559 lines
16 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1980, 1986, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#if 0
#ifndef lint
static const char sccsid[] = "@(#)setup.c 8.10 (Berkeley) 5/9/95";
#endif /* not lint */
#endif
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/disk.h>
#include <sys/stat.h>
#define FSTYPENAMES
#include <sys/disklabel.h>
#include <sys/file.h>
#include <sys/sysctl.h>
#include <ufs/ufs/dinode.h>
#include <ufs/ffs/fs.h>
#include <ctype.h>
#include <err.h>
#include <errno.h>
#include <limits.h>
#include <stdint.h>
#include <string.h>
#include <libufs.h>
#include "fsck.h"
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-06 17:37:08 -08:00
struct inoinfo **inphead, **inpsort; /* info about all inodes */
struct bufarea asblk;
#define altsblock (*asblk.b_un.b_fs)
#define POWEROF2(num) (((num) & ((num) - 1)) == 0)
static int calcsb(char *dev, int devfd, struct fs *fs);
static void saverecovery(int readfd, int writefd);
static int chkrecovery(int devfd);
/*
* Read in a superblock finding an alternate if necessary.
* Return 1 if successful, 0 if unsuccessful, -1 if file system
* is already clean (ckclean and preen mode only).
*/
int
setup(char *dev)
{
long cg, asked, i, j;
long bmapsize;
struct stat statb;
struct fs proto;
size_t size;
havesb = 0;
fswritefd = -1;
cursnapshot = 0;
if (stat(dev, &statb) < 0) {
printf("Can't stat %s: %s\n", dev, strerror(errno));
if (bkgrdflag) {
unlink(snapname);
bkgrdflag = 0;
}
return (0);
}
if ((statb.st_mode & S_IFMT) != S_IFCHR &&
(statb.st_mode & S_IFMT) != S_IFBLK) {
if (bkgrdflag != 0 && (statb.st_flags & SF_SNAPSHOT) == 0) {
unlink(snapname);
printf("background fsck lacks a snapshot\n");
exit(EEXIT);
}
if ((statb.st_flags & SF_SNAPSHOT) != 0 && cvtlevel == 0) {
cursnapshot = statb.st_ino;
} else {
if (cvtlevel == 0 ||
(statb.st_flags & SF_SNAPSHOT) == 0) {
if (preen && bkgrdflag) {
unlink(snapname);
bkgrdflag = 0;
}
pfatal("%s is not a disk device", dev);
if (reply("CONTINUE") == 0) {
if (bkgrdflag) {
unlink(snapname);
bkgrdflag = 0;
}
return (0);
}
} else {
if (bkgrdflag) {
unlink(snapname);
bkgrdflag = 0;
}
pfatal("cannot convert a snapshot");
exit(EEXIT);
}
}
}
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-06 17:37:08 -08:00
if ((fsreadfd = open(dev, O_RDONLY)) < 0) {
if (bkgrdflag) {
unlink(snapname);
bkgrdflag = 0;
}
printf("Can't open %s: %s\n", dev, strerror(errno));
return (0);
}
if (bkgrdflag) {
unlink(snapname);
size = MIBSIZE;
if (sysctlnametomib("vfs.ffs.adjrefcnt", adjrefcnt, &size) < 0||
sysctlnametomib("vfs.ffs.adjblkcnt", adjblkcnt, &size) < 0||
sysctlnametomib("vfs.ffs.setsize", setsize, &size) < 0 ||
sysctlnametomib("vfs.ffs.freefiles", freefiles, &size) < 0||
sysctlnametomib("vfs.ffs.freedirs", freedirs, &size) < 0 ||
sysctlnametomib("vfs.ffs.freeblks", freeblks, &size) < 0) {
pfatal("kernel lacks background fsck support\n");
exit(EEXIT);
}
/*
* When kernel is lack of runtime bgfsck superblock summary
* adjustment functionality, it does not mean we can not
* continue, as old kernels will recompute the summary at
* mount time. However, it will be an unexpected softupdates
* inconsistency if it turns out that the summary is still
* incorrect. Set a flag so subsequent operation can know
* this.
