the MF configuration */
mf_info->mf_config[SC_VN(sc)] =
MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
switch(mf_info->mf_mode)
{
case MULTI_FUNCTION_SD:
bxe_get_shmem_mf_cfg_info_sd(sc);
break;
case MULTI_FUNCTION_SI:
bxe_get_shmem_mf_cfg_info_si(sc);
break;
case MULTI_FUNCTION_AFEX:
bxe_get_shmem_mf_cfg_info_niv(sc);
break;
default:
BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
mf_info->mf_mode);
return (1);
}
/* get the congestion management parameters */
vnic = 0;
FOREACH_ABS_FUNC_IN_PORT(sc, i) {
/* get min/max bw */
val = MFCFG_RD(sc, func_mf_config[i].config);
mf_info->min_bw[vnic] =
((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
mf_info->max_bw[vnic] =
((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
vnic++;
}
return (bxe_check_valid_mf_cfg(sc));
}
static int
bxe_get_shmem_info(struct bxe_softc *sc)
{
int port;
uint32_t mac_hi, mac_lo, val;
port = SC_PORT(sc);
mac_hi = mac_lo = 0;
sc->link_params.sc = sc;
sc->link_params.port = port;
/* get the hardware config info */
sc->devinfo.hw_config =
SHMEM_RD(sc, dev_info.shared_hw_config.config);
sc->devinfo.hw_config2 =
SHMEM_RD(sc, dev_info.shared_hw_config.config2);
sc->link_params.hw_led_mode =
((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
SHARED_HW_CFG_LED_MODE_SHIFT);
/* get the port feature config */
sc->port.config =
SHMEM_RD(sc, dev_info.port_feature_config[port].config);
/* get the link params */
sc->link_params.speed_cap_mask[0] =
SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
sc->link_params.speed_cap_mask[1] =
SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
/* get the lane config */
sc->link_params.lane_config =
SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
/* get the link config */
val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
sc->port.link_config[ELINK_INT_PHY] = val;
sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
sc->port.link_config[ELINK_EXT_PHY1] =
SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
/* get the override preemphasis flag and enable it or turn it off */
val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
sc->link_params.feature_config_flags |=
ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
} else {
sc->link_params.feature_config_flags &=
~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
}
/* get the initial value of the link params */
sc->link_params.multi_phy_config =
SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
/* get external phy info */
sc->port.ext_phy_config =
SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
/* get the multifunction configuration */
bxe_get_mf_cfg_info(sc);
/* get the mac address */
if (IS_MF(sc)) {
mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
} else {
mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
}
if ((mac_lo == 0) && (mac_hi == 0)) {
*sc->mac_addr_str = 0;
BLOGE(sc, "No Ethernet address programmed!\n");
} else {
sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
"%02x:%02x:%02x:%02x:%02x:%02x",
sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
}
return (0);
}
static void
bxe_get_tunable_params(struct bxe_softc *sc)
{
/* sanity checks */
if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
(bxe_interrupt_mode != INTR_MODE_MSI) &&
(bxe_interrupt_mode != INTR_MODE_MSIX)) {
BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
bxe_interrupt_mode = INTR_MODE_MSIX;
}
if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
bxe_queue_count = 0;
}
if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
if (bxe_max_rx_bufs == 0) {
bxe_max_rx_bufs = RX_BD_USABLE;
} else {
BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
bxe_max_rx_bufs = 2048;
}
}
if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
bxe_hc_rx_ticks = 25;
}
if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
bxe_hc_tx_ticks = 50;
}
if (bxe_max_aggregation_size == 0) {
bxe_max_aggregation_size = TPA_AGG_SIZE;
}
if (bxe_max_aggregation_size > 0xffff) {
BLOGW(sc, "invalid max_aggregation_size (%d)\n",
bxe_max_aggregation_size);
bxe_max_aggregation_size = TPA_AGG_SIZE;
}
if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
bxe_mrrs = -1;
}
if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
bxe_autogreeen = 0;
}
if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
bxe_udp_rss = 0;
}
/* pull in user settings */
sc->interrupt_mode = bxe_interrupt_mode;
sc->max_rx_bufs = bxe_max_rx_bufs;
sc->hc_rx_ticks = bxe_hc_rx_ticks;
sc->hc_tx_ticks = bxe_hc_tx_ticks;
sc->max_aggregation_size = bxe_max_aggregation_size;
sc->mrrs = bxe_mrrs;
sc->autogreeen = bxe_autogreeen;
sc->udp_rss = bxe_udp_rss;
if (bxe_interrupt_mode == INTR_MODE_INTX) {
sc->num_queues = 1;
} else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
sc->num_queues =
min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
MAX_RSS_CHAINS);
if (sc->num_queues > mp_ncpus) {
sc->num_queues = mp_ncpus;
}
}
BLOGD(sc, DBG_LOAD,
"User Config: "
"debug=0x%lx "
"interrupt_mode=%d "
"queue_count=%d "
"hc_rx_ticks=%d "
"hc_tx_ticks=%d "
"rx_budget=%d "
"max_aggregation_size=%d "
"mrrs=%d "
"autogreeen=%d "
"udp_rss=%d\n",
bxe_debug,
sc->interrupt_mode,
sc->num_queues,
sc->hc_rx_ticks,
sc->hc_tx_ticks,
bxe_rx_budget,
sc->max_aggregation_size,
sc->mrrs,
sc->autogreeen,
sc->udp_rss);
}
static int
bxe_media_detect(struct bxe_softc *sc)
{
int port_type;
uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
switch (sc->link_params.phy[phy_idx].media_type) {
case ELINK_ETH_PHY_SFPP_10G_FIBER:
case ELINK_ETH_PHY_XFP_FIBER:
BLOGI(sc, "Found 10Gb Fiber media.\n");
sc->media = IFM_10G_SR;
port_type = PORT_FIBRE;
break;
case ELINK_ETH_PHY_SFP_1G_FIBER:
BLOGI(sc, "Found 1Gb Fiber media.\n");
sc->media = IFM_1000_SX;
port_type = PORT_FIBRE;
break;
case ELINK_ETH_PHY_KR:
case ELINK_ETH_PHY_CX4:
BLOGI(sc, "Found 10GBase-CX4 media.\n");
sc->media = IFM_10G_CX4;
port_type = PORT_FIBRE;
break;
case ELINK_ETH_PHY_DA_TWINAX:
BLOGI(sc, "Found 10Gb Twinax media.\n");
sc->media = IFM_10G_TWINAX;
port_type = PORT_DA;
break;
case ELINK_ETH_PHY_BASE_T:
if (sc->link_params.speed_cap_mask[0] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
BLOGI(sc, "Found 10GBase-T media.\n");
sc->media = IFM_10G_T;
port_type = PORT_TP;
} else {
BLOGI(sc, "Found 1000Base-T media.\n");
sc->media = IFM_1000_T;
port_type = PORT_TP;
}
break;
case ELINK_ETH_PHY_NOT_PRESENT:
BLOGI(sc, "Media not present.\n");
sc->media = 0;
port_type = PORT_OTHER;
break;
case ELINK_ETH_PHY_UNSPECIFIED:
default:
BLOGI(sc, "Unknown media!\n");
sc->media = 0;
port_type = PORT_OTHER;
break;
}
return port_type;
}
#define GET_FIELD(value, fname) \
(((value) & (fname##_MASK)) >> (fname##_SHIFT))
#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
static int
bxe_get_igu_cam_info(struct bxe_softc *sc)
{
int pfid = SC_FUNC(sc);
int igu_sb_id;
uint32_t val;
uint8_t fid, igu_sb_cnt = 0;
sc->igu_base_sb = 0xff;
if (CHIP_INT_MODE_IS_BC(sc)) {
int vn = SC_VN(sc);
igu_sb_cnt = sc->igu_sb_cnt;
sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
FP_SB_MAX_E1x);
sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
(CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
return (0);
}
/* IGU in normal mode - read CAM */
for (igu_sb_id = 0;
igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
igu_sb_id++) {
val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
continue;
}
fid = IGU_FID(val);
if ((fid & IGU_FID_ENCODE_IS_PF)) {
if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
continue;
}
if (IGU_VEC(val) == 0) {
/* default status block */
sc->igu_dsb_id = igu_sb_id;
} else {
if (sc->igu_base_sb == 0xff) {
sc->igu_base_sb = igu_sb_id;
}
igu_sb_cnt++;
}
}
}
/*
* Due to new PF resource allocation by MFW T7.4 and above, it's optional
* that number of CAM entries will not be equal to the value advertised in
* PCI. Driver should use the minimal value of both as the actual status
* block count
*/
sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
if (igu_sb_cnt == 0) {
BLOGE(sc, "CAM configuration error\n");
return (-1);
}
return (0);
}
/*
* Gather various information from the device config space, the device itself,
* shmem, and the user input.
*/
static int
bxe_get_device_info(struct bxe_softc *sc)
{
uint32_t val;
int rc;
/* Get the data for the device */
sc->devinfo.vendor_id = pci_get_vendor(sc->dev);
sc->devinfo.device_id = pci_get_device(sc->dev);
sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
/* get the chip revision (chip metal comes from pci config space) */
sc->devinfo.chip_id =
sc->link_params.chip_id =
(((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
(((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
/* force 57811 according to MISC register */
if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
if (CHIP_IS_57810(sc)) {
sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
(sc->devinfo.chip_id & 0x0000ffff));
} else if (CHIP_IS_57810_MF(sc)) {
sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
(sc->devinfo.chip_id & 0x0000ffff));
}
sc->devinfo.chip_id |= 0x1;
}
BLOGD(sc, DBG_LOAD,
"chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
sc->devinfo.chip_id,
((sc->devinfo.chip_id >> 16) & 0xffff),
((sc->devinfo.chip_id >> 12) & 0xf),
((sc->devinfo.chip_id >> 4) & 0xff),
((sc->devinfo.chip_id >> 0) & 0xf));
val = (REG_RD(sc, 0x2874) & 0x55);
if ((sc->devinfo.chip_id & 0x1) ||
(CHIP_IS_E1(sc) && val) ||
(CHIP_IS_E1H(sc) && (val == 0x55))) {
sc->flags |= BXE_ONE_PORT_FLAG;
BLOGD(sc, DBG_LOAD, "single port device\n");
}
/* set the doorbell size */
sc->doorbell_size = (1 << BXE_DB_SHIFT);
/* determine whether the device is in 2 port or 4 port mode */
sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
if (CHIP_IS_E2E3(sc)) {
/*
* Read port4mode_en_ovwr[0]:
* If 1, four port mode is in port4mode_en_ovwr[1].
* If 0, four port mode is in port4mode_en[0].
*/
val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
if (val & 1) {
val = ((val >> 1) & 1);
} else {
val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
}
sc->devinfo.chip_port_mode =
(val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
}
/* get the function and path info for the device */
bxe_get_function_num(sc);
/* get the shared memory base address */
sc->devinfo.shmem_base =
sc->link_params.shmem_base =
REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
sc->devinfo.shmem2_base =
REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
MISC_REG_GENERIC_CR_0));
BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
if (!sc->devinfo.shmem_base) {
/* this should ONLY prevent upcoming shmem reads */
BLOGI(sc, "MCP not active\n");
sc->flags |= BXE_NO_MCP_FLAG;
return (0);
}
/* make sure the shared memory contents are valid */
val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
(SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
return (0);
}
BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
/* get the bootcode version */
sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
snprintf(sc->devinfo.bc_ver_str,
sizeof(sc->devinfo.bc_ver_str),
"%d.%d.%d",
((sc->devinfo.bc_ver >> 24) & 0xff),
((sc->devinfo.bc_ver >> 16) & 0xff),
((sc->devinfo.bc_ver >> 8) & 0xff));
BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
/* get the bootcode shmem address */
sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
/* clean indirect addresses as they're not used */
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
if (IS_PF(sc)) {
REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
if (CHIP_IS_E1x(sc)) {
REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
}
/*
* Enable internal target-read (in case we are probed after PF
* FLR). Must be done prior to any BAR read access. Only for
* 57712 and up
*/
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
}
}
/* get the nvram size */
val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
sc->devinfo.flash_size =
(NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
/* get PCI capabilites */
bxe_probe_pci_caps(sc);
bxe_set_power_state(sc, PCI_PM_D0);
/* get various configuration parameters from shmem */
bxe_get_shmem_info(sc);
if (sc->devinfo.pcie_msix_cap_reg != 0) {
val = pci_read_config(sc->dev,
(sc->devinfo.pcie_msix_cap_reg +
PCIR_MSIX_CTRL),
2);
sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
} else {
sc->igu_sb_cnt = 1;
}
sc->igu_base_addr = BAR_IGU_INTMEM;
/* initialize IGU parameters */
if (CHIP_IS_E1x(sc)) {
sc->devinfo.int_block = INT_BLOCK_HC;
sc->igu_dsb_id = DEF_SB_IGU_ID;
sc->igu_base_sb = 0;
} else {
sc->devinfo.int_block = INT_BLOCK_IGU;
/* do not allow device reset during IGU info preocessing */
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
int tout = 5000;
BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
tout--;
DELAY(1000);
}
if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
return (-1);
}
}
if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
} else {
BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
}
rc = bxe_get_igu_cam_info(sc);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
if (rc) {
return (rc);
}
}
/*
* Get base FW non-default (fast path) status block ID. This value is
* used to initialize the fw_sb_id saved on the fp/queue structure to
* determine the id used by the FW.
*/
if (CHIP_IS_E1x(sc)) {
sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
} else {
/*
* 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
* the same queue are indicated on the same IGU SB). So we prefer
* FW and IGU SBs to be the same value.
*/
sc->base_fw_ndsb = sc->igu_base_sb;
}
BLOGD(sc, DBG_LOAD,
"igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
sc->igu_dsb_id, sc->igu_base_sb,
sc->igu_sb_cnt, sc->base_fw_ndsb);
elink_phy_probe(&sc->link_params);
return (0);
}
static void
bxe_link_settings_supported(struct bxe_softc *sc,
uint32_t switch_cfg)
{
uint32_t cfg_size = 0;
uint32_t idx;
uint8_t port = SC_PORT(sc);
/* aggregation of supported attributes of all external phys */
sc->port.supported[0] = 0;
sc->port.supported[1] = 0;
switch (sc->link_params.num_phys) {
case 1:
sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
cfg_size = 1;
break;
case 2:
sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
cfg_size = 1;
break;
case 3:
if (sc->link_params.multi_phy_config &
PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
sc->port.supported[1] =
sc->link_params.phy[ELINK_EXT_PHY1].supported;
sc->port.supported[0] =
sc->link_params.phy[ELINK_EXT_PHY2].supported;
} else {
sc->port.supported[0] =
sc->link_params.phy[ELINK_EXT_PHY1].supported;
sc->port.supported[1] =
sc->link_params.phy[ELINK_EXT_PHY2].supported;
}
cfg_size = 2;
break;
}
if (!(sc->port.supported[0] || sc->port.supported[1])) {
BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
SHMEM_RD(sc,
dev_info.port_hw_config[port].external_phy_config),
SHMEM_RD(sc,
dev_info.port_hw_config[port].external_phy_config2));
return;
}
if (CHIP_IS_E3(sc))
sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
else {
switch (switch_cfg) {
case ELINK_SWITCH_CFG_1G:
sc->port.phy_addr =
REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
break;
case ELINK_SWITCH_CFG_10G:
sc->port.phy_addr =
REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
break;
default:
BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
sc->port.link_config[0]);
return;
}
}
BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
/* mask what we support according to speed_cap_mask per configuration */
for (idx = 0; idx < cfg_size; idx++) {
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
}
}
BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
sc->port.supported[0], sc->port.supported[1]);
ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n",
sc->port.supported[0], sc->port.supported[1]);
}
static void
bxe_link_settings_requested(struct bxe_softc *sc)
{
uint32_t link_config;
uint32_t idx;
uint32_t cfg_size = 0;
sc->port.advertising[0] = 0;
sc->port.advertising[1] = 0;
switch (sc->link_params.num_phys) {
case 1:
case 2:
cfg_size = 1;
break;
case 3:
cfg_size = 2;
break;
}
for (idx = 0; idx < cfg_size; idx++) {
sc->link_params.req_duplex[idx] = DUPLEX_FULL;
link_config = sc->port.link_config[idx];
switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
case PORT_FEATURE_LINK_SPEED_AUTO:
if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
sc->port.advertising[idx] |= sc->port.supported[idx];
if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
sc->port.advertising[idx] |=
(ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full);
} else {
/* force 10G, no AN */
sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
sc->port.advertising[idx] |=
(ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
continue;
}
break;
case PORT_FEATURE_LINK_SPEED_10M_FULL:
if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
ADVERTISED_TP);
} else {
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x\n",
link_config, sc->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_10M_HALF:
if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
sc->link_params.req_duplex[idx] = DUPLEX_HALF;
sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
ADVERTISED_TP);
ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n",
sc->link_params.req_duplex[idx]);
} else {
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x\n",
link_config, sc->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_100M_FULL:
if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
ADVERTISED_TP);
} else {
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x\n",
link_config, sc->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_100M_HALF:
if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
sc->link_params.req_duplex[idx] = DUPLEX_HALF;
sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
ADVERTISED_TP);
} else {
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x\n",
link_config, sc->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_1G:
if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
ADVERTISED_TP);
} else {
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x\n",
link_config, sc->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_2_5G:
if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
ADVERTISED_TP);
} else {
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x\n",
link_config, sc->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_10G_CX4:
if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
ADVERTISED_FIBRE);
} else {
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x\n",
link_config, sc->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_20G:
sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
break;
default:
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x\n",
link_config, sc->link_params.speed_cap_mask[idx]);
sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
sc->port.advertising[idx] = sc->port.supported[idx];
break;
}
sc->link_params.req_flow_ctrl[idx] =
(link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
} else {
bxe_set_requested_fc(sc);
}
}
BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
"req_flow_ctrl=0x%x advertising=0x%x\n",
sc->link_params.req_line_speed[idx],
sc->link_params.req_duplex[idx],
sc->link_params.req_flow_ctrl[idx],
sc->port.advertising[idx]);
ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d "
"advertising=0x%x\n",
sc->link_params.req_line_speed[idx],
sc->link_params.req_duplex[idx],
sc->port.advertising[idx]);
}
}
static void
bxe_get_phy_info(struct bxe_softc *sc)
{
uint8_t port = SC_PORT(sc);
uint32_t config = sc->port.config;
uint32_t eee_mode;
/* shmem data already read in bxe_get_shmem_info() */
ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x "
"link_config0=0x%08x\n",
sc->link_params.lane_config,
sc->link_params.speed_cap_mask[0],
sc->port.link_config[0]);
bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
bxe_link_settings_requested(sc);
if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
sc->link_params.feature_config_flags |=
ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
} else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
sc->link_params.feature_config_flags &=
~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
} else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
sc->link_params.feature_config_flags |=
ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
}
/* configure link feature according to nvram value */
eee_mode =
(((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
ELINK_EEE_MODE_ENABLE_LPI |
ELINK_EEE_MODE_OUTPUT_TIME);
} else {
sc->link_params.eee_mode = 0;
}
/* get the media type */
bxe_media_detect(sc);
ELINK_DEBUG_P1(sc, "detected media type\n", sc->media);
}
static void
bxe_get_params(struct bxe_softc *sc)
{
/* get user tunable params */
bxe_get_tunable_params(sc);
/* select the RX and TX ring sizes */
sc->tx_ring_size = TX_BD_USABLE;
sc->rx_ring_size = RX_BD_USABLE;
/* XXX disable WoL */
sc->wol = 0;
}
static void
bxe_set_modes_bitmap(struct bxe_softc *sc)
{
uint32_t flags = 0;
if (CHIP_REV_IS_FPGA(sc)) {
SET_FLAGS(flags, MODE_FPGA);
} else if (CHIP_REV_IS_EMUL(sc)) {
SET_FLAGS(flags, MODE_EMUL);
} else {
SET_FLAGS(flags, MODE_ASIC);
}
if (CHIP_IS_MODE_4_PORT(sc)) {
SET_FLAGS(flags, MODE_PORT4);
} else {
SET_FLAGS(flags, MODE_PORT2);
}
if (CHIP_IS_E2(sc)) {
SET_FLAGS(flags, MODE_E2);
} else if (CHIP_IS_E3(sc)) {
SET_FLAGS(flags, MODE_E3);
if (CHIP_REV(sc) == CHIP_REV_Ax) {
SET_FLAGS(flags, MODE_E3_A0);
} else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
}
}
if (IS_MF(sc)) {
SET_FLAGS(flags, MODE_MF);
switch (sc->devinfo.mf_info.mf_mode) {
case MULTI_FUNCTION_SD:
SET_FLAGS(flags, MODE_MF_SD);
break;
case MULTI_FUNCTION_SI:
SET_FLAGS(flags, MODE_MF_SI);
break;
case MULTI_FUNCTION_AFEX:
SET_FLAGS(flags, MODE_MF_AFEX);
break;
}
} else {
SET_FLAGS(flags, MODE_SF);
}
#if defined(__LITTLE_ENDIAN)
SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
#else /* __BIG_ENDIAN */
SET_FLAGS(flags, MODE_BIG_ENDIAN);
#endif
INIT_MODE_FLAGS(sc) = flags;
}
static int
bxe_alloc_hsi_mem(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
bus_addr_t busaddr;
int max_agg_queues;
int max_segments;
bus_size_t max_size;
bus_size_t max_seg_size;
char buf[32];
int rc;
int i, j;
/* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
/* allocate the parent bus DMA tag */
rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
1, /* alignment */
0, /* boundary limit */
BUS_SPACE_MAXADDR, /* restricted low */
BUS_SPACE_MAXADDR, /* restricted hi */
NULL, /* addr filter() */
NULL, /* addr filter() arg */
BUS_SPACE_MAXSIZE_32BIT, /* max map size */
BUS_SPACE_UNRESTRICTED, /* num discontinuous */
BUS_SPACE_MAXSIZE_32BIT, /* max seg size */
0, /* flags */
NULL, /* lock() */
NULL, /* lock() arg */
&sc->parent_dma_tag); /* returned dma tag */
if (rc != 0) {
BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
return (1);
}
/************************/
/* DEFAULT STATUS BLOCK */
/************************/
if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
&sc->def_sb_dma, "default status block") != 0) {
/* XXX */
bus_dma_tag_destroy(sc->parent_dma_tag);
return (1);
}
sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
/***************/
/* EVENT QUEUE */
/***************/
if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
&sc->eq_dma, "event queue") != 0) {
/* XXX */
bxe_dma_free(sc, &sc->def_sb_dma);
sc->def_sb = NULL;
bus_dma_tag_destroy(sc->parent_dma_tag);
return (1);
}
sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
/*************/
/* SLOW PATH */
/*************/
if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
&sc->sp_dma, "slow path") != 0) {
/* XXX */
bxe_dma_free(sc, &sc->eq_dma);
sc->eq = NULL;
bxe_dma_free(sc, &sc->def_sb_dma);
sc->def_sb = NULL;
bus_dma_tag_destroy(sc->parent_dma_tag);
return (1);
}
sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
/*******************/
/* SLOW PATH QUEUE */
/*******************/
if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
&sc->spq_dma, "slow path queue") != 0) {
/* XXX */
bxe_dma_free(sc, &sc->sp_dma);
sc->sp = NULL;
bxe_dma_free(sc, &sc->eq_dma);
sc->eq = NULL;
bxe_dma_free(sc, &sc->def_sb_dma);
sc->def_sb = NULL;
bus_dma_tag_destroy(sc->parent_dma_tag);
return (1);
}
sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
/***************************/
/* FW DECOMPRESSION BUFFER */
/***************************/
if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
"fw decompression buffer") != 0) {
/* XXX */
bxe_dma_free(sc, &sc->spq_dma);
sc->spq = NULL;
bxe_dma_free(sc, &sc->sp_dma);
sc->sp = NULL;
bxe_dma_free(sc, &sc->eq_dma);
sc->eq = NULL;
bxe_dma_free(sc, &sc->def_sb_dma);
sc->def_sb = NULL;
bus_dma_tag_destroy(sc->parent_dma_tag);
return (1);
}
sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
if ((sc->gz_strm =
malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
/* XXX */
bxe_dma_free(sc, &sc->gz_buf_dma);
sc->gz_buf = NULL;
bxe_dma_free(sc, &sc->spq_dma);
sc->spq = NULL;
bxe_dma_free(sc, &sc->sp_dma);
sc->sp = NULL;
bxe_dma_free(sc, &sc->eq_dma);
sc->eq = NULL;
bxe_dma_free(sc, &sc->def_sb_dma);
sc->def_sb = NULL;
bus_dma_tag_destroy(sc->parent_dma_tag);
return (1);
}
/*************/
/* FASTPATHS */
/*************/
/* allocate DMA memory for each fastpath structure */
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
fp->sc = sc;
fp->index = i;
/*******************/
/* FP STATUS BLOCK */
/*******************/
snprintf(buf, sizeof(buf), "fp %d status block", i);
if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
&fp->sb_dma, buf) != 0) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to alloc %s\n", buf);
return (1);
} else {
if (CHIP_IS_E2E3(sc)) {
fp->status_block.e2_sb =
(struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
} else {
fp->status_block.e1x_sb =
(struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
}
}
/******************/
/* FP TX BD CHAIN */
/******************/
snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
&fp->tx_dma, buf) != 0) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to alloc %s\n", buf);
return (1);
} else {
fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
}
/* link together the tx bd chain pages */
for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
/* index into the tx bd chain array to last entry per page */
struct eth_tx_next_bd *tx_next_bd =
&fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
/* point to the next page and wrap from last page */
busaddr = (fp->tx_dma.paddr +
(BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
}
/******************/
/* FP RX BD CHAIN */
/******************/
snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
&fp->rx_dma, buf) != 0) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to alloc %s\n", buf);
return (1);
} else {
fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
}
/* link together the rx bd chain pages */
for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
/* index into the rx bd chain array to last entry per page */
struct eth_rx_bd *rx_bd =
&fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
/* point to the next page and wrap from last page */
busaddr = (fp->rx_dma.paddr +
(BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
rx_bd->addr_hi = htole32(U64_HI(busaddr));
rx_bd->addr_lo = htole32(U64_LO(busaddr));
}
/*******************/
/* FP RX RCQ CHAIN */
/*******************/
snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
&fp->rcq_dma, buf) != 0) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to alloc %s\n", buf);
return (1);
} else {
fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
}
/* link together the rcq chain pages */
for (j = 1; j <= RCQ_NUM_PAGES; j++) {
/* index into the rcq chain array to last entry per page */
struct eth_rx_cqe_next_page *rx_cqe_next =
(struct eth_rx_cqe_next_page *)
&fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
/* point to the next page and wrap from last page */
busaddr = (fp->rcq_dma.paddr +
(BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
}
/*******************/
/* FP RX SGE CHAIN */
/*******************/
snprintf(buf, sizeof(buf), "fp %d sge chain", i);
if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
&fp->rx_sge_dma, buf) != 0) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to alloc %s\n", buf);
return (1);
} else {
fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
}
/* link together the sge chain pages */
for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
/* index into the rcq chain array to last entry per page */
struct eth_rx_sge *rx_sge =
&fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
/* point to the next page and wrap from last page */
busaddr = (fp->rx_sge_dma.paddr +
(BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
rx_sge->addr_hi = htole32(U64_HI(busaddr));
rx_sge->addr_lo = htole32(U64_LO(busaddr));
}
/***********************/
/* FP TX MBUF DMA MAPS */
/***********************/
/* set required sizes before mapping to conserve resources */
if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
max_size = BXE_TSO_MAX_SIZE;
max_segments = BXE_TSO_MAX_SEGMENTS;
max_seg_size = BXE_TSO_MAX_SEG_SIZE;
} else {
max_size = (MCLBYTES * BXE_MAX_SEGMENTS);
max_segments = BXE_MAX_SEGMENTS;
max_seg_size = MCLBYTES;
}
/* create a dma tag for the tx mbufs */
rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
1, /* alignment */
0, /* boundary limit */
BUS_SPACE_MAXADDR, /* restricted low */
BUS_SPACE_MAXADDR, /* restricted hi */
NULL, /* addr filter() */
NULL, /* addr filter() arg */
max_size, /* max map size */
max_segments, /* num discontinuous */
max_seg_size, /* max seg size */
0, /* flags */
NULL, /* lock() */
NULL, /* lock() arg */
&fp->tx_mbuf_tag); /* returned dma tag */
if (rc != 0) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma tag for "
"'fp %d tx mbufs' (%d)\n", i, rc);
return (1);
}
/* create dma maps for each of the tx mbuf clusters */
for (j = 0; j < TX_BD_TOTAL; j++) {
if (bus_dmamap_create(fp->tx_mbuf_tag,
BUS_DMA_NOWAIT,
&fp->tx_mbuf_chain[j].m_map)) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma map for "
"'fp %d tx mbuf %d' (%d)\n", i, j, rc);
return (1);
}
}
/***********************/
/* FP RX MBUF DMA MAPS */
/***********************/
/* create a dma tag for the rx mbufs */
rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
1, /* alignment */
0, /* boundary limit */
BUS_SPACE_MAXADDR, /* restricted low */
BUS_SPACE_MAXADDR, /* restricted hi */
NULL, /* addr filter() */
NULL, /* addr filter() arg */
MJUM9BYTES, /* max map size */
1, /* num discontinuous */
MJUM9BYTES, /* max seg size */
0, /* flags */
NULL, /* lock() */
NULL, /* lock() arg */