*/
bkgrdsumadj = 1;
if (sysctlnametomib("vfs.ffs.adjndir", adjndir, &size) < 0 ||
sysctlnametomib("vfs.ffs.adjnbfree", adjnbfree, &size) < 0 ||
sysctlnametomib("vfs.ffs.adjnifree", adjnifree, &size) < 0 ||
sysctlnametomib("vfs.ffs.adjnffree", adjnffree, &size) < 0 ||
sysctlnametomib("vfs.ffs.adjnumclusters", adjnumclusters, &size) < 0) {
bkgrdsumadj = 0;
pwarn("kernel lacks runtime superblock summary adjustment support");
}
cmd.version = FFS_CMD_VERSION;
cmd.handle = fsreadfd;
fswritefd = -1;
}
if (preen == 0)
printf("** %s", dev);
if (bkgrdflag == 0 &&
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-06 17:37:08 -08:00
(nflag || (fswritefd = open(dev, O_WRONLY)) < 0)) {
fswritefd = -1;
if (preen)
pfatal("NO WRITE ACCESS");
printf(" (NO WRITE)");
}
if (preen == 0)
printf("\n");
/*
* Read in the superblock, looking for alternates if necessary
*/
if (readsb(1) == 0) {
skipclean = 0;
if (bflag || preen || calcsb(dev, fsreadfd, &proto) == 0)
return(0);
if (reply("LOOK FOR ALTERNATE SUPERBLOCKS") == 0)
return (0);
for (cg = 0; cg < proto.fs_ncg; cg++) {
bflag = fsbtodb(&proto, cgsblock(&proto, cg));
if (readsb(0) != 0)
break;
}
if (cg >= proto.fs_ncg) {
printf("%s %s\n%s %s\n%s %s\n",
"SEARCH FOR ALTERNATE SUPER-BLOCK",
"FAILED. YOU MUST USE THE",
"-b OPTION TO FSCK TO SPECIFY THE",
"LOCATION OF AN ALTERNATE",
"SUPER-BLOCK TO SUPPLY NEEDED",
"INFORMATION; SEE fsck_ffs(8).");
bflag = 0;
return(0);
}
pwarn("USING ALTERNATE SUPERBLOCK AT %jd\n", bflag);
bflag = 0;
}
if (skipclean && ckclean && sblock.fs_clean) {
2003-08-01 11:31:19 +00:00
pwarn("FILE SYSTEM CLEAN; SKIPPING CHECKS\n");
return (-1);
}
maxfsblock = sblock.fs_size;
maxino = sblock.fs_ncg * sblock.fs_ipg;
/*
* Check and potentially fix certain fields in the super block.
*/
if (sblock.fs_optim != FS_OPTTIME && sblock.fs_optim != FS_OPTSPACE) {
pfatal("UNDEFINED OPTIMIZATION IN SUPERBLOCK");
if (reply("SET TO DEFAULT") == 1) {
sblock.fs_optim = FS_OPTTIME;
sbdirty();
}
}
if ((sblock.fs_minfree < 0 || sblock.fs_minfree > 99)) {
pfatal("IMPOSSIBLE MINFREE=%d IN SUPERBLOCK",
sblock.fs_minfree);
if (reply("SET TO DEFAULT") == 1) {
sblock.fs_minfree = 10;
sbdirty();
}
}
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (sblock.fs_magic == FS_UFS1_MAGIC &&
sblock.fs_old_inodefmt < FS_44INODEFMT) {
pwarn("Format of file system is too old.\n");
pwarn("Must update to modern format using a version of fsck\n");
pfatal("from before 2002 with the command ``fsck -c 2''\n");
exit(EEXIT);
}
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-06 17:37:08 -08:00
if ((asblk.b_flags & B_DIRTY) != 0 && !bflag) {
memmove(&altsblock, &sblock, (size_t)sblock.fs_sbsize);
flush(fswritefd, &asblk);
}
if (preen == 0 && yflag == 0 && sblock.fs_magic == FS_UFS2_MAGIC &&
fswritefd != -1 && chkrecovery(fsreadfd) == 0 &&
reply("SAVE DATA TO FIND ALTERNATE SUPERBLOCKS") != 0)
saverecovery(fsreadfd, fswritefd);
/*
* read in the summary info.