&fp->rx_mbuf_tag); /* returned dma tag */
if (rc != 0) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma tag for "
"'fp %d rx mbufs' (%d)\n", i, rc);
return (1);
}
/* create dma maps for each of the rx mbuf clusters */
for (j = 0; j < RX_BD_TOTAL; j++) {
if (bus_dmamap_create(fp->rx_mbuf_tag,
BUS_DMA_NOWAIT,
&fp->rx_mbuf_chain[j].m_map)) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma map for "
"'fp %d rx mbuf %d' (%d)\n", i, j, rc);
return (1);
}
}
/* create dma map for the spare rx mbuf cluster */
if (bus_dmamap_create(fp->rx_mbuf_tag,
BUS_DMA_NOWAIT,
&fp->rx_mbuf_spare_map)) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma map for "
"'fp %d spare rx mbuf' (%d)\n", i, rc);
return (1);
}
/***************************/
/* FP RX SGE MBUF DMA MAPS */
/***************************/
/* create a dma tag for the rx sge mbufs */
rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
1, /* alignment */
0, /* boundary limit */
BUS_SPACE_MAXADDR, /* restricted low */
BUS_SPACE_MAXADDR, /* restricted hi */
NULL, /* addr filter() */
NULL, /* addr filter() arg */
BCM_PAGE_SIZE, /* max map size */
1, /* num discontinuous */
BCM_PAGE_SIZE, /* max seg size */
0, /* flags */
NULL, /* lock() */
NULL, /* lock() arg */
&fp->rx_sge_mbuf_tag); /* returned dma tag */
if (rc != 0) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma tag for "
"'fp %d rx sge mbufs' (%d)\n", i, rc);
return (1);
}
/* create dma maps for the rx sge mbuf clusters */
for (j = 0; j < RX_SGE_TOTAL; j++) {
if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
BUS_DMA_NOWAIT,
&fp->rx_sge_mbuf_chain[j].m_map)) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma map for "
"'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
return (1);
}
}
/* create dma map for the spare rx sge mbuf cluster */
if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
BUS_DMA_NOWAIT,
&fp->rx_sge_mbuf_spare_map)) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma map for "
"'fp %d spare rx sge mbuf' (%d)\n", i, rc);
return (1);
}
/***************************/
/* FP RX TPA MBUF DMA MAPS */
/***************************/
/* create dma maps for the rx tpa mbuf clusters */
max_agg_queues = MAX_AGG_QS(sc);
for (j = 0; j < max_agg_queues; j++) {
if (bus_dmamap_create(fp->rx_mbuf_tag,
BUS_DMA_NOWAIT,
&fp->rx_tpa_info[j].bd.m_map)) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma map for "
"'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
return (1);
}
}
/* create dma map for the spare rx tpa mbuf cluster */
if (bus_dmamap_create(fp->rx_mbuf_tag,
BUS_DMA_NOWAIT,
&fp->rx_tpa_info_mbuf_spare_map)) {
/* XXX unwind and free previous fastpath allocations */
BLOGE(sc, "Failed to create dma map for "
"'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
return (1);
}
bxe_init_sge_ring_bit_mask(fp);
}
return (0);
}
static void
bxe_free_hsi_mem(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int max_agg_queues;
int i, j;
if (sc->parent_dma_tag == NULL) {
return; /* assume nothing was allocated */
}
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
/*******************/
/* FP STATUS BLOCK */
/*******************/
bxe_dma_free(sc, &fp->sb_dma);
memset(&fp->status_block, 0, sizeof(fp->status_block));
/******************/
/* FP TX BD CHAIN */
/******************/
bxe_dma_free(sc, &fp->tx_dma);
fp->tx_chain = NULL;
/******************/
/* FP RX BD CHAIN */
/******************/
bxe_dma_free(sc, &fp->rx_dma);
fp->rx_chain = NULL;
/*******************/
/* FP RX RCQ CHAIN */
/*******************/
bxe_dma_free(sc, &fp->rcq_dma);
fp->rcq_chain = NULL;
/*******************/
/* FP RX SGE CHAIN */
/*******************/
bxe_dma_free(sc, &fp->rx_sge_dma);
fp->rx_sge_chain = NULL;
/***********************/
/* FP TX MBUF DMA MAPS */
/***********************/
if (fp->tx_mbuf_tag != NULL) {
for (j = 0; j < TX_BD_TOTAL; j++) {
if (fp->tx_mbuf_chain[j].m_map != NULL) {
bus_dmamap_unload(fp->tx_mbuf_tag,
fp->tx_mbuf_chain[j].m_map);
bus_dmamap_destroy(fp->tx_mbuf_tag,
fp->tx_mbuf_chain[j].m_map);
}
}
bus_dma_tag_destroy(fp->tx_mbuf_tag);
fp->tx_mbuf_tag = NULL;
}
/***********************/
/* FP RX MBUF DMA MAPS */
/***********************/
if (fp->rx_mbuf_tag != NULL) {
for (j = 0; j < RX_BD_TOTAL; j++) {
if (fp->rx_mbuf_chain[j].m_map != NULL) {
bus_dmamap_unload(fp->rx_mbuf_tag,
fp->rx_mbuf_chain[j].m_map);
bus_dmamap_destroy(fp->rx_mbuf_tag,
fp->rx_mbuf_chain[j].m_map);
}
}
if (fp->rx_mbuf_spare_map != NULL) {
bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
}
/***************************/
/* FP RX TPA MBUF DMA MAPS */
/***************************/
max_agg_queues = MAX_AGG_QS(sc);
for (j = 0; j < max_agg_queues; j++) {
if (fp->rx_tpa_info[j].bd.m_map != NULL) {
bus_dmamap_unload(fp->rx_mbuf_tag,
fp->rx_tpa_info[j].bd.m_map);
bus_dmamap_destroy(fp->rx_mbuf_tag,
fp->rx_tpa_info[j].bd.m_map);
}
}
if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
bus_dmamap_unload(fp->rx_mbuf_tag,
fp->rx_tpa_info_mbuf_spare_map);
bus_dmamap_destroy(fp->rx_mbuf_tag,
fp->rx_tpa_info_mbuf_spare_map);
}
bus_dma_tag_destroy(fp->rx_mbuf_tag);
fp->rx_mbuf_tag = NULL;
}
/***************************/
/* FP RX SGE MBUF DMA MAPS */
/***************************/
if (fp->rx_sge_mbuf_tag != NULL) {
for (j = 0; j < RX_SGE_TOTAL; j++) {
if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
bus_dmamap_unload(fp->rx_sge_mbuf_tag,
fp->rx_sge_mbuf_chain[j].m_map);
bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
fp->rx_sge_mbuf_chain[j].m_map);
}
}
if (fp->rx_sge_mbuf_spare_map != NULL) {
bus_dmamap_unload(fp->rx_sge_mbuf_tag,
fp->rx_sge_mbuf_spare_map);
bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
fp->rx_sge_mbuf_spare_map);
}
bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
fp->rx_sge_mbuf_tag = NULL;
}
}
/***************************/
/* FW DECOMPRESSION BUFFER */
/***************************/
bxe_dma_free(sc, &sc->gz_buf_dma);
sc->gz_buf = NULL;
free(sc->gz_strm, M_DEVBUF);
sc->gz_strm = NULL;
/*******************/
/* SLOW PATH QUEUE */
/*******************/
bxe_dma_free(sc, &sc->spq_dma);
sc->spq = NULL;
/*************/
/* SLOW PATH */
/*************/
bxe_dma_free(sc, &sc->sp_dma);
sc->sp = NULL;
/***************/
/* EVENT QUEUE */
/***************/
bxe_dma_free(sc, &sc->eq_dma);
sc->eq = NULL;
/************************/
/* DEFAULT STATUS BLOCK */
/************************/
bxe_dma_free(sc, &sc->def_sb_dma);
sc->def_sb = NULL;
bus_dma_tag_destroy(sc->parent_dma_tag);
sc->parent_dma_tag = NULL;
}
/*
* Previous driver DMAE transaction may have occurred when pre-boot stage
* ended and boot began. This would invalidate the addresses of the
* transaction, resulting in was-error bit set in the PCI causing all
* hw-to-host PCIe transactions to timeout. If this happened we want to clear
* the interrupt which detected this from the pglueb and the was-done bit
*/
static void
bxe_prev_interrupted_dmae(struct bxe_softc *sc)
{
uint32_t val;
if (!CHIP_IS_E1x(sc)) {
val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
BLOGD(sc, DBG_LOAD,
"Clearing 'was-error' bit that was set in pglueb");
REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
}
}
}
static int
bxe_prev_mcp_done(struct bxe_softc *sc)
{
uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
if (!rc) {
BLOGE(sc, "MCP response failure, aborting\n");
return (-1);
}
return (0);
}
static struct bxe_prev_list_node *
bxe_prev_path_get_entry(struct bxe_softc *sc)
{
struct bxe_prev_list_node *tmp;
LIST_FOREACH(tmp, &bxe_prev_list, node) {
if ((sc->pcie_bus == tmp->bus) &&
(sc->pcie_device == tmp->slot) &&
(SC_PATH(sc) == tmp->path)) {
return (tmp);
}
}
return (NULL);
}
static uint8_t
bxe_prev_is_path_marked(struct bxe_softc *sc)
{
struct bxe_prev_list_node *tmp;
int rc = FALSE;
mtx_lock(&bxe_prev_mtx);
tmp = bxe_prev_path_get_entry(sc);
if (tmp) {
if (tmp->aer) {
BLOGD(sc, DBG_LOAD,
"Path %d/%d/%d was marked by AER\n",
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
} else {
rc = TRUE;
BLOGD(sc, DBG_LOAD,
"Path %d/%d/%d was already cleaned from previous drivers\n",
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
}
}
mtx_unlock(&bxe_prev_mtx);
return (rc);
}
static int
bxe_prev_mark_path(struct bxe_softc *sc,
uint8_t after_undi)
{
struct bxe_prev_list_node *tmp;
mtx_lock(&bxe_prev_mtx);
/* Check whether the entry for this path already exists */
tmp = bxe_prev_path_get_entry(sc);
if (tmp) {
if (!tmp->aer) {
BLOGD(sc, DBG_LOAD,
"Re-marking AER in path %d/%d/%d\n",
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
} else {
BLOGD(sc, DBG_LOAD,
"Removing AER indication from path %d/%d/%d\n",
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
tmp->aer = 0;
}
mtx_unlock(&bxe_prev_mtx);
return (0);
}
mtx_unlock(&bxe_prev_mtx);
/* Create an entry for this path and add it */
tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
(M_NOWAIT | M_ZERO));
if (!tmp) {
BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
return (-1);
}
tmp->bus = sc->pcie_bus;
tmp->slot = sc->pcie_device;
tmp->path = SC_PATH(sc);
tmp->aer = 0;
tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
mtx_lock(&bxe_prev_mtx);
BLOGD(sc, DBG_LOAD,
"Marked path %d/%d/%d - finished previous unload\n",
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
mtx_unlock(&bxe_prev_mtx);
return (0);
}
static int
bxe_do_flr(struct bxe_softc *sc)
{
int i;
/* only E2 and onwards support FLR */
if (CHIP_IS_E1x(sc)) {
BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
return (-1);
}
/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
sc->devinfo.bc_ver);
return (-1);
}
/* Wait for Transaction Pending bit clean */
for (i = 0; i < 4; i++) {
if (i) {
DELAY(((1 << (i - 1)) * 100) * 1000);
}
if (!bxe_is_pcie_pending(sc)) {
goto clear;
}
}
BLOGE(sc, "PCIE transaction is not cleared, "
"proceeding with reset anyway\n");
clear:
BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
return (0);
}
struct bxe_mac_vals {
uint32_t xmac_addr;
uint32_t xmac_val;
uint32_t emac_addr;
uint32_t emac_val;
uint32_t umac_addr;
uint32_t umac_val;
uint32_t bmac_addr;
uint32_t bmac_val[2];
};
static void
bxe_prev_unload_close_mac(struct bxe_softc *sc,
struct bxe_mac_vals *vals)
{
uint32_t val, base_addr, offset, mask, reset_reg;
uint8_t mac_stopped = FALSE;
uint8_t port = SC_PORT(sc);
uint32_t wb_data[2];
/* reset addresses as they also mark which values were changed */
vals->bmac_addr = 0;
vals->umac_addr = 0;
vals->xmac_addr = 0;
vals->emac_addr = 0;
reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
if (!CHIP_IS_E3(sc)) {
val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
if ((mask & reset_reg) && val) {
BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
: NIG_REG_INGRESS_BMAC0_MEM;
offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
: BIGMAC_REGISTER_BMAC_CONTROL;
/*
* use rd/wr since we cannot use dmae. This is safe
* since MCP won't access the bus due to the request
* to unload, and no function on the path can be
* loaded at this time.
*/
wb_data[0] = REG_RD(sc, base_addr + offset);
wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
vals->bmac_addr = base_addr + offset;
vals->bmac_val[0] = wb_data[0];
vals->bmac_val[1] = wb_data[1];
wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
REG_WR(sc, vals->bmac_addr, wb_data[0]);
REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
}
BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
vals->emac_val = REG_RD(sc, vals->emac_addr);
REG_WR(sc, vals->emac_addr, 0);
mac_stopped = TRUE;
} else {
if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
vals->xmac_addr = base_addr + XMAC_REG_CTRL;
vals->xmac_val = REG_RD(sc, vals->xmac_addr);
REG_WR(sc, vals->xmac_addr, 0);
mac_stopped = TRUE;
}
mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
if (mask & reset_reg) {
BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
vals->umac_val = REG_RD(sc, vals->umac_addr);
REG_WR(sc, vals->umac_addr, 0);
mac_stopped = TRUE;
}
}
if (mac_stopped) {
DELAY(20000);
}
}
#define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
#define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff)
#define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
static void
bxe_prev_unload_undi_inc(struct bxe_softc *sc,
uint8_t port,
uint8_t inc)
{
uint16_t rcq, bd;
uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
BLOGD(sc, DBG_LOAD,
"UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
port, bd, rcq);
}
static int
bxe_prev_unload_common(struct bxe_softc *sc)
{
uint32_t reset_reg, tmp_reg = 0, rc;
uint8_t prev_undi = FALSE;
struct bxe_mac_vals mac_vals;
uint32_t timer_count = 1000;
uint32_t prev_brb;
/*
* It is possible a previous function received 'common' answer,
* but hasn't loaded yet, therefore creating a scenario of
* multiple functions receiving 'common' on the same path.
*/
BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
memset(&mac_vals, 0, sizeof(mac_vals));
if (bxe_prev_is_path_marked(sc)) {
return (bxe_prev_mcp_done(sc));
}
reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
/* Reset should be performed after BRB is emptied */
if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
/* Close the MAC Rx to prevent BRB from filling up */
bxe_prev_unload_close_mac(sc, &mac_vals);
/* close LLH filters towards the BRB */
elink_set_rx_filter(&sc->link_params, 0);
/*
* Check if the UNDI driver was previously loaded.
* UNDI driver initializes CID offset for normal bell to 0x7
*/
if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
if (tmp_reg == 0x7) {
BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
prev_undi = TRUE;
/* clear the UNDI indication */
REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
/* clear possible idle check errors */
REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
}
}
/* wait until BRB is empty */
tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
while (timer_count) {
prev_brb = tmp_reg;
tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
if (!tmp_reg) {
break;
}
BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
/* reset timer as long as BRB actually gets emptied */
if (prev_brb > tmp_reg) {
timer_count = 1000;
} else {
timer_count--;
}
/* If UNDI resides in memory, manually increment it */
if (prev_undi) {
bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
}
DELAY(10);
}
if (!timer_count) {
BLOGE(sc, "Failed to empty BRB\n");
}
}
/* No packets are in the pipeline, path is ready for reset */
bxe_reset_common(sc);
if (mac_vals.xmac_addr) {
REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
}
if (mac_vals.umac_addr) {
REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
}
if (mac_vals.emac_addr) {
REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
}
if (mac_vals.bmac_addr) {
REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
}
rc = bxe_prev_mark_path(sc, prev_undi);
if (rc) {
bxe_prev_mcp_done(sc);
return (rc);
}
return (bxe_prev_mcp_done(sc));
}
static int
bxe_prev_unload_uncommon(struct bxe_softc *sc)
{
int rc;
BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
/* Test if previous unload process was already finished for this path */
if (bxe_prev_is_path_marked(sc)) {
return (bxe_prev_mcp_done(sc));
}
BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
/*
* If function has FLR capabilities, and existing FW version matches
* the one required, then FLR will be sufficient to clean any residue
* left by previous driver
*/
rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
if (!rc) {
/* fw version is good */
BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
rc = bxe_do_flr(sc);
}
if (!rc) {
/* FLR was performed */
BLOGD(sc, DBG_LOAD, "FLR successful\n");
return (0);
}
BLOGD(sc, DBG_LOAD, "Could not FLR\n");
/* Close the MCP request, return failure*/
rc = bxe_prev_mcp_done(sc);
if (!rc) {
rc = BXE_PREV_WAIT_NEEDED;
}
return (rc);
}
static int
bxe_prev_unload(struct bxe_softc *sc)
{
int time_counter = 10;
uint32_t fw, hw_lock_reg, hw_lock_val;
uint32_t rc = 0;
/*
* Clear HW from errors which may have resulted from an interrupted
* DMAE transaction.
*/
bxe_prev_interrupted_dmae(sc);
/* Release previously held locks */
hw_lock_reg =
(SC_FUNC(sc) <= 5) ?
(MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
(MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
hw_lock_val = (REG_RD(sc, hw_lock_reg));
if (hw_lock_val) {
if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
(MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
}
BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
REG_WR(sc, hw_lock_reg, 0xffffffff);
} else {
BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
}
if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
}
do {
/* Lock MCP using an unload request */
fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
if (!fw) {
BLOGE(sc, "MCP response failure, aborting\n");
rc = -1;
break;
}
if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
rc = bxe_prev_unload_common(sc);
break;
}
/* non-common reply from MCP night require looping */
rc = bxe_prev_unload_uncommon(sc);
if (rc != BXE_PREV_WAIT_NEEDED) {
break;
}
DELAY(20000);
} while (--time_counter);
if (!time_counter || rc) {
BLOGE(sc, "Failed to unload previous driver!"
" time_counter %d rc %d\n", time_counter, rc);
rc = -1;
}
return (rc);
}
void
bxe_dcbx_set_state(struct bxe_softc *sc,
uint8_t dcb_on,
uint32_t dcbx_enabled)
{
if (!CHIP_IS_E1x(sc)) {
sc->dcb_state = dcb_on;
sc->dcbx_enabled = dcbx_enabled;
} else {
sc->dcb_state = FALSE;
sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
}
BLOGD(sc, DBG_LOAD,
"DCB state [%s:%s]\n",
dcb_on ? "ON" : "OFF",
(dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
(dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
(dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
"on-chip with negotiation" : "invalid");
}
/* must be called after sriov-enable */
static int
bxe_set_qm_cid_count(struct bxe_softc *sc)
{
int cid_count = BXE_L2_MAX_CID(sc);
if (IS_SRIOV(sc)) {
cid_count += BXE_VF_CIDS;
}
if (CNIC_SUPPORT(sc)) {
cid_count += CNIC_CID_MAX;
}
return (roundup(cid_count, QM_CID_ROUND));
}
static void
bxe_init_multi_cos(struct bxe_softc *sc)
{
int pri, cos;
uint32_t pri_map = 0; /* XXX change to user config */
for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
if (cos < sc->max_cos) {
sc->prio_to_cos[pri] = cos;
} else {
BLOGW(sc, "Invalid COS %d for priority %d "
"(max COS is %d), setting to 0\n",
cos, pri, (sc->max_cos - 1));
sc->prio_to_cos[pri] = 0;
}
}
}
static int
bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
{
struct bxe_softc *sc;
int error, result;
result = 0;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr) {
return (error);
}
if (result == 1) {
uint32_t temp;
sc = (struct bxe_softc *)arg1;
BLOGI(sc, "... dumping driver state ...\n");
temp = SHMEM2_RD(sc, temperature_in_half_celsius);
BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
}
return (error);
}
static int
bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
{
struct bxe_softc *sc = (struct bxe_softc *)arg1;
uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
uint32_t *offset;
uint64_t value = 0;
int index = (int)arg2;
if (index >= BXE_NUM_ETH_STATS) {
BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
return (-1);
}
offset = (eth_stats + bxe_eth_stats_arr[index].offset);
switch (bxe_eth_stats_arr[index].size) {
case 4:
value = (uint64_t)*offset;
break;
case 8:
value = HILO_U64(*offset, *(offset + 1));
break;
default:
BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
index, bxe_eth_stats_arr[index].size);
return (-1);
}
return (sysctl_handle_64(oidp, &value, 0, req));
}
static int
bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
{
struct bxe_softc *sc = (struct bxe_softc *)arg1;
uint32_t *eth_stats;
uint32_t *offset;
uint64_t value = 0;
uint32_t q_stat = (uint32_t)arg2;
uint32_t fp_index = ((q_stat >> 16) & 0xffff);
uint32_t index = (q_stat & 0xffff);
eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
if (index >= BXE_NUM_ETH_Q_STATS) {
BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
return (-1);
}
offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
switch (bxe_eth_q_stats_arr[index].size) {
case 4:
value = (uint64_t)*offset;
break;
case 8:
value = HILO_U64(*offset, *(offset + 1));
break;
default:
BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
index, bxe_eth_q_stats_arr[index].size);
return (-1);
}
return (sysctl_handle_64(oidp, &value, 0, req));
}
static void bxe_force_link_reset(struct bxe_softc *sc)
{
bxe_acquire_phy_lock(sc);
elink_link_reset(&sc->link_params, &sc->link_vars, 1);
bxe_release_phy_lock(sc);
}
static int
bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS)
{
struct bxe_softc *sc = (struct bxe_softc *)arg1;;
uint32_t cfg_idx = bxe_get_link_cfg_idx(sc);
int rc = 0;
int error;
int result;
error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req);
if (error || !req->newptr) {
return (error);
}
if ((sc->bxe_pause_param < 0) || (sc->bxe_pause_param > 8)) {
BLOGW(sc, "invalid pause param (%d) - use intergers between 1 & 8\n",sc->bxe_pause_param);
sc->bxe_pause_param = 8;
}
result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT);
if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg)) {
BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param);
return -EINVAL;
}
if(IS_MF(sc))
return 0;
sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO;
if(result & ELINK_FLOW_CTRL_RX)
sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX;
if(result & ELINK_FLOW_CTRL_TX)
sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX;
if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO)
sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE;
if(result & 0x400) {
if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) {
sc->link_params.req_flow_ctrl[cfg_idx] =
ELINK_FLOW_CTRL_AUTO;
}
sc->link_params.req_fc_auto_adv = 0;
if (result & ELINK_FLOW_CTRL_RX)
sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX;
if (result & ELINK_FLOW_CTRL_TX)
sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX;
if (!sc->link_params.req_fc_auto_adv)
sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE;
}
if (IS_PF(sc)) {
if (sc->link_vars.link_up) {
bxe_stats_handle(sc, STATS_EVENT_STOP);
}
if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
bxe_force_link_reset(sc);
bxe_acquire_phy_lock(sc);
rc = elink_phy_init(&sc->link_params, &sc->link_vars);
bxe_release_phy_lock(sc);
bxe_calc_fc_adv(sc);
}
}
return rc;
}
static void
bxe_add_sysctls(struct bxe_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
struct sysctl_oid *queue_top, *queue;
struct sysctl_oid_list *queue_top_children, *queue_children;
char queue_num_buf[32];
uint32_t q_stat;
int i, j;
ctx = device_get_sysctl_ctx(sc->dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
"version");
snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
BCM_5710_FW_MAJOR_VERSION,
BCM_5710_FW_MINOR_VERSION,
BCM_5710_FW_REVISION_VERSION,
BCM_5710_FW_ENGINEERING_VERSION);
snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" :
(sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" :
(sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" :
(sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
"Unknown"));
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
"multifunction vnics per port");
snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
(sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
(sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
"???GT/s"),
sc->devinfo.pcie_link_width);
sc->debug = bxe_debug;
#if __FreeBSD_version >= 900000
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
"bootcode version");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
CTLFLAG_RD, sc->fw_ver_str, 0,
"firmware version");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
CTLFLAG_RD, sc->mf_mode_str, 0,
"multifunction mode");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
CTLFLAG_RD, sc->mac_addr_str, 0,
"mac address");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
CTLFLAG_RD, sc->pci_link_str, 0,
"pci link status");
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
CTLFLAG_RW, &sc->debug,
"debug logging mode");
#else
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
"bootcode version");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
CTLFLAG_RD, &sc->fw_ver_str, 0,
"firmware version");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
CTLFLAG_RD, &sc->mf_mode_str, 0,
"multifunction mode");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
CTLFLAG_RD, &sc->mac_addr_str, 0,
"mac address");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
CTLFLAG_RD, &sc->pci_link_str, 0,
"pci link status");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
CTLFLAG_RW, &sc->debug, 0,
"debug logging mode");
#endif /* #if __FreeBSD_version >= 900000 */
sc->trigger_grcdump = 0;
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
CTLFLAG_RW, &sc->trigger_grcdump, 0,
"trigger grcdump should be invoked"
" before collecting grcdump");
sc->grcdump_started = 0;
sc->grcdump_done = 0;
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
CTLFLAG_RD, &sc->grcdump_done, 0,
"set by driver when grcdump is done");
sc->rx_budget = bxe_rx_budget;
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
CTLFLAG_RW, &sc->rx_budget, 0,
"rx processing budget");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param",
CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
bxe_sysctl_pauseparam, "IU",
"need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
bxe_sysctl_state, "IU", "dump driver state");
for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
bxe_eth_stats_arr[i].string,
CTLTYPE_U64 | CTLFLAG_RD, sc, i,
bxe_sysctl_eth_stat, "LU",
bxe_eth_stats_arr[i].string);
}
/* add a new parent node for all queues "dev.bxe.#.queue" */
queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
CTLFLAG_RD, NULL, "queue");
queue_top_children = SYSCTL_CHILDREN(queue_top);
for (i = 0; i < sc->num_queues; i++) {
/* add a new parent node for a single queue "dev.bxe.#.queue.#" */
snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
queue_num_buf, CTLFLAG_RD, NULL,
"single queue");
queue_children = SYSCTL_CHILDREN(queue);
for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
q_stat = ((i << 16) | j);
SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
bxe_eth_q_stats_arr[j].string,
CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
bxe_sysctl_eth_q_stat, "LU",
bxe_eth_q_stats_arr[j].string);
}
}
}
static int
bxe_alloc_buf_rings(struct bxe_softc *sc)
{
#if __FreeBSD_version >= 901504
int i;
struct bxe_fastpath *fp;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
M_NOWAIT, &fp->tx_mtx);
if (fp->tx_br == NULL)
return (-1);
}
#endif
return (0);
}
static void
bxe_free_buf_rings(struct bxe_softc *sc)
{
#if __FreeBSD_version >= 901504
int i;
struct bxe_fastpath *fp;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if (fp->tx_br) {
buf_ring_free(fp->tx_br, M_DEVBUF);
fp->tx_br = NULL;
}
}
#endif
}
static void
bxe_init_fp_mutexs(struct bxe_softc *sc)
{
int i;
struct bxe_fastpath *fp;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
"bxe%d_fp%d_tx_lock", sc->unit, i);
mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
"bxe%d_fp%d_rx_lock", sc->unit, i);
mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
}
}
static void
bxe_destroy_fp_mutexs(struct bxe_softc *sc)
{
int i;
struct bxe_fastpath *fp;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if (mtx_initialized(&fp->tx_mtx)) {
mtx_destroy(&fp->tx_mtx);
}
if (mtx_initialized(&fp->rx_mtx)) {
mtx_destroy(&fp->rx_mtx);
}
}
}
/*
* Device attach function.
*
* Allocates device resources, performs secondary chip identification, and
* initializes driver instance variables. This function is called from driver
* load after a successful probe.
*
* Returns:
* 0 = Success, >0 = Failure
*/
static int
bxe_attach(device_t dev)
{
struct bxe_softc *sc;
sc = device_get_softc(dev);
BLOGD(sc, DBG_LOAD, "Starting attach...\n");
sc->state = BXE_STATE_CLOSED;
sc->dev = dev;
sc->unit = device_get_unit(dev);
BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
sc->pcie_bus = pci_get_bus(dev);
sc->pcie_device = pci_get_slot(dev);
sc->pcie_func = pci_get_function(dev);
/* enable bus master capability */
pci_enable_busmaster(dev);
/* get the BARs */
if (bxe_allocate_bars(sc) != 0) {
return (ENXIO);
}
/* initialize the mutexes */
bxe_init_mutexes(sc);
/* prepare the periodic callout */
callout_init(&sc->periodic_callout, 0);
/* prepare the chip taskqueue */
sc->chip_tq_flags = CHIP_TQ_NONE;
snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
"bxe%d_chip_tq", sc->unit);
TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
taskqueue_thread_enqueue,
&sc->chip_tq);
taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
"%s", sc->chip_tq_name);
TIMEOUT_TASK_INIT(taskqueue_thread,
&sc->sp_err_timeout_task, 0, bxe_sp_err_timeout_task, sc);
/* get device info and set params */
if (bxe_get_device_info(sc) != 0) {
BLOGE(sc, "getting device info\n");
bxe_deallocate_bars(sc);
pci_disable_busmaster(dev);
return (ENXIO);
}
/* get final misc params */
bxe_get_params(sc);
/* set the default MTU (changed via ifconfig) */
sc->mtu = ETHERMTU;
bxe_set_modes_bitmap(sc);
/* XXX
* If in AFEX mode and the function is configured for FCoE
* then bail... no L2 allowed.
*/
/* get phy settings from shmem and 'and' against admin settings */
bxe_get_phy_info(sc);
/* initialize the FreeBSD ifnet interface */
if (bxe_init_ifnet(sc) != 0) {
bxe_release_mutexes(sc);
bxe_deallocate_bars(sc);
pci_disable_busmaster(dev);
return (ENXIO);
}
if (bxe_add_cdev(sc) != 0) {
if (sc->ifp != NULL) {
ether_ifdetach(sc->ifp);
}
ifmedia_removeall(&sc->ifmedia);
bxe_release_mutexes(sc);
bxe_deallocate_bars(sc);
pci_disable_busmaster(dev);
return (ENXIO);
}
/* allocate device interrupts */
if (bxe_interrupt_alloc(sc) != 0) {
bxe_del_cdev(sc);
if (sc->ifp != NULL) {
ether_ifdetach(sc->ifp);
}
ifmedia_removeall(&sc->ifmedia);
bxe_release_mutexes(sc);
bxe_deallocate_bars(sc);
pci_disable_busmaster(dev);
return (ENXIO);
}
bxe_init_fp_mutexs(sc);
if (bxe_alloc_buf_rings(sc) != 0) {
bxe_free_buf_rings(sc);
bxe_interrupt_free(sc);
bxe_del_cdev(sc);
if (sc->ifp != NULL) {
ether_ifdetach(sc->ifp);
}
ifmedia_removeall(&sc->ifmedia);
bxe_release_mutexes(sc);
bxe_deallocate_bars(sc);
pci_disable_busmaster(dev);
return (ENXIO);
}
/* allocate ilt */
if (bxe_alloc_ilt_mem(sc) != 0) {
bxe_free_buf_rings(sc);
bxe_interrupt_free(sc);
bxe_del_cdev(sc);
if (sc->ifp != NULL) {
ether_ifdetach(sc->ifp);
}
ifmedia_removeall(&sc->ifmedia);
bxe_release_mutexes(sc);
bxe_deallocate_bars(sc);
pci_disable_busmaster(dev);
return (ENXIO);
}
/* allocate the host hardware/software hsi structures */
if (bxe_alloc_hsi_mem(sc) != 0) {
bxe_free_ilt_mem(sc);
bxe_free_buf_rings(sc);
bxe_interrupt_free(sc);
bxe_del_cdev(sc);
if (sc->ifp != NULL) {
ether_ifdetach(sc->ifp);
}
ifmedia_removeall(&sc->ifmedia);
bxe_release_mutexes(sc);
bxe_deallocate_bars(sc);
pci_disable_busmaster(dev);
return (ENXIO);
}
/* need to reset chip if UNDI was active */
if (IS_PF(sc) && !BXE_NOMCP(sc)) {
/* init fw_seq */
sc->fw_seq =
(SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
DRV_MSG_SEQ_NUMBER_MASK);
BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
bxe_prev_unload(sc);
}
#if 1
/* XXX */
bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
#else
if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
bxe_dcbx_init_params(sc);
} else {
bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
}
#endif
/* calculate qm_cid_count */
sc->qm_cid_count = bxe_set_qm_cid_count(sc);
BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
sc->max_cos = 1;
bxe_init_multi_cos(sc);
bxe_add_sysctls(sc);
return (0);
}
/*
* Device detach function.
*
* Stops the controller, resets the controller, and releases resources.
*
* Returns:
* 0 = Success, >0 = Failure
*/
static int
bxe_detach(device_t dev)
{
struct bxe_softc *sc;
if_t ifp;
sc = device_get_softc(dev);
BLOGD(sc, DBG_LOAD, "Starting detach...\n");
ifp = sc->ifp;
if (ifp != NULL && if_vlantrunkinuse(ifp)) {
BLOGE(sc, "Cannot detach while VLANs are in use.\n");
return(EBUSY);
}
bxe_del_cdev(sc);
/* stop the periodic callout */
bxe_periodic_stop(sc);
/* stop the chip taskqueue */
atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
if (sc->chip_tq) {
taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
taskqueue_free(sc->chip_tq);
sc->chip_tq = NULL;
taskqueue_drain_timeout(taskqueue_thread,
&sc->sp_err_timeout_task);
}
/* stop and reset the controller if it was open */
if (sc->state != BXE_STATE_CLOSED) {
BXE_CORE_LOCK(sc);
bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
sc->state = BXE_STATE_DISABLED;
BXE_CORE_UNLOCK(sc);
}
/* release the network interface */
if (ifp != NULL) {
ether_ifdetach(ifp);
}
ifmedia_removeall(&sc->ifmedia);
/* XXX do the following based on driver state... */
/* free the host hardware/software hsi structures */
bxe_free_hsi_mem(sc);
/* free ilt */
bxe_free_ilt_mem(sc);
bxe_free_buf_rings(sc);
/* release the interrupts */
bxe_interrupt_free(sc);
/* Release the mutexes*/
bxe_destroy_fp_mutexs(sc);
bxe_release_mutexes(sc);
/* Release the PCIe BAR mapped memory */
bxe_deallocate_bars(sc);
/* Release the FreeBSD interface. */
if (sc->ifp != NULL) {
if_free(sc->ifp);
}
pci_disable_busmaster(dev);
return (0);
}
/*
* Device shutdown function.
*
* Stops and resets the controller.
*
* Returns:
* Nothing
*/
static int
bxe_shutdown(device_t dev)
{
struct bxe_softc *sc;
sc = device_get_softc(dev);
BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
/* stop the periodic callout */
bxe_periodic_stop(sc);
if (sc->state != BXE_STATE_CLOSED) {
BXE_CORE_LOCK(sc);
bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
BXE_CORE_UNLOCK(sc);
}
return (0);
}
void
bxe_igu_ack_sb(struct bxe_softc *sc,
uint8_t igu_sb_id,
uint8_t segment,
uint16_t index,
uint8_t op,
uint8_t update)
{
uint32_t igu_addr = sc->igu_base_addr;
igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
}
static void
bxe_igu_clear_sb_gen(struct bxe_softc *sc,
uint8_t func,
uint8_t idu_sb_id,
uint8_t is_pf)
{
uint32_t data, ctl, cnt = 100;
uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
uint32_t sb_bit = 1 << (idu_sb_id%32);
uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
/* Not supported in BC mode */
if (CHIP_INT_MODE_IS_BC(sc)) {
return;
}
data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
IGU_REGULAR_CLEANUP_SET |
IGU_REGULAR_BCLEANUP);
ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
(func_encode << IGU_CTRL_REG_FID_SHIFT) |
(IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
data, igu_addr_data);
REG_WR(sc, igu_addr_data, data);
bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
BUS_SPACE_BARRIER_WRITE);
mb();
BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
ctl, igu_addr_ctl);
REG_WR(sc, igu_addr_ctl, ctl);
bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
BUS_SPACE_BARRIER_WRITE);
mb();
/* wait for clean up to finish */
while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
DELAY(20000);
}
if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
BLOGD(sc, DBG_LOAD,
"Unable to finish IGU cleanup: "
"idu_sb_id %d offset %d bit %d (cnt %d)\n",
idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
}
}
static void
bxe_igu_clear_sb(struct bxe_softc *sc,
uint8_t idu_sb_id)
{
bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
}
/*******************/
/* ECORE CALLBACKS */
/*******************/
static void
bxe_reset_common(struct bxe_softc *sc)
{
uint32_t val = 0x1400;
/* reset_common */
REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
if (CHIP_IS_E3(sc)) {
val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
}
REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
}
static void
bxe_common_init_phy(struct bxe_softc *sc)
{
uint32_t shmem_base[2];
uint32_t shmem2_base[2];
/* Avoid common init in case MFW supports LFA */
if (SHMEM2_RD(sc, size) >
(uint32_t)offsetof(struct shmem2_region,
lfa_host_addr[SC_PORT(sc)])) {
return;
}
shmem_base[0] = sc->devinfo.shmem_base;
shmem2_base[0] = sc->devinfo.shmem2_base;
if (!CHIP_IS_E1x(sc)) {
shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
}
bxe_acquire_phy_lock(sc);
elink_common_init_phy(sc, shmem_base, shmem2_base,
sc->devinfo.chip_id, 0);
bxe_release_phy_lock(sc);
}
static void
bxe_pf_disable(struct bxe_softc *sc)
{
uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
val &= ~IGU_PF_CONF_FUNC_EN;
REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
}
static void
bxe_init_pxp(struct bxe_softc *sc)
{
uint16_t devctl;
int r_order, w_order;
devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
if (sc->mrrs == -1) {
r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
} else {
BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
r_order = sc->mrrs;
}
ecore_init_pxp_arb(sc, r_order, w_order);
}
static uint32_t
bxe_get_pretend_reg(struct bxe_softc *sc)
{
uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
return (base + (SC_ABS_FUNC(sc)) * stride);
}
/*
* Called only on E1H or E2.
* When pretending to be PF, the pretend value is the function number 0..7.
* When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
* combination.
*/
static int
bxe_pretend_func(struct bxe_softc *sc,
uint16_t pretend_func_val)
{
uint32_t pretend_reg;
if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
return (-1);
}
/* get my own pretend register */
pretend_reg = bxe_get_pretend_reg(sc);
REG_WR(sc, pretend_reg, pretend_func_val);
REG_RD(sc, pretend_reg);
return (0);
}
static void
bxe_iov_init_dmae(struct bxe_softc *sc)
{
return;
}
static void
bxe_iov_init_dq(struct bxe_softc *sc)
{
return;
}
/* send a NIG loopback debug packet */
static void
bxe_lb_pckt(struct bxe_softc *sc)
{
uint32_t wb_write[3];
/* Ethernet source and destination addresses */
wb_write[0] = 0x55555555;
wb_write[1] = 0x55555555;
wb_write[2] = 0x20; /* SOP */
REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
/* NON-IP protocol */
wb_write[0] = 0x09000000;
wb_write[1] = 0x55555555;
wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
}
/*
* Some of the internal memories are not directly readable from the driver.
* To test them we send debug packets.