*/
asked = 0;
sblock.fs_csp = Calloc(1, sblock.fs_cssize);
if (sblock.fs_csp == NULL) {
printf("cannot alloc %u bytes for cg summary info\n",
(unsigned)sblock.fs_cssize);
goto badsb;
}
for (i = 0, j = 0; i < sblock.fs_cssize; i += sblock.fs_bsize, j++) {
size = MIN(sblock.fs_cssize - i, sblock.fs_bsize);
readcnt[sblk.b_type]++;
if (blread(fsreadfd, (char *)sblock.fs_csp + i,
fsbtodb(&sblock, sblock.fs_csaddr + j * sblock.fs_frag),
size) != 0 && !asked) {
pfatal("BAD SUMMARY INFORMATION");
if (reply("CONTINUE") == 0) {
ckfini(0);
exit(EEXIT);
}
asked++;
}
}
/*
* allocate and initialize the necessary maps
*/
bmapsize = roundup(howmany(maxfsblock, CHAR_BIT), sizeof(short));
blockmap = Calloc((unsigned)bmapsize, sizeof (char));
if (blockmap == NULL) {
printf("cannot alloc %u bytes for blockmap\n",
(unsigned)bmapsize);
goto badsb;
}
inostathead = Calloc(sblock.fs_ncg, sizeof(struct inostatlist));
if (inostathead == NULL) {
printf("cannot alloc %u bytes for inostathead\n",
(unsigned)(sizeof(struct inostatlist) * (sblock.fs_ncg)));
goto badsb;
}
numdirs = MAX(sblock.fs_cstotal.cs_ndir, 128);
dirhash = numdirs;
inplast = 0;
listmax = numdirs + 10;
inpsort = (struct inoinfo **)Calloc(listmax, sizeof(struct inoinfo *));
inphead = (struct inoinfo **)Calloc(numdirs, sizeof(struct inoinfo *));
if (inpsort == NULL || inphead == NULL) {
printf("cannot alloc %ju bytes for inphead\n",
(uintmax_t)numdirs * sizeof(struct inoinfo *));
goto badsb;
}
bufinit();
if (sblock.fs_flags & FS_DOSOFTDEP)
usedsoftdep = 1;
else
usedsoftdep = 0;
return (1);
badsb:
ckfini(0);
return (0);
}
/*
* Read in the super block and its summary info.
*/
int
readsb(int listerr)
{
off_t super;
int bad, ret;
struct fs *fs;
Various new check-hash checks have been added to the UFS filesystem over various major releases. Superblock check hashes were added for the 12 release and cylinder-group and inode check hashes will appear in the 13 release. When a disk with a UFS filesystem is writably mounted, the kernel clears the feature flags for anything that it does not support. For example, if a UFS disk from a 12-stable kernel is mounted on an 11-stable system, the 11-stable kernel will clear the flag in the filesystem superblock that indicates that superblock check-hashs are being maintained. Thus if the disk is later moved back to a 12-stable system, the 12-stable system will know to ignore its incorrect check-hash. If the only filesystem modification done on the earlier kernel is to run a utility such as growfs(8) that modifies the superblock but neither updates the check-hash nor clears the feature flag indicating that it does not support the check-hash, the disk will fail to mount if it is moved back to its original newer kernel. This patch moves the code that clears the filesystem feature flags from the mount code (ffs_mountfs()) to the code that reads the superblock (ffs_sbget()). As ffs_sbget() is used by the kernel mount code and is imported into libufs(3), all the filesystem utilities will now also clear these flags when they make modifications to the filesystem. As suggested by John Baldwin, fsck_ffs(8) has been changed to accept and repair bad superblock check-hashes rather than refusing to run. This change allows fsck to recover filesystems that have been impacted by utilities older than those created after this change and is a sensible thing to do in any event. Reported by: John Baldwin (jhb@) MFC after: 2 weeks Sponsored by: Netflix
2020-10-25 00:43:48 +00:00
super = bflag ? bflag * dev_bsize : STDSB_NOHASHFAIL;
readcnt[sblk.b_type]++;
if ((ret = sbget(fsreadfd, &fs, super)) != 0) {
switch (ret) {
case EINVAL:
/* Superblock check-hash failed */
return (0);
case ENOENT:
if (bflag)
printf("%jd is not a file system "
"superblock\n", super / dev_bsize);
else
printf("Cannot find file system "
"superblock\n");
return (0);
case EIO:
default:
printf("I/O error reading %jd\n",
super / dev_bsize);
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
return (0);
}
}
memcpy(&sblock, fs, fs->fs_sbsize);
free(fs);
/*
* Compute block size that the file system is based on,
* according to fsbtodb, and adjust superblock block number
* so we can tell if this is an alternate later.