*/
static int
bxe_int_mem_test(struct bxe_softc *sc)
{
int factor;
int count, i;
uint32_t val = 0;
if (CHIP_REV_IS_FPGA(sc)) {
factor = 120;
} else if (CHIP_REV_IS_EMUL(sc)) {
factor = 200;
} else {
factor = 1;
}
/* disable inputs of parser neighbor blocks */
REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
REG_WR(sc, CFC_REG_DEBUG0, 0x1);
REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
/* write 0 to parser credits for CFC search request */
REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
/* send Ethernet packet */
bxe_lb_pckt(sc);
/* TODO do i reset NIG statistic? */
/* Wait until NIG register shows 1 packet of size 0x10 */
count = 1000 * factor;
while (count) {
bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
val = *BXE_SP(sc, wb_data[0]);
if (val == 0x10) {
break;
}
DELAY(10000);
count--;
}
if (val != 0x10) {
BLOGE(sc, "NIG timeout val=0x%x\n", val);
return (-1);
}
/* wait until PRS register shows 1 packet */
count = (1000 * factor);
while (count) {
val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
if (val == 1) {
break;
}
DELAY(10000);
count--;
}
if (val != 0x1) {
BLOGE(sc, "PRS timeout val=0x%x\n", val);
return (-2);
}
/* Reset and init BRB, PRS */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
DELAY(50000);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
DELAY(50000);
ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
/* Disable inputs of parser neighbor blocks */
REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
REG_WR(sc, CFC_REG_DEBUG0, 0x1);
REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
/* Write 0 to parser credits for CFC search request */
REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
/* send 10 Ethernet packets */
for (i = 0; i < 10; i++) {
bxe_lb_pckt(sc);
}
/* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
count = (1000 * factor);
while (count) {
bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
val = *BXE_SP(sc, wb_data[0]);
if (val == 0xb0) {
break;
}
DELAY(10000);
count--;
}
if (val != 0xb0) {
BLOGE(sc, "NIG timeout val=0x%x\n", val);
return (-3);
}
/* Wait until PRS register shows 2 packets */
val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
if (val != 2) {
BLOGE(sc, "PRS timeout val=0x%x\n", val);
}
/* Write 1 to parser credits for CFC search request */
REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
/* Wait until PRS register shows 3 packets */
DELAY(10000 * factor);
/* Wait until NIG register shows 1 packet of size 0x10 */
val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
if (val != 3) {
BLOGE(sc, "PRS timeout val=0x%x\n", val);
}
/* clear NIG EOP FIFO */
for (i = 0; i < 11; i++) {
REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
}
val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
if (val != 1) {
BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
return (-4);
}
/* Reset and init BRB, PRS, NIG */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
DELAY(50000);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
DELAY(50000);
ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
if (!CNIC_SUPPORT(sc)) {
/* set NIC mode */
REG_WR(sc, PRS_REG_NIC_MODE, 1);
}
/* Enable inputs of parser neighbor blocks */
REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
REG_WR(sc, CFC_REG_DEBUG0, 0x0);
REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
return (0);
}
static void
bxe_setup_fan_failure_detection(struct bxe_softc *sc)
{
int is_required;
uint32_t val;
int port;
is_required = 0;
val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
SHARED_HW_CFG_FAN_FAILURE_MASK);
if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
is_required = 1;
}
/*
* The fan failure mechanism is usually related to the PHY type since
* the power consumption of the board is affected by the PHY. Currently,
* fan is required for most designs with SFX7101, BCM8727 and BCM8481.
*/
else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
for (port = PORT_0; port < PORT_MAX; port++) {
is_required |= elink_fan_failure_det_req(sc,
sc->devinfo.shmem_base,
sc->devinfo.shmem2_base,
port);
}
}
BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
if (is_required == 0) {
return;
}
/* Fan failure is indicated by SPIO 5 */
bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
/* set to active low mode */
val = REG_RD(sc, MISC_REG_SPIO_INT);
val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
REG_WR(sc, MISC_REG_SPIO_INT, val);
/* enable interrupt to signal the IGU */
val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
val |= MISC_SPIO_SPIO5;
REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
}
static void
bxe_enable_blocks_attention(struct bxe_softc *sc)
{
uint32_t val;
REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
} else {
REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
}
REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
/*
* mask read length error interrupts in brb for parser
* (parsing unit and 'checksum and crc' unit)
* these errors are legal (PU reads fixed length and CAC can cause
* read length error on truncated packets)
*/
REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
REG_WR(sc, QM_REG_QM_INT_MASK, 0);
REG_WR(sc, TM_REG_TM_INT_MASK, 0);
REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
/* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
/* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
/* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
/* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
/* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
/* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
if (!CHIP_IS_E1x(sc)) {
val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
}
REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
/* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
if (!CHIP_IS_E1x(sc)) {
/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
}
REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
/* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
}
/**
* bxe_init_hw_common - initialize the HW at the COMMON phase.
*
* @sc: driver handle
*/
static int
bxe_init_hw_common(struct bxe_softc *sc)
{
uint8_t abs_func_id;
uint32_t val;
BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
SC_ABS_FUNC(sc));
/*
* take the RESET lock to protect undi_unload flow from accessing
* registers while we are resetting the chip
*/
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
bxe_reset_common(sc);
REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
val = 0xfffc;
if (CHIP_IS_E3(sc)) {
val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
}
REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
BLOGD(sc, DBG_LOAD, "after misc block init\n");
if (!CHIP_IS_E1x(sc)) {
/*
* 4-port mode or 2-port mode we need to turn off master-enable for
* everyone. After that we turn it back on for self. So, we disregard
* multi-function, and always disable all functions on the given path,
* this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
*/
for (abs_func_id = SC_PATH(sc);
abs_func_id < (E2_FUNC_MAX * 2);
abs_func_id += 2) {
if (abs_func_id == SC_ABS_FUNC(sc)) {
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
continue;
}
bxe_pretend_func(sc, abs_func_id);
/* clear pf enable */
bxe_pf_disable(sc);
bxe_pretend_func(sc, SC_ABS_FUNC(sc));
}
}
BLOGD(sc, DBG_LOAD, "after pf disable\n");
ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
if (CHIP_IS_E1(sc)) {
/*
* enable HW interrupt from PXP on USDM overflow
* bit 16 on INT_MASK_0
*/
REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
}
ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
bxe_init_pxp(sc);
#ifdef __BIG_ENDIAN
REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
/* make sure this value is 0 */
REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
//REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
#endif
ecore_ilt_init_page_size(sc, INITOP_SET);
if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
}
/* let the HW do it's magic... */
DELAY(100000);
/* finish PXP init */
val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
if (val != 1) {
BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
val);
return (-1);
}
val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
if (val != 1) {
BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
return (-1);
}
BLOGD(sc, DBG_LOAD, "after pxp init\n");
/*
* Timer bug workaround for E2 only. We need to set the entire ILT to have
* entries with value "0" and valid bit on. This needs to be done by the
* first PF that is loaded in a path (i.e. common phase)
*/
if (!CHIP_IS_E1x(sc)) {
/*
* In E2 there is a bug in the timers block that can cause function 6 / 7
* (i.e. vnic3) to start even if it is marked as "scan-off".
* This occurs when a different function (func2,3) is being marked
* as "scan-off". Real-life scenario for example: if a driver is being
* load-unloaded while func6,7 are down. This will cause the timer to access
* the ilt, translate to a logical address and send a request to read/write.
* Since the ilt for the function that is down is not valid, this will cause
* a translation error which is unrecoverable.
* The Workaround is intended to make sure that when this happens nothing
* fatal will occur. The workaround:
* 1. First PF driver which loads on a path will:
* a. After taking the chip out of reset, by using pretend,
* it will write "0" to the following registers of
* the other vnics.
* REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
* REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
* REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
* And for itself it will write '1' to
* PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
* dmae-operations (writing to pram for example.)
* note: can be done for only function 6,7 but cleaner this
* way.
* b. Write zero+valid to the entire ILT.
* c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
* VNIC3 (of that port). The range allocated will be the
* entire ILT. This is needed to prevent ILT range error.
* 2. Any PF driver load flow:
* a. ILT update with the physical addresses of the allocated
* logical pages.
* b. Wait 20msec. - note that this timeout is needed to make
* sure there are no requests in one of the PXP internal
* queues with "old" ILT addresses.
* c. PF enable in the PGLC.
* d. Clear the was_error of the PF in the PGLC. (could have
* occurred while driver was down)
* e. PF enable in the CFC (WEAK + STRONG)
* f. Timers scan enable
* 3. PF driver unload flow:
* a. Clear the Timers scan_en.
* b. Polling for scan_on=0 for that PF.
* c. Clear the PF enable bit in the PXP.
* d. Clear the PF enable in the CFC (WEAK + STRONG)
* e. Write zero+valid to all ILT entries (The valid bit must
* stay set)
* f. If this is VNIC 3 of a port then also init
* first_timers_ilt_entry to zero and last_timers_ilt_entry
* to the last enrty in the ILT.
*
* Notes:
* Currently the PF error in the PGLC is non recoverable.
* In the future the there will be a recovery routine for this error.
* Currently attention is masked.
* Having an MCP lock on the load/unload process does not guarantee that
* there is no Timer disable during Func6/7 enable. This is because the
* Timers scan is currently being cleared by the MCP on FLR.
* Step 2.d can be done only for PF6/7 and the driver can also check if
* there is error before clearing it. But the flow above is simpler and
* more general.
* All ILT entries are written by zero+valid and not just PF6/7
* ILT entries since in the future the ILT entries allocation for
* PF-s might be dynamic.
*/
struct ilt_client_info ilt_cli;
struct ecore_ilt ilt;
memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
memset(&ilt, 0, sizeof(struct ecore_ilt));
/* initialize dummy TM client */
ilt_cli.start = 0;
ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
ilt_cli.client_num = ILT_CLIENT_TM;
/*
* Step 1: set zeroes to all ilt page entries with valid bit on
* Step 2: set the timers first/last ilt entry to point
* to the entire range to prevent ILT range error for 3rd/4th
* vnic (this code assumes existence of the vnic)
*
* both steps performed by call to ecore_ilt_client_init_op()
* with dummy TM client
*
* we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
* and his brother are split registers
*/
bxe_pretend_func(sc, (SC_PATH(sc) + 6));
ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
bxe_pretend_func(sc, SC_ABS_FUNC(sc));
REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
}
REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
if (!CHIP_IS_E1x(sc)) {
int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
(CHIP_REV_IS_FPGA(sc) ? 400 : 0);
ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
/* let the HW do it's magic... */
do {
DELAY(200000);
val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
} while (factor-- && (val != 1));
if (val != 1) {
BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
return (-1);
}
}
BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
bxe_iov_init_dmae(sc);
/* clean the DMAE memory */
sc->dmae_ready = 1;
ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
/* QM queues pointers table */
ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
/* soft reset pulse */
REG_WR(sc, QM_REG_SOFT_RESET, 1);
REG_WR(sc, QM_REG_SOFT_RESET, 0);
if (CNIC_SUPPORT(sc))
ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
if (!CHIP_REV_IS_SLOW(sc)) {
/* enable hw interrupt from doorbell Q */
REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
}
ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
if (!CHIP_IS_E1(sc)) {
REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
}
if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
if (IS_MF_AFEX(sc)) {
/*
* configure that AFEX and VLAN headers must be
* received in AFEX mode
*/
REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
} else {
/*
* Bit-map indicating which L2 hdrs may appear
* after the basic Ethernet header
*/
REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
}
}
ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
if (!CHIP_IS_E1x(sc)) {
/* reset VFC memories */
REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
VFC_MEMORIES_RST_REG_CAM_RST |
VFC_MEMORIES_RST_REG_RAM_RST);
REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
VFC_MEMORIES_RST_REG_CAM_RST |
VFC_MEMORIES_RST_REG_RAM_RST);
DELAY(20000);
}
ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
/* sync semi rtc */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
0x80000000);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
0x80000000);
ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
if (!CHIP_IS_E1x(sc)) {
if (IS_MF_AFEX(sc)) {
/*
* configure that AFEX and VLAN headers must be
* sent in AFEX mode
*/
REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
} else {
REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
}
}
REG_WR(sc, SRC_REG_SOFT_RST, 1);
ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
if (CNIC_SUPPORT(sc)) {
REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
}
REG_WR(sc, SRC_REG_SOFT_RST, 0);
if (sizeof(union cdu_context) != 1024) {
/* we currently assume that a context is 1024 bytes */
BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
(long)sizeof(union cdu_context));
}
ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
val = (4 << 24) + (0 << 12) + 1024;
REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
/* enable context validation interrupt from CFC */
REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
/* set the thresholds to prevent CFC/CDU race */
REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
}
ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
/* Reset PCIE errors for debug */
REG_WR(sc, 0x2814, 0xffffffff);
REG_WR(sc, 0x3820, 0xffffffff);
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
(PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
(PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
(PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
}
ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
if (!CHIP_IS_E1(sc)) {
/* in E3 this done in per-port section */
if (!CHIP_IS_E3(sc))
REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
}
if (CHIP_IS_E1H(sc)) {
/* not applicable for E2 (and above ...) */
REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
}
if (CHIP_REV_IS_SLOW(sc)) {
DELAY(200000);
}
/* finish CFC init */
val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
if (val != 1) {
BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
return (-1);
}
val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
if (val != 1) {
BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
return (-1);
}
val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
if (val != 1) {
BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
return (-1);
}
REG_WR(sc, CFC_REG_DEBUG0, 0);
if (CHIP_IS_E1(sc)) {
/* read NIG statistic to see if this is our first up since powerup */
bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
val = *BXE_SP(sc, wb_data[0]);
/* do internal memory self test */
if ((val == 0) && bxe_int_mem_test(sc)) {
BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
return (-1);
}
}
bxe_setup_fan_failure_detection(sc);
/* clear PXP2 attentions */
REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
bxe_enable_blocks_attention(sc);
if (!CHIP_REV_IS_SLOW(sc)) {
ecore_enable_blocks_parity(sc);
}
if (!BXE_NOMCP(sc)) {
if (CHIP_IS_E1x(sc)) {
bxe_common_init_phy(sc);
}
}
return (0);
}
/**
* bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
*
* @sc: driver handle
*/
static int
bxe_init_hw_common_chip(struct bxe_softc *sc)
{
int rc = bxe_init_hw_common(sc);
if (rc) {
BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
return (rc);
}
/* In E2 2-PORT mode, same ext phy is used for the two paths */
if (!BXE_NOMCP(sc)) {
bxe_common_init_phy(sc);
}
return (0);
}
static int
bxe_init_hw_port(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
uint32_t low, high;
uint32_t val;
BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
ecore_init_block(sc, BLOCK_MISC, init_phase);
ecore_init_block(sc, BLOCK_PXP, init_phase);
ecore_init_block(sc, BLOCK_PXP2, init_phase);
/*
* Timers bug workaround: disables the pf_master bit in pglue at
* common phase, we need to enable it here before any dmae access are
* attempted. Therefore we manually added the enable-master to the
* port phase (it also happens in the function phase)
*/
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
}
ecore_init_block(sc, BLOCK_ATC, init_phase);
ecore_init_block(sc, BLOCK_DMAE, init_phase);
ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
ecore_init_block(sc, BLOCK_QM, init_phase);
ecore_init_block(sc, BLOCK_TCM, init_phase);
ecore_init_block(sc, BLOCK_UCM, init_phase);
ecore_init_block(sc, BLOCK_CCM, init_phase);
ecore_init_block(sc, BLOCK_XCM, init_phase);
/* QM cid (connection) count */
ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
if (CNIC_SUPPORT(sc)) {
ecore_init_block(sc, BLOCK_TM, init_phase);
REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
}
ecore_init_block(sc, BLOCK_DORQ, init_phase);
ecore_init_block(sc, BLOCK_BRB1, init_phase);
if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
if (IS_MF(sc)) {
low = (BXE_ONE_PORT(sc) ? 160 : 246);
} else if (sc->mtu > 4096) {
if (BXE_ONE_PORT(sc)) {
low = 160;
} else {
val = sc->mtu;
/* (24*1024 + val*4)/256 */
low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
}
} else {
low = (BXE_ONE_PORT(sc) ? 80 : 160);
}
high = (low + 56); /* 14*1024/256 */
REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
}
if (CHIP_IS_MODE_4_PORT(sc)) {
REG_WR(sc, SC_PORT(sc) ?
BRB1_REG_MAC_GUARANTIED_1 :
BRB1_REG_MAC_GUARANTIED_0, 40);
}
ecore_init_block(sc, BLOCK_PRS, init_phase);
if (CHIP_IS_E3B0(sc)) {
if (IS_MF_AFEX(sc)) {
/* configure headers for AFEX mode */
REG_WR(sc, SC_PORT(sc) ?
PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
REG_WR(sc, SC_PORT(sc) ?
PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
REG_WR(sc, SC_PORT(sc) ?
PRS_REG_MUST_HAVE_HDRS_PORT_1 :
PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
} else {
/* Ovlan exists only if we are in multi-function +
* switch-dependent mode, in switch-independent there
* is no ovlan headers
*/
REG_WR(sc, SC_PORT(sc) ?
PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
PRS_REG_HDRS_AFTER_BASIC_PORT_0,
(sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
}
}
ecore_init_block(sc, BLOCK_TSDM, init_phase);
ecore_init_block(sc, BLOCK_CSDM, init_phase);
ecore_init_block(sc, BLOCK_USDM, init_phase);
ecore_init_block(sc, BLOCK_XSDM, init_phase);
ecore_init_block(sc, BLOCK_TSEM, init_phase);
ecore_init_block(sc, BLOCK_USEM, init_phase);
ecore_init_block(sc, BLOCK_CSEM, init_phase);
ecore_init_block(sc, BLOCK_XSEM, init_phase);
ecore_init_block(sc, BLOCK_UPB, init_phase);
ecore_init_block(sc, BLOCK_XPB, init_phase);
ecore_init_block(sc, BLOCK_PBF, init_phase);
if (CHIP_IS_E1x(sc)) {
/* configure PBF to work without PAUSE mtu 9000 */
REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
/* update threshold */
REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
/* update init credit */
REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
/* probe changes */
REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
DELAY(50);
REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
}
if (CNIC_SUPPORT(sc)) {
ecore_init_block(sc, BLOCK_SRC, init_phase);
}
ecore_init_block(sc, BLOCK_CDU, init_phase);
ecore_init_block(sc, BLOCK_CFC, init_phase);
if (CHIP_IS_E1(sc)) {
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
}
ecore_init_block(sc, BLOCK_HC, init_phase);
ecore_init_block(sc, BLOCK_IGU, init_phase);
ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
/* init aeu_mask_attn_func_0/1:
* - SF mode: bits 3-7 are masked. only bits 0-2 are in use
* - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
* bits 4-7 are used for "per vn group attention" */
val = IS_MF(sc) ? 0xF7 : 0x7;
/* Enable DCBX attention for all but E1 */
val |= CHIP_IS_E1(sc) ? 0 : 0x10;
REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
ecore_init_block(sc, BLOCK_NIG, init_phase);
if (!CHIP_IS_E1x(sc)) {
/* Bit-map indicating which L2 hdrs may appear after the
* basic Ethernet header
*/
if (IS_MF_AFEX(sc)) {
REG_WR(sc, SC_PORT(sc) ?