*/
dev_bsize = sblock.fs_fsize / fsbtodb(&sblock, 1);
sblk.b_bno = sblock.fs_sblockactualloc / dev_bsize;
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
sblk.b_size = SBLOCKSIZE;
/*
* Compare all fields that should not differ in alternate super block.
* When an alternate super-block is specified this check is skipped.
*/
if (bflag)
goto out;
getblk(&asblk, cgsblock(&sblock, sblock.fs_ncg - 1), sblock.fs_sbsize);
if (asblk.b_errs)
return (0);
bad = 0;
#define CHK(x, y) \
if (altsblock.x != sblock.x) { \
bad++; \
if (listerr && debug) \
printf("SUPER BLOCK VS ALTERNATE MISMATCH %s: " y " vs " y "\n", \
#x, (intmax_t)sblock.x, (intmax_t)altsblock.x); \
}
CHK(fs_sblkno, "%jd");
CHK(fs_cblkno, "%jd");
CHK(fs_iblkno, "%jd");
CHK(fs_dblkno, "%jd");
CHK(fs_ncg, "%jd");
CHK(fs_bsize, "%jd");
CHK(fs_fsize, "%jd");
CHK(fs_frag, "%jd");
CHK(fs_bmask, "%#jx");
CHK(fs_fmask, "%#jx");
CHK(fs_bshift, "%jd");
CHK(fs_fshift, "%jd");
CHK(fs_fragshift, "%jd");
CHK(fs_fsbtodb, "%jd");
CHK(fs_sbsize, "%jd");
CHK(fs_nindir, "%jd");
CHK(fs_inopb, "%jd");
CHK(fs_cssize, "%jd");
CHK(fs_ipg, "%jd");
CHK(fs_fpg, "%jd");
CHK(fs_magic, "%#jx");
#undef CHK
if (bad) {
if (listerr == 0)
return (0);
if (preen)
printf("%s: ", cdevname);
printf(
"VALUES IN SUPER BLOCK LSB=%jd DISAGREE WITH THOSE IN\n"
"LAST ALTERNATE LSB=%jd\n",
sblk.b_bno, asblk.b_bno);
if (reply("IGNORE ALTERNATE SUPER BLOCK") == 0)
return (0);
}
out:
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
/*
* If not yet done, update UFS1 superblock with new wider fields.