NIG_REG_P1_HDRS_AFTER_BASIC :
NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
} else {
REG_WR(sc, SC_PORT(sc) ?
NIG_REG_P1_HDRS_AFTER_BASIC :
NIG_REG_P0_HDRS_AFTER_BASIC,
IS_MF_SD(sc) ? 7 : 6);
}
if (CHIP_IS_E3(sc)) {
REG_WR(sc, SC_PORT(sc) ?
NIG_REG_LLH1_MF_MODE :
NIG_REG_LLH_MF_MODE, IS_MF(sc));
}
}
if (!CHIP_IS_E3(sc)) {
REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
}
if (!CHIP_IS_E1(sc)) {
/* 0x2 disable mf_ov, 0x1 enable */
REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
(IS_MF_SD(sc) ? 0x1 : 0x2));
if (!CHIP_IS_E1x(sc)) {
val = 0;
switch (sc->devinfo.mf_info.mf_mode) {
case MULTI_FUNCTION_SD:
val = 1;
break;
case MULTI_FUNCTION_SI:
case MULTI_FUNCTION_AFEX:
val = 2;
break;
}
REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
NIG_REG_LLH0_CLS_TYPE), val);
}
REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
}
/* If SPIO5 is set to generate interrupts, enable it for this port */
val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
if (val & MISC_SPIO_SPIO5) {
uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
val = REG_RD(sc, reg_addr);
val |= AEU_INPUTS_ATTN_BITS_SPIO5;
REG_WR(sc, reg_addr, val);
}
return (0);
}
static uint32_t
bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
uint32_t reg,
uint32_t expected,
uint32_t poll_count)
{
uint32_t cur_cnt = poll_count;
uint32_t val;
while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
DELAY(FLR_WAIT_INTERVAL);
}
return (val);
}
static int
bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
uint32_t reg,
char *msg,
uint32_t poll_cnt)
{
uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
if (val != 0) {
BLOGE(sc, "%s usage count=%d\n", msg, val);
return (1);
}
return (0);
}
/* Common routines with VF FLR cleanup */
static uint32_t
bxe_flr_clnup_poll_count(struct bxe_softc *sc)
{
/* adjust polling timeout */
if (CHIP_REV_IS_EMUL(sc)) {
return (FLR_POLL_CNT * 2000);
}
if (CHIP_REV_IS_FPGA(sc)) {
return (FLR_POLL_CNT * 120);
}
return (FLR_POLL_CNT);
}
static int
bxe_poll_hw_usage_counters(struct bxe_softc *sc,
uint32_t poll_cnt)
{
/* wait for CFC PF usage-counter to zero (includes all the VFs) */
if (bxe_flr_clnup_poll_hw_counter(sc,
CFC_REG_NUM_LCIDS_INSIDE_PF,
"CFC PF usage counter timed out",
poll_cnt)) {
return (1);
}
/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
if (bxe_flr_clnup_poll_hw_counter(sc,
DORQ_REG_PF_USAGE_CNT,
"DQ PF usage counter timed out",
poll_cnt)) {
return (1);
}
/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
if (bxe_flr_clnup_poll_hw_counter(sc,
QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
"QM PF usage counter timed out",
poll_cnt)) {
return (1);
}
/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
if (bxe_flr_clnup_poll_hw_counter(sc,
TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
"Timers VNIC usage counter timed out",
poll_cnt)) {
return (1);
}
if (bxe_flr_clnup_poll_hw_counter(sc,
TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
"Timers NUM_SCANS usage counter timed out",
poll_cnt)) {
return (1);
}
/* Wait DMAE PF usage counter to zero */
if (bxe_flr_clnup_poll_hw_counter(sc,
dmae_reg_go_c[INIT_DMAE_C(sc)],
"DMAE dommand register timed out",
poll_cnt)) {
return (1);
}
return (0);
}
#define OP_GEN_PARAM(param) \
(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
#define OP_GEN_TYPE(type) \
(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
#define OP_GEN_AGG_VECT(index) \
(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
static int
bxe_send_final_clnup(struct bxe_softc *sc,
uint8_t clnup_func,
uint32_t poll_cnt)
{
uint32_t op_gen_command = 0;
uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
int ret = 0;
if (REG_RD(sc, comp_addr)) {
BLOGE(sc, "Cleanup complete was not 0 before sending\n");
return (1);
}
op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
BLOGE(sc, "FW final cleanup did not succeed\n");
BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
(REG_RD(sc, comp_addr)));
bxe_panic(sc, ("FLR cleanup failed\n"));
return (1);
}
/* Zero completion for nxt FLR */
REG_WR(sc, comp_addr, 0);
return (ret);
}
static void
bxe_pbf_pN_buf_flushed(struct bxe_softc *sc,
struct pbf_pN_buf_regs *regs,
uint32_t poll_count)
{
uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
uint32_t cur_cnt = poll_count;
crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
crd = crd_start = REG_RD(sc, regs->crd);
init_crd = REG_RD(sc, regs->init_crd);
BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd);
BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
while ((crd != init_crd) &&
((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
(init_crd - crd_start))) {
if (cur_cnt--) {
DELAY(FLR_WAIT_INTERVAL);
crd = REG_RD(sc, regs->crd);
crd_freed = REG_RD(sc, regs->crd_freed);
} else {
BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd);
BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
break;
}
}
BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
}
static void
bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc,
struct pbf_pN_cmd_regs *regs,
uint32_t poll_count)
{
uint32_t occup, to_free, freed, freed_start;
uint32_t cur_cnt = poll_count;
occup = to_free = REG_RD(sc, regs->lines_occup);
freed = freed_start = REG_RD(sc, regs->lines_freed);
BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
while (occup &&
((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
if (cur_cnt--) {
DELAY(FLR_WAIT_INTERVAL);
occup = REG_RD(sc, regs->lines_occup);
freed = REG_RD(sc, regs->lines_freed);
} else {
BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
break;
}
}
BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
}
static void
bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
{
struct pbf_pN_cmd_regs cmd_regs[] = {
{0, (CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_OCCUPANCY_Q0 :
PBF_REG_P0_TQ_OCCUPANCY,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_LINES_FREED_CNT_Q0 :
PBF_REG_P0_TQ_LINES_FREED_CNT},
{1, (CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_OCCUPANCY_Q1 :
PBF_REG_P1_TQ_OCCUPANCY,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_LINES_FREED_CNT_Q1 :
PBF_REG_P1_TQ_LINES_FREED_CNT},
{4, (CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_OCCUPANCY_LB_Q :
PBF_REG_P4_TQ_OCCUPANCY,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
PBF_REG_P4_TQ_LINES_FREED_CNT}
};
struct pbf_pN_buf_regs buf_regs[] = {
{0, (CHIP_IS_E3B0(sc)) ?
PBF_REG_INIT_CRD_Q0 :
PBF_REG_P0_INIT_CRD ,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_CREDIT_Q0 :
PBF_REG_P0_CREDIT,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
{1, (CHIP_IS_E3B0(sc)) ?
PBF_REG_INIT_CRD_Q1 :
PBF_REG_P1_INIT_CRD,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_CREDIT_Q1 :
PBF_REG_P1_CREDIT,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
{4, (CHIP_IS_E3B0(sc)) ?
PBF_REG_INIT_CRD_LB_Q :
PBF_REG_P4_INIT_CRD,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_CREDIT_LB_Q :
PBF_REG_P4_CREDIT,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
};
int i;
/* Verify the command queues are flushed P0, P1, P4 */
for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
}
/* Verify the transmission buffers are flushed P0, P1, P4 */
for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
}
}
static void
bxe_hw_enable_status(struct bxe_softc *sc)
{
uint32_t val;
val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
val = REG_RD(sc, PBF_REG_DISABLE_PF);
BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
}
static int
bxe_pf_flr_clnup(struct bxe_softc *sc)
{
uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
/* Re-enable PF target read access */
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
/* Poll HW usage counters */
BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
return (-1);
}
/* Zero the igu 'trailing edge' and 'leading edge' */
/* Send the FW cleanup command */
if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
return (-1);
}
/* ATC cleanup */
/* Verify TX hw is flushed */
bxe_tx_hw_flushed(sc, poll_cnt);
/* Wait 100ms (not adjusted according to platform) */
DELAY(100000);
/* Verify no pending pci transactions */
if (bxe_is_pcie_pending(sc)) {
BLOGE(sc, "PCIE Transactions still pending\n");
}
/* Debug */
bxe_hw_enable_status(sc);
/*
* Master enable - Due to WB DMAE writes performed before this
* register is re-initialized as part of the regular function init
*/
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
return (0);
}
static int
bxe_init_hw_func(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
int func = SC_FUNC(sc);
int init_phase = PHASE_PF0 + func;
struct ecore_ilt *ilt = sc->ilt;
uint16_t cdu_ilt_start;
uint32_t addr, val;
uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
int i, main_mem_width, rc;
BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
/* FLR cleanup */
if (!CHIP_IS_E1x(sc)) {
rc = bxe_pf_flr_clnup(sc);
if (rc) {
BLOGE(sc, "FLR cleanup failed!\n");
// XXX bxe_fw_dump(sc);
// XXX bxe_idle_chk(sc);
return (rc);
}
}
/* set MSI reconfigure capability */
if (sc->devinfo.int_block == INT_BLOCK_HC) {
addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
val = REG_RD(sc, addr);
val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
REG_WR(sc, addr, val);
}
ecore_init_block(sc, BLOCK_PXP, init_phase);
ecore_init_block(sc, BLOCK_PXP2, init_phase);
ilt = sc->ilt;
cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
for (i = 0; i < L2_ILT_LINES(sc); i++) {
ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
ilt->lines[cdu_ilt_start + i].page_mapping =
sc->context[i].vcxt_dma.paddr;
ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
}
ecore_ilt_init_op(sc, INITOP_SET);
/* Set NIC mode */
REG_WR(sc, PRS_REG_NIC_MODE, 1);
BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
if (!CHIP_IS_E1x(sc)) {
uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
/* Turn on a single ISR mode in IGU if driver is going to use
* INT#x or MSI
*/
if (sc->interrupt_mode != INTR_MODE_MSIX) {
pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
}
/*
* Timers workaround bug: function init part.
* Need to wait 20msec after initializing ILT,
* needed to make sure there are no requests in
* one of the PXP internal queues with "old" ILT addresses
*/
DELAY(20000);
/*
* Master enable - Due to WB DMAE writes performed before this
* register is re-initialized as part of the regular function
* init
*/
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
/* Enable the function in IGU */
REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
}
sc->dmae_ready = 1;
ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
if (!CHIP_IS_E1x(sc))
REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
ecore_init_block(sc, BLOCK_ATC, init_phase);
ecore_init_block(sc, BLOCK_DMAE, init_phase);
ecore_init_block(sc, BLOCK_NIG, init_phase);
ecore_init_block(sc, BLOCK_SRC, init_phase);
ecore_init_block(sc, BLOCK_MISC, init_phase);
ecore_init_block(sc, BLOCK_TCM, init_phase);
ecore_init_block(sc, BLOCK_UCM, init_phase);
ecore_init_block(sc, BLOCK_CCM, init_phase);
ecore_init_block(sc, BLOCK_XCM, init_phase);
ecore_init_block(sc, BLOCK_TSEM, init_phase);
ecore_init_block(sc, BLOCK_USEM, init_phase);
ecore_init_block(sc, BLOCK_CSEM, init_phase);
ecore_init_block(sc, BLOCK_XSEM, init_phase);
if (!CHIP_IS_E1x(sc))
REG_WR(sc, QM_REG_PF_EN, 1);
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
}
ecore_init_block(sc, BLOCK_QM, init_phase);
ecore_init_block(sc, BLOCK_TM, init_phase);
ecore_init_block(sc, BLOCK_DORQ, init_phase);
bxe_iov_init_dq(sc);
ecore_init_block(sc, BLOCK_BRB1, init_phase);
ecore_init_block(sc, BLOCK_PRS, init_phase);
ecore_init_block(sc, BLOCK_TSDM, init_phase);
ecore_init_block(sc, BLOCK_CSDM, init_phase);
ecore_init_block(sc, BLOCK_USDM, init_phase);
ecore_init_block(sc, BLOCK_XSDM, init_phase);
ecore_init_block(sc, BLOCK_UPB, init_phase);
ecore_init_block(sc, BLOCK_XPB, init_phase);
ecore_init_block(sc, BLOCK_PBF, init_phase);
if (!CHIP_IS_E1x(sc))
REG_WR(sc, PBF_REG_DISABLE_PF, 0);
ecore_init_block(sc, BLOCK_CDU, init_phase);
ecore_init_block(sc, BLOCK_CFC, init_phase);
if (!CHIP_IS_E1x(sc))
REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
if (IS_MF(sc)) {
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
}
ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
/* HC init per function */
if (sc->devinfo.int_block == INT_BLOCK_HC) {
if (CHIP_IS_E1H(sc)) {
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
}
ecore_init_block(sc, BLOCK_HC, init_phase);
} else {
int num_segs, sb_idx, prod_offset;
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
}
ecore_init_block(sc, BLOCK_IGU, init_phase);
if (!CHIP_IS_E1x(sc)) {
int dsb_idx = 0;
/**
* Producer memory:
* E2 mode: address 0-135 match to the mapping memory;
* 136 - PF0 default prod; 137 - PF1 default prod;
* 138 - PF2 default prod; 139 - PF3 default prod;
* 140 - PF0 attn prod; 141 - PF1 attn prod;
* 142 - PF2 attn prod; 143 - PF3 attn prod;
* 144-147 reserved.
*
* E1.5 mode - In backward compatible mode;
* for non default SB; each even line in the memory
* holds the U producer and each odd line hold
* the C producer. The first 128 producers are for
* NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
* producers are for the DSB for each PF.
* Each PF has five segments: (the order inside each
* segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
* 132-135 C prods; 136-139 X prods; 140-143 T prods;
* 144-147 attn prods;
*/
/* non-default-status-blocks */
num_segs = CHIP_INT_MODE_IS_BC(sc) ?
IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
prod_offset = (sc->igu_base_sb + sb_idx) *
num_segs;
for (i = 0; i < num_segs; i++) {
addr = IGU_REG_PROD_CONS_MEMORY +
(prod_offset + i) * 4;
REG_WR(sc, addr, 0);
}
/* send consumer update with value 0 */
bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
USTORM_ID, 0, IGU_INT_NOP, 1);
bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
}
/* default-status-blocks */
num_segs = CHIP_INT_MODE_IS_BC(sc) ?
IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
if (CHIP_IS_MODE_4_PORT(sc))
dsb_idx = SC_FUNC(sc);
else
dsb_idx = SC_VN(sc);
prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
IGU_BC_BASE_DSB_PROD + dsb_idx :
IGU_NORM_BASE_DSB_PROD + dsb_idx);
/*
* igu prods come in chunks of E1HVN_MAX (4) -
* does not matters what is the current chip mode
*/
for (i = 0; i < (num_segs * E1HVN_MAX);
i += E1HVN_MAX) {
addr = IGU_REG_PROD_CONS_MEMORY +
(prod_offset + i)*4;
REG_WR(sc, addr, 0);
}
/* send consumer update with 0 */
if (CHIP_INT_MODE_IS_BC(sc)) {
bxe_ack_sb(sc, sc->igu_dsb_id,
USTORM_ID, 0, IGU_INT_NOP, 1);
bxe_ack_sb(sc, sc->igu_dsb_id,
CSTORM_ID, 0, IGU_INT_NOP, 1);
bxe_ack_sb(sc, sc->igu_dsb_id,
XSTORM_ID, 0, IGU_INT_NOP, 1);
bxe_ack_sb(sc, sc->igu_dsb_id,
TSTORM_ID, 0, IGU_INT_NOP, 1);
bxe_ack_sb(sc, sc->igu_dsb_id,
ATTENTION_ID, 0, IGU_INT_NOP, 1);
} else {
bxe_ack_sb(sc, sc->igu_dsb_id,
USTORM_ID, 0, IGU_INT_NOP, 1);
bxe_ack_sb(sc, sc->igu_dsb_id,
ATTENTION_ID, 0, IGU_INT_NOP, 1);
}
bxe_igu_clear_sb(sc, sc->igu_dsb_id);
/* !!! these should become driver const once
rf-tool supports split-68 const */
REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
}
}
/* Reset PCIE errors for debug */
REG_WR(sc, 0x2114, 0xffffffff);
REG_WR(sc, 0x2120, 0xffffffff);
if (CHIP_IS_E1x(sc)) {
main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
main_mem_base = HC_REG_MAIN_MEMORY +
SC_PORT(sc) * (main_mem_size * 4);
main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
main_mem_width = 8;
val = REG_RD(sc, main_mem_prty_clr);
if (val) {
BLOGD(sc, DBG_LOAD,
"Parity errors in HC block during function init (0x%x)!\n",
val);
}
/* Clear "false" parity errors in MSI-X table */
for (i = main_mem_base;
i < main_mem_base + main_mem_size * 4;
i += main_mem_width) {
bxe_read_dmae(sc, i, main_mem_width / 4);
bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
i, main_mem_width / 4);
}
/* Clear HC parity attention */
REG_RD(sc, main_mem_prty_clr);
}
#if 1
/* Enable STORMs SP logging */
REG_WR8(sc, BAR_USTRORM_INTMEM +
USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
REG_WR8(sc, BAR_TSTRORM_INTMEM +
TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
REG_WR8(sc, BAR_CSTRORM_INTMEM +
CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
REG_WR8(sc, BAR_XSTRORM_INTMEM +
XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
#endif
elink_phy_probe(&sc->link_params);
return (0);
}
static void
bxe_link_reset(struct bxe_softc *sc)
{
if (!BXE_NOMCP(sc)) {
bxe_acquire_phy_lock(sc);
elink_lfa_reset(&sc->link_params, &sc->link_vars);
bxe_release_phy_lock(sc);
} else {
if (!CHIP_REV_IS_SLOW(sc)) {
BLOGW(sc, "Bootcode is missing - cannot reset link\n");
}
}
}
static void
bxe_reset_port(struct bxe_softc *sc)
{
int port = SC_PORT(sc);
uint32_t val;
ELINK_DEBUG_P0(sc, "bxe_reset_port called\n");
/* reset physical Link */
bxe_link_reset(sc);
REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
/* Do not rcv packets to BRB */
REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
/* Do not direct rcv packets that are not for MCP to the BRB */
REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
/* Configure AEU */
REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
DELAY(100000);
/* Check for BRB port occupancy */
val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
if (val) {
BLOGD(sc, DBG_LOAD,
"BRB1 is not empty, %d blocks are occupied\n", val);
}
/* TODO: Close Doorbell port? */
}
static void
bxe_ilt_wr(struct bxe_softc *sc,
uint32_t index,
bus_addr_t addr)
{
int reg;
uint32_t wb_write[2];
if (CHIP_IS_E1(sc)) {
reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
} else {
reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
}
wb_write[0] = ONCHIP_ADDR1(addr);
wb_write[1] = ONCHIP_ADDR2(addr);
REG_WR_DMAE(sc, reg, wb_write, 2);
}
static void
bxe_clear_func_ilt(struct bxe_softc *sc,
uint32_t func)
{
uint32_t i, base = FUNC_ILT_BASE(func);
for (i = base; i < base + ILT_PER_FUNC; i++) {
bxe_ilt_wr(sc, i, 0);
}
}
static void
bxe_reset_func(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int port = SC_PORT(sc);
int func = SC_FUNC(sc);
int i;
/* Disable the function in the FW */
REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
/* FP SBs */
FOR_EACH_ETH_QUEUE(sc, i) {
fp = &sc->fp[i];
REG_WR8(sc, BAR_CSTRORM_INTMEM +
CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
SB_DISABLED);
}
/* SP SB */
REG_WR8(sc, BAR_CSTRORM_INTMEM +
CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
SB_DISABLED);
for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
}
/* Configure IGU */
if (sc->devinfo.int_block == INT_BLOCK_HC) {
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
} else {
REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
}
if (CNIC_LOADED(sc)) {
/* Disable Timer scan */
REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
/*
* Wait for at least 10ms and up to 2 second for the timers
* scan to complete
*/
for (i = 0; i < 200; i++) {
DELAY(10000);
if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
break;
}
}
/* Clear ILT */
bxe_clear_func_ilt(sc, func);
/*
* Timers workaround bug for E2: if this is vnic-3,
* we need to set the entire ilt range for this timers.
*/
if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
struct ilt_client_info ilt_cli;
/* use dummy TM client */
memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
ilt_cli.start = 0;
ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
ilt_cli.client_num = ILT_CLIENT_TM;
ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
}
/* this assumes that reset_port() called before reset_func()*/
if (!CHIP_IS_E1x(sc)) {
bxe_pf_disable(sc);
}
sc->dmae_ready = 0;
}
static int
bxe_gunzip_init(struct bxe_softc *sc)
{
return (0);
}
static void
bxe_gunzip_end(struct bxe_softc *sc)
{
return;
}
static int
bxe_init_firmware(struct bxe_softc *sc)
{
if (CHIP_IS_E1(sc)) {
ecore_init_e1_firmware(sc);
sc->iro_array = e1_iro_arr;
} else if (CHIP_IS_E1H(sc)) {
ecore_init_e1h_firmware(sc);
sc->iro_array = e1h_iro_arr;
} else if (!CHIP_IS_E1x(sc)) {
ecore_init_e2_firmware(sc);
sc->iro_array = e2_iro_arr;
} else {
BLOGE(sc, "Unsupported chip revision\n");
return (-1);
}
return (0);
}
static void
bxe_release_firmware(struct bxe_softc *sc)
{
/* Do nothing */
return;
}
static int
ecore_gunzip(struct bxe_softc *sc,
const uint8_t *zbuf,
int len)
{
/* XXX : Implement... */
BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
return (FALSE);
}
static void
ecore_reg_wr_ind(struct bxe_softc *sc,
uint32_t addr,
uint32_t val)
{
bxe_reg_wr_ind(sc, addr, val);
}
static void
ecore_write_dmae_phys_len(struct bxe_softc *sc,
bus_addr_t phys_addr,
uint32_t addr,
uint32_t len)
{
bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
}
void
ecore_storm_memset_struct(struct bxe_softc *sc,
uint32_t addr,
size_t size,
uint32_t *data)
{
uint8_t i;
for (i = 0; i < size/4; i++) {
REG_WR(sc, addr + (i * 4), data[i]);
}
}
/*
* character device - ioctl interface definitions
*/
#include "bxe_dump.h"
#include "bxe_ioctl.h"
#include <sys/conf.h>
static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
struct thread *td);
static struct cdevsw bxe_cdevsw = {
.d_version = D_VERSION,
.d_ioctl = bxe_eioctl,
.d_name = "bxecnic",
};
#define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
#define DUMP_ALL_PRESETS 0x1FFF
#define DUMP_MAX_PRESETS 13
#define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
#define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
#define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
#define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
#define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
#define IS_REG_IN_PRESET(presets, idx) \
((presets & (1 << (idx-1))) == (1 << (idx-1)))
static int
bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
{
if (CHIP_IS_E1(sc))
return dump_num_registers[0][preset-1];
else if (CHIP_IS_E1H(sc))
return dump_num_registers[1][preset-1];
else if (CHIP_IS_E2(sc))
return dump_num_registers[2][preset-1];
else if (CHIP_IS_E3A0(sc))
return dump_num_registers[3][preset-1];
else if (CHIP_IS_E3B0(sc))
return dump_num_registers[4][preset-1];
else
return 0;
}
static int
bxe_get_total_regs_len32(struct bxe_softc *sc)
{
uint32_t preset_idx;
int regdump_len32 = 0;
/* Calculate the total preset regs length */
for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
}
return regdump_len32;
}
static const uint32_t *
__bxe_get_page_addr_ar(struct bxe_softc *sc)
{
if (CHIP_IS_E2(sc))
return page_vals_e2;
else if (CHIP_IS_E3(sc))
return page_vals_e3;
else
return NULL;
}
static uint32_t
__bxe_get_page_reg_num(struct bxe_softc *sc)
{
if (CHIP_IS_E2(sc))
return PAGE_MODE_VALUES_E2;
else if (CHIP_IS_E3(sc))
return PAGE_MODE_VALUES_E3;
else
return 0;
}
static const uint32_t *
__bxe_get_page_write_ar(struct bxe_softc *sc)
{
if (CHIP_IS_E2(sc))
return page_write_regs_e2;
else if (CHIP_IS_E3(sc))
return page_write_regs_e3;
else
return NULL;
}
static uint32_t
__bxe_get_page_write_num(struct bxe_softc *sc)
{
if (CHIP_IS_E2(sc))
return PAGE_WRITE_REGS_E2;
else if (CHIP_IS_E3(sc))
return PAGE_WRITE_REGS_E3;
else
return 0;
}
static const struct reg_addr *
__bxe_get_page_read_ar(struct bxe_softc *sc)
{
if (CHIP_IS_E2(sc))
return page_read_regs_e2;
else if (CHIP_IS_E3(sc))
return page_read_regs_e3;
else
return NULL;
}
static uint32_t
__bxe_get_page_read_num(struct bxe_softc *sc)
{
if (CHIP_IS_E2(sc))
return PAGE_READ_REGS_E2;
else if (CHIP_IS_E3(sc))
return PAGE_READ_REGS_E3;
else
return 0;
}
static bool
bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
{
if (CHIP_IS_E1(sc))
return IS_E1_REG(reg_info->chips);
else if (CHIP_IS_E1H(sc))
return IS_E1H_REG(reg_info->chips);
else if (CHIP_IS_E2(sc))
return IS_E2_REG(reg_info->chips);
else if (CHIP_IS_E3A0(sc))
return IS_E3A0_REG(reg_info->chips);
else if (CHIP_IS_E3B0(sc))
return IS_E3B0_REG(reg_info->chips);
else
return 0;
}
static bool
bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
{
if (CHIP_IS_E1(sc))
return IS_E1_REG(wreg_info->chips);
else if (CHIP_IS_E1H(sc))
return IS_E1H_REG(wreg_info->chips);
else if (CHIP_IS_E2(sc))
return IS_E2_REG(wreg_info->chips);
else if (CHIP_IS_E3A0(sc))
return IS_E3A0_REG(wreg_info->chips);
else if (CHIP_IS_E3B0(sc))
return IS_E3B0_REG(wreg_info->chips);
else
return 0;
}
/**
* bxe_read_pages_regs - read "paged" registers
*
* @bp device handle
* @p output buffer
*
* Reads "paged" memories: memories that may only be read by first writing to a
* specific address ("write address") and then reading from a specific address
* ("read address"). There may be more than one write address per "page" and
* more than one read address per write address.
*/
static void
bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
{
uint32_t i, j, k, n;
/* addresses of the paged registers */
const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
/* number of paged registers */
int num_pages = __bxe_get_page_reg_num(sc);
/* write addresses */
const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
/* number of write addresses */
int write_num = __bxe_get_page_write_num(sc);
/* read addresses info */
const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
/* number of read addresses */
int read_num = __bxe_get_page_read_num(sc);
uint32_t addr, size;
for (i = 0; i < num_pages; i++) {
for (j = 0; j < write_num; j++) {
REG_WR(sc, write_addr[j], page_addr[i]);
for (k = 0; k < read_num; k++) {
if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
size = read_addr[k].size;
for (n = 0; n < size; n++) {
addr = read_addr[k].addr + n*4;
*p++ = REG_RD(sc, addr);
}
}
}
}
}
return;
}
static int
bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
{
uint32_t i, j, addr;
const struct wreg_addr *wreg_addr_p = NULL;
if (CHIP_IS_E1(sc))
wreg_addr_p = &wreg_addr_e1;
else if (CHIP_IS_E1H(sc))
wreg_addr_p = &wreg_addr_e1h;
else if (CHIP_IS_E2(sc))
wreg_addr_p = &wreg_addr_e2;
else if (CHIP_IS_E3A0(sc))
wreg_addr_p = &wreg_addr_e3;
else if (CHIP_IS_E3B0(sc))
wreg_addr_p = &wreg_addr_e3b0;
else
return (-1);
/* Read the idle_chk registers */
for (i = 0; i < IDLE_REGS_COUNT; i++) {
if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
for (j = 0; j < idle_reg_addrs[i].size; j++)
*p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
}
}
/* Read the regular registers */
for (i = 0; i < REGS_COUNT; i++) {
if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
for (j = 0; j < reg_addrs[i].size; j++)
*p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
}
}
/* Read the CAM registers */
if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
for (i = 0; i < wreg_addr_p->size; i++) {
*p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
/* In case of wreg_addr register, read additional
registers from read_regs array
*/
for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
addr = *(wreg_addr_p->read_regs);
*p++ = REG_RD(sc, addr + j*4);
}
}
}
/* Paged registers are supported in E2 & E3 only */
if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
/* Read "paged" registers */
bxe_read_pages_regs(sc, p, preset);
}
return 0;
}
int
bxe_grc_dump(struct bxe_softc *sc)
{
int rval = 0;
uint32_t preset_idx;
uint8_t *buf;
uint32_t size;
struct dump_header *d_hdr;
uint32_t i;
uint32_t reg_val;
uint32_t reg_addr;
uint32_t cmd_offset;
struct ecore_ilt *ilt = SC_ILT(sc);
struct bxe_fastpath *fp;
struct ilt_client_info *ilt_cli;
int grc_dump_size;
if (sc->grcdump_done || sc->grcdump_started)
return (rval);
sc->grcdump_started = 1;
BLOGI(sc, "Started collecting grcdump\n");
grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
sizeof(struct dump_header);
sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
if (sc->grc_dump == NULL) {
BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
return(ENOMEM);
}
/* Disable parity attentions as long as following dump may
* cause false alarms by reading never written registers. We
* will re-enable parity attentions right after the dump.