*/
if (sblock.fs_magic == FS_UFS1_MAGIC &&
sblock.fs_maxbsize != sblock.fs_bsize) {
sblock.fs_maxbsize = sblock.fs_bsize;
sblock.fs_time = sblock.fs_old_time;
sblock.fs_size = sblock.fs_old_size;
sblock.fs_dsize = sblock.fs_old_dsize;
sblock.fs_csaddr = sblock.fs_old_csaddr;
sblock.fs_cstotal.cs_ndir = sblock.fs_old_cstotal.cs_ndir;
sblock.fs_cstotal.cs_nbfree = sblock.fs_old_cstotal.cs_nbfree;
sblock.fs_cstotal.cs_nifree = sblock.fs_old_cstotal.cs_nifree;
sblock.fs_cstotal.cs_nffree = sblock.fs_old_cstotal.cs_nffree;
}
havesb = 1;
return (1);
}
void
sblock_init(void)
{
fswritefd = -1;
fsmodified = 0;
lfdir = 0;
initbarea(&sblk, BT_SUPERBLK);
initbarea(&asblk, BT_SUPERBLK);
sblk.b_un.b_buf = Malloc(SBLOCKSIZE);
asblk.b_un.b_buf = Malloc(SBLOCKSIZE);
if (sblk.b_un.b_buf == NULL || asblk.b_un.b_buf == NULL)
errx(EEXIT, "cannot allocate space for superblock");
dev_bsize = secsize = DEV_BSIZE;
}
/*
* Calculate a prototype superblock based on information in the boot area.
* When done the cgsblock macro can be calculated and the fs_ncg field
* can be used. Do NOT attempt to use other macros without verifying that
* their needed information is available!
*/
static int
calcsb(char *dev, int devfd, struct fs *fs)
{
struct fsrecovery *fsr;
char *fsrbuf;
u_int secsize;
/*
* We need fragments-per-group and the partition-size.
*
* Newfs stores these details at the end of the boot block area
* at the start of the filesystem partition. If they have been
* overwritten by a boot block, we fail. But usually they are
* there and we can use them.
*/
if (ioctl(devfd, DIOCGSECTORSIZE, &secsize) == -1)
return (0);
fsrbuf = Malloc(secsize);
if (fsrbuf == NULL)
errx(EEXIT, "calcsb: cannot allocate recovery buffer");
if (blread(devfd, fsrbuf,
(SBLOCK_UFS2 - secsize) / dev_bsize, secsize) != 0) {
free(fsrbuf);
return (0);
}
fsr = (struct fsrecovery *)&fsrbuf[secsize - sizeof *fsr];
if (fsr->fsr_magic != FS_UFS2_MAGIC) {
free(fsrbuf);
return (0);
}
memset(fs, 0, sizeof(struct fs));
fs->fs_fpg = fsr->fsr_fpg;
fs->fs_fsbtodb = fsr->fsr_fsbtodb;
fs->fs_sblkno = fsr->fsr_sblkno;
fs->fs_magic = fsr->fsr_magic;
fs->fs_ncg = fsr->fsr_ncg;
free(fsrbuf);
return (1);
}
/*
* Check to see if recovery information exists.
* Return 1 if it exists or cannot be created.
* Return 0 if it does not exist and can be created.
*/
static int
chkrecovery(int devfd)
{
struct fsrecovery *fsr;
char *fsrbuf;
u_int secsize;
/*
* Could not determine if backup material exists, so do not
* offer to create it.
*/
fsrbuf = NULL;
if (ioctl(devfd, DIOCGSECTORSIZE, &secsize) == -1 ||
(fsrbuf = Malloc(secsize)) == NULL ||
blread(devfd, fsrbuf, (SBLOCK_UFS2 - secsize) / dev_bsize,
secsize) != 0) {
free(fsrbuf);
return (1);
}
/*
* Recovery material has already been created, so do not
* need to create it again.
*/
fsr = (struct fsrecovery *)&fsrbuf[secsize - sizeof *fsr];
if (fsr->fsr_magic == FS_UFS2_MAGIC) {
free(fsrbuf);
return (1);
}
/*
* Recovery material has not been created and can be if desired.
*/
free(fsrbuf);
return (0);
}
/*
* Read the last sector of the boot block, replace the last
* 20 bytes with the recovery information, then write it back.
* The recovery information only works for UFS2 filesystems.
*/
static void
saverecovery(int readfd, int writefd)
{
struct fsrecovery *fsr;
char *fsrbuf;
u_int secsize;
fsrbuf = NULL;
if (sblock.fs_magic != FS_UFS2_MAGIC ||
ioctl(readfd, DIOCGSECTORSIZE, &secsize) == -1 ||
(fsrbuf = Malloc(secsize)) == NULL ||
blread