*/
/* Disable parity on path 0 */
bxe_pretend_func(sc, 0);
ecore_disable_blocks_parity(sc);
/* Disable parity on path 1 */
bxe_pretend_func(sc, 1);
ecore_disable_blocks_parity(sc);
/* Return to current function */
bxe_pretend_func(sc, SC_ABS_FUNC(sc));
buf = sc->grc_dump;
d_hdr = sc->grc_dump;
d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1;
d_hdr->version = BNX2X_DUMP_VERSION;
d_hdr->preset = DUMP_ALL_PRESETS;
if (CHIP_IS_E1(sc)) {
d_hdr->dump_meta_data = DUMP_CHIP_E1;
} else if (CHIP_IS_E1H(sc)) {
d_hdr->dump_meta_data = DUMP_CHIP_E1H;
} else if (CHIP_IS_E2(sc)) {
d_hdr->dump_meta_data = DUMP_CHIP_E2 |
(BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
} else if (CHIP_IS_E3A0(sc)) {
d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
(BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
} else if (CHIP_IS_E3B0(sc)) {
d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
(BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
}
buf += sizeof(struct dump_header);
for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
/* Skip presets with IOR */
if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
(preset_idx == 11))
continue;
rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
if (rval)
break;
size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
buf += size;
}
bxe_pretend_func(sc, 0);
ecore_clear_blocks_parity(sc);
ecore_enable_blocks_parity(sc);
bxe_pretend_func(sc, 1);
ecore_clear_blocks_parity(sc);
ecore_enable_blocks_parity(sc);
/* Return to current function */
bxe_pretend_func(sc, SC_ABS_FUNC(sc));
if(sc->state == BXE_STATE_OPEN) {
if(sc->fw_stats_req != NULL) {
BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
(uintmax_t)sc->fw_stats_req_mapping,
(uintmax_t)sc->fw_stats_data_mapping,
sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size));
}
if(sc->def_sb != NULL) {
BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
(void *)sc->def_sb_dma.paddr, sc->def_sb,
sizeof(struct host_sp_status_block));
}
if(sc->eq_dma.vaddr != NULL) {
BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
(uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
}
if(sc->sp_dma.vaddr != NULL) {
BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
(uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
sizeof(struct bxe_slowpath));
}
if(sc->spq_dma.vaddr != NULL) {
BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
(uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
}
if(sc->gz_buf_dma.vaddr != NULL) {
BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
(uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
FW_BUF_SIZE);
}
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL &&
fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL &&
fp->rx_sge_dma.vaddr != NULL) {
BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
(uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
sizeof(union bxe_host_hc_status_block));
BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
(uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
(BCM_PAGE_SIZE * TX_BD_NUM_PAGES));
BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
(uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
(BCM_PAGE_SIZE * RX_BD_NUM_PAGES));
BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
(uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
(BCM_PAGE_SIZE * RCQ_NUM_PAGES));
BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
(uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
(BCM_PAGE_SIZE * RX_SGE_NUM_PAGES));
}
}
if(ilt != NULL ) {
ilt_cli = &ilt->clients[1];
if(ilt->lines != NULL) {
for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
(uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
}
}
}
cmd_offset = DMAE_REG_CMD_MEM;
for (i = 0; i < 224; i++) {
reg_addr = (cmd_offset +(i * 4));
reg_val = REG_RD(sc, reg_addr);
BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
reg_addr, reg_val);
}
}
BLOGI(sc, "Collection of grcdump done\n");
sc->grcdump_done = 1;
return(rval);
}
static int
bxe_add_cdev(struct bxe_softc *sc)
{
sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
if (sc->eeprom == NULL) {
BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
return (-1);
}
sc->ioctl_dev = make_dev(&bxe_cdevsw,
sc->ifp->if_dunit,
UID_ROOT,
GID_WHEEL,
0600,
"%s",
if_name(sc->ifp));
if (sc->ioctl_dev == NULL) {
free(sc->eeprom, M_DEVBUF);
sc->eeprom = NULL;
return (-1);
}
sc->ioctl_dev->si_drv1 = sc;
return (0);
}
static void
bxe_del_cdev(struct bxe_softc *sc)
{
if (sc->ioctl_dev != NULL)
destroy_dev(sc->ioctl_dev);
if (sc->eeprom != NULL) {
free(sc->eeprom, M_DEVBUF);
sc->eeprom = NULL;
}
sc->ioctl_dev = NULL;
return;
}
static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
{
if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
return FALSE;
return TRUE;
}
static int
bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
{
int rval = 0;
if(!bxe_is_nvram_accessible(sc)) {
BLOGW(sc, "Cannot access eeprom when interface is down\n");
return (-EAGAIN);
}
rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
return (rval);
}
static int
bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
{
int rval = 0;
if(!bxe_is_nvram_accessible(sc)) {
BLOGW(sc, "Cannot access eeprom when interface is down\n");
return (-EAGAIN);
}
rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
return (rval);
}
static int
bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
{
int rval = 0;
switch (eeprom->eeprom_cmd) {
case BXE_EEPROM_CMD_SET_EEPROM:
rval = copyin(eeprom->eeprom_data, sc->eeprom,
eeprom->eeprom_data_len);
if (rval)
break;
rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
eeprom->eeprom_data_len);
break;
case BXE_EEPROM_CMD_GET_EEPROM:
rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
eeprom->eeprom_data_len);
if (rval) {
break;
}
rval = copyout(sc->eeprom, eeprom->eeprom_data,
eeprom->eeprom_data_len);
break;
default:
rval = EINVAL;
break;
}
if (rval) {
BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval);
}
return (rval);
}
static int
bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
{
uint32_t ext_phy_config;
int port = SC_PORT(sc);
int cfg_idx = bxe_get_link_cfg_idx(sc);
dev_p->supported = sc->port.supported[cfg_idx] |
(sc->port.supported[cfg_idx ^ 1] &
(ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE));
dev_p->advertising = sc->port.advertising[cfg_idx];
if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type ==
ELINK_ETH_PHY_SFP_1G_FIBER) {
dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full);
dev_p->advertising &= ~(ADVERTISED_10000baseT_Full);
}
if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
!(sc->flags & BXE_MF_FUNC_DIS)) {
dev_p->duplex = sc->link_vars.duplex;
if (IS_MF(sc) && !BXE_NOMCP(sc))
dev_p->speed = bxe_get_mf_speed(sc);
else
dev_p->speed = sc->link_vars.line_speed;
} else {
dev_p->duplex = DUPLEX_UNKNOWN;
dev_p->speed = SPEED_UNKNOWN;
}
dev_p->port = bxe_media_detect(sc);
ext_phy_config = SHMEM_RD(sc,
dev_info.port_hw_config[port].external_phy_config);
if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
dev_p->phy_address = sc->port.phy_addr;
else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
else
dev_p->phy_address = 0;
if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG)
dev_p->autoneg = AUTONEG_ENABLE;
else
dev_p->autoneg = AUTONEG_DISABLE;
return 0;
}
static int
bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
struct thread *td)
{
struct bxe_softc *sc;
int rval = 0;
device_t pci_dev;
bxe_grcdump_t *dump = NULL;
int grc_dump_size;
bxe_drvinfo_t *drv_infop = NULL;
bxe_dev_setting_t *dev_p;
bxe_dev_setting_t dev_set;
bxe_get_regs_t *reg_p;
bxe_reg_rdw_t *reg_rdw_p;
bxe_pcicfg_rdw_t *cfg_rdw_p;
bxe_perm_mac_addr_t *mac_addr_p;
if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
return ENXIO;
pci_dev= sc->dev;
dump = (bxe_grcdump_t *)data;
switch(cmd) {
case BXE_GRC_DUMP_SIZE:
dump->pci_func = sc->pcie_func;
dump->grcdump_size =
(bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
sizeof(struct dump_header);
break;
case BXE_GRC_DUMP:
grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
sizeof(struct dump_header);
if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
(dump->grcdump_size < grc_dump_size)) {
rval = EINVAL;
break;
}
if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
(!sc->grcdump_started)) {
rval = bxe_grc_dump(sc);
}
if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
(sc->grc_dump != NULL)) {
dump->grcdump_dwords = grc_dump_size >> 2;
rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
free(sc->grc_dump, M_DEVBUF);
sc->grc_dump = NULL;
sc->grcdump_started = 0;
sc->grcdump_done = 0;
}
break;
case BXE_DRV_INFO:
drv_infop = (bxe_drvinfo_t *)data;
snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
BXE_DRIVER_VERSION);
snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
sc->devinfo.bc_ver_str);
snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
"%s", sc->fw_ver_str);
drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
drv_infop->reg_dump_len =
(bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
+ sizeof(struct dump_header);
snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
sc->pcie_bus, sc->pcie_device, sc->pcie_func);
break;
case BXE_DEV_SETTING:
dev_p = (bxe_dev_setting_t *)data;
bxe_get_settings(sc, &dev_set);
dev_p->supported = dev_set.supported;
dev_p->advertising = dev_set.advertising;
dev_p->speed = dev_set.speed;
dev_p->duplex = dev_set.duplex;
dev_p->port = dev_set.port;
dev_p->phy_address = dev_set.phy_address;
dev_p->autoneg = dev_set.autoneg;
break;
case BXE_GET_REGS:
reg_p = (bxe_get_regs_t *)data;
grc_dump_size = reg_p->reg_buf_len;
if((!sc->grcdump_done) && (!sc->grcdump_started)) {
bxe_grc_dump(sc);
}
if((sc->grcdump_done) && (sc->grcdump_started) &&
(sc->grc_dump != NULL)) {
rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
free(sc->grc_dump, M_DEVBUF);
sc->grc_dump = NULL;
sc->grcdump_started = 0;
sc->grcdump_done = 0;
}
break;
case BXE_RDW_REG:
reg_rdw_p = (bxe_reg_rdw_t *)data;
if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
(reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
(reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
break;
case BXE_RDW_PCICFG:
cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
cfg_rdw_p->cfg_width);
} else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
cfg_rdw_p->cfg_width);
} else {
BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
}
break;
case BXE_MAC_ADDR:
mac_addr_p = (bxe_perm_mac_addr_t *)data;
snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
sc->mac_addr_str);
break;
case BXE_EEPROM:
rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
break;
default:
break;
}
return (rval);
}
Split out a more generic debugnet(4) from netdump(4) Debugnet is a simplistic and specialized panic- or debug-time reliable datagram transport. It can drive a single connection at a time and is currently unidirectional (debug/panic machine transmit to remote server only). It is mostly a verbatim code lift from netdump(4). Netdump(4) remains the only consumer (until the rest of this patch series lands). The INET-specific logic has been extracted somewhat more thoroughly than previously in netdump(4), into debugnet_inet.c. UDP-layer logic and up, as much as possible as is protocol-independent, remains in debugnet.c. The separation is not perfect and future improvement is welcome. Supporting INET6 is a long-term goal. Much of the diff is "gratuitous" renaming from 'netdump_' or 'nd_' to 'debugnet_' or 'dn_' -- sorry. I thought keeping the netdump name on the generic module would be more confusing than the refactoring. The only functional change here is the mbuf allocation / tracking. Instead of initiating solely on netdump-configured interface(s) at dumpon(8) configuration time, we watch for any debugnet-enabled NIC for link activation and query it for mbuf parameters at that time. If they exceed the existing high-water mark allocation, we re-allocate and track the new high-water mark. Otherwise, we leave the pre-panic mbuf allocation alone. In a future patch in this series, this will allow initiating netdump from panic ddb(4) without pre-panic configuration. No other functional change intended. Reviewed by: markj (earlier version) Some discussion with: emaste, jhb Objection from: marius Differential Revision: https://reviews.freebsd.org/D21421
2019-10-17 16:23:03 +00:00
#ifdef DEBUGNET
static void
Split out a more generic debugnet(4) from netdump(4) Debugnet is a simplistic and specialized panic- or debug-time reliable datagram transport. It can drive a single connection at a time and is currently unidirectional (debug/panic machine transmit to remote server only). It is mostly a verbatim code lift from netdump(4). Netdump(4) remains the only consumer (until the rest of this patch series lands). The INET-specific logic has been extracted somewhat more thoroughly than previously in netdump(4), into debugnet_inet.c. UDP-layer logic and up, as much as possible as is protocol-independent, remains in debugnet.c. The separation is not perfect and future improvement is welcome. Supporting INET6 is a long-term goal. Much of the diff is "gratuitous" renaming from 'netdump_' or 'nd_' to 'debugnet_' or 'dn_' -- sorry. I thought keeping the netdump name on the generic module would be more confusing than the refactoring. The only functional change here is the mbuf allocation / tracking. Instead of initiating solely on netdump-configured interface(s) at dumpon(8) configuration time, we watch for any debugnet-enabled NIC for link activation and query it for mbuf parameters at that time. If they exceed the existing high-water mark allocation, we re-allocate and track the new high-water mark. Otherwise, we leave the pre-panic mbuf allocation alone. In a future patch in this series, this will allow initiating netdump from panic ddb(4) without pre-panic configuration. No other functional change intended. Reviewed by: markj (earlier version) Some discussion with: emaste, jhb Objection from: marius Differential Revision: https://reviews.freebsd.org/D21421
2019-10-17 16:23:03 +00:00
bxe_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize)
{
struct bxe_softc *sc;
sc = if_getsoftc(ifp);
BXE_CORE_LOCK(sc);
*nrxr = sc->num_queues;
Split out a more generic debugnet(4) from netdump(4) Debugnet is a simplistic and specialized panic- or debug-time reliable datagram transport. It can drive a single connection at a time and is currently unidirectional (debug/panic machine transmit to remote server only). It is mostly a verbatim code lift from netdump(4). Netdump(4) remains the only consumer (until the rest of this patch series lands). The INET-specific logic has been extracted somewhat more thoroughly than previously in netdump(4), into debugnet_inet.c. UDP-layer logic and up, as much as possible as is protocol-independent, remains in debugnet.c. The separation is not perfect and future improvement is welcome. Supporting INET6 is a long-term goal. Much of the diff is "gratuitous" renaming from 'netdump_' or 'nd_' to 'debugnet_' or 'dn_' -- sorry. I thought keeping the netdump name on the generic module would be more confusing than the refactoring. The only functional change here is the mbuf allocation / tracking. Instead of initiating solely on netdump-configured interface(s) at dumpon(8) configuration time, we watch for any debugnet-enabled NIC for link activation and query it for mbuf parameters at that time. If they exceed the existing high-water mark allocation, we re-allocate and track the new high-water mark. Otherwise, we leave the pre-panic mbuf allocation alone. In a future patch in this series, this will allow initiating netdump from panic ddb(4) without pre-panic configuration. No other functional change intended. Reviewed by: markj (earlier version) Some discussion with: emaste, jhb Objection from: marius Differential Revision: https://reviews.freebsd.org/D21421
2019-10-17 16:23:03 +00:00
*ncl = DEBUGNET_MAX_IN_FLIGHT;
*clsize = sc->fp[0].mbuf_alloc_size;
BXE_CORE_UNLOCK(sc);
}
static void
Split out a more generic debugnet(4) from netdump(4) Debugnet is a simplistic and specialized panic- or debug-time reliable datagram transport. It can drive a single connection at a time and is currently unidirectional (debug/panic machine transmit to remote server only). It is mostly a verbatim code lift from netdump(4). Netdump(4) remains the only consumer (until the rest of this patch series lands). The INET-specific logic has been extracted somewhat more thoroughly than previously in netdump(4), into debugnet_inet.c. UDP-layer logic and up, as much as possible as is protocol-independent, remains in debugnet.c. The separation is not perfect and future improvement is welcome. Supporting INET6 is a long-term goal. Much of the diff is "gratuitous" renaming from 'netdump_' or 'nd_' to 'debugnet_' or 'dn_' -- sorry. I thought keeping the netdump name on the generic module would be more confusing than the refactoring. The only functional change here is the mbuf allocation / tracking. Instead of initiating solely on netdump-configured interface(s) at dumpon(8) configuration time, we watch for any debugnet-enabled NIC for link activation and query it for mbuf parameters at that time. If they exceed the existing high-water mark allocation, we re-allocate and track the new high-water mark. Otherwise, we leave the pre-panic mbuf allocation alone. In a future patch in this series, this will allow initiating netdump from panic ddb(4) without pre-panic configuration. No other functional change intended. Reviewed by: markj (earlier version) Some discussion with: emaste, jhb Objection from: marius Differential Revision: https://reviews.freebsd.org/D21421
2019-10-17 16:23:03 +00:00
bxe_debugnet_event(struct ifnet *ifp __unused, enum debugnet_ev event __unused)
{
}
static int
Split out a more generic debugnet(4) from netdump(4) Debugnet is a simplistic and specialized panic- or debug-time reliable datagram transport. It can drive a single connection at a time and is currently unidirectional (debug/panic machine transmit to remote server only). It is mostly a verbatim code lift from netdump(4). Netdump(4) remains the only consumer (until the rest of this patch series lands). The INET-specific logic has been extracted somewhat more thoroughly than previously in netdump(4), into debugnet_inet.c. UDP-layer logic and up, as much as possible as is protocol-independent, remains in debugnet.c. The separation is not perfect and future improvement is welcome. Supporting INET6 is a long-term goal. Much of the diff is "gratuitous" renaming from 'netdump_' or 'nd_' to 'debugnet_' or 'dn_' -- sorry. I thought keeping the netdump name on the generic module would be more confusing than the refactoring. The only functional change here is the mbuf allocation / tracking. Instead of initiating solely on netdump-configured interface(s) at dumpon(8) configuration time, we watch for any debugnet-enabled NIC for link activation and query it for mbuf parameters at that time. If they exceed the existing high-water mark allocation, we re-allocate and track the new high-water mark. Otherwise, we leave the pre-panic mbuf allocation alone. In a future patch in this series, this will allow initiating netdump from panic ddb(4) without pre-panic configuration. No other functional change intended. Reviewed by: markj (earlier version) Some discussion with: emaste, jhb Objection from: marius Differential Revision: https://reviews.freebsd.org/D21421
2019-10-17 16:23:03 +00:00
bxe_debugnet_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct bxe_softc *sc;
int error;
sc = if_getsoftc(ifp);
if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || !sc->link_vars.link_up)
return (ENOENT);
error = bxe_tx_encap(&sc->fp[0], &m);
if (error != 0 && m != NULL)
m_freem(m);
return (error);
}
static int
Split out a more generic debugnet(4) from netdump(4) Debugnet is a simplistic and specialized panic- or debug-time reliable datagram transport. It can drive a single connection at a time and is currently unidirectional (debug/panic machine transmit to remote server only). It is mostly a verbatim code lift from netdump(4). Netdump(4) remains the only consumer (until the rest of this patch series lands). The INET-specific logic has been extracted somewhat more thoroughly than previously in netdump(4), into debugnet_inet.c. UDP-layer logic and up, as much as possible as is protocol-independent, remains in debugnet.c. The separation is not perfect and future improvement is welcome. Supporting INET6 is a long-term goal. Much of the diff is "gratuitous" renaming from 'netdump_' or 'nd_' to 'debugnet_' or 'dn_' -- sorry. I thought keeping the netdump name on the generic module would be more confusing than the refactoring. The only functional change here is the mbuf allocation / tracking. Instead of initiating solely on netdump-configured interface(s) at dumpon(8) configuration time, we watch for any debugnet-enabled NIC for link activation and query it for mbuf parameters at that time. If they exceed the existing high-water mark allocation, we re-allocate and track the new high-water mark. Otherwise, we leave the pre-panic mbuf allocation alone. In a future patch in this series, this will allow initiating netdump from panic ddb(4) without pre-panic configuration. No other functional change intended. Reviewed by: markj (earlier version) Some discussion with: emaste, jhb Objection from: marius Differential Revision: https://reviews.freebsd.org/D21421
2019-10-17 16:23:03 +00:00
bxe_debugnet_poll(struct ifnet *ifp, int count)
{
struct bxe_softc *sc;
int i;
sc = if_getsoftc(ifp);
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
!sc->link_vars.link_up)
return (ENOENT);
for (i = 0; i < sc->num_queues; i++)
(void)bxe_rxeof(sc, &sc->fp[i]);
(void)bxe_txeof(sc, &sc->fp[0]);
return (0);
}
Split out a more generic debugnet(4) from netdump(4) Debugnet is a simplistic and specialized panic- or debug-time reliable datagram transport. It can drive a single connection at a time and is currently unidirectional (debug/panic machine transmit to remote server only). It is mostly a verbatim code lift from netdump(4). Netdump(4) remains the only consumer (until the rest of this patch series lands). The INET-specific logic has been extracted somewhat more thoroughly than previously in netdump(4), into debugnet_inet.c. UDP-layer logic and up, as much as possible as is protocol-independent, remains in debugnet.c. The separation is not perfect and future improvement is welcome. Supporting INET6 is a long-term goal. Much of the diff is "gratuitous" renaming from 'netdump_' or 'nd_' to 'debugnet_' or 'dn_' -- sorry. I thought keeping the netdump name on the generic module would be more confusing than the refactoring. The only functional change here is the mbuf allocation / tracking. Instead of initiating solely on netdump-configured interface(s) at dumpon(8) configuration time, we watch for any debugnet-enabled NIC for link activation and query it for mbuf parameters at that time. If they exceed the existing high-water mark allocation, we re-allocate and track the new high-water mark. Otherwise, we leave the pre-panic mbuf allocation alone. In a future patch in this series, this will allow initiating netdump from panic ddb(4) without pre-panic configuration. No other functional change intended. Reviewed by: markj (earlier version) Some discussion with: emaste, jhb Objection from: marius Differential Revision: https://reviews.freebsd.org/D21421
2019-10-17 16:23:03 +00:00
#endif /* DEBUGNET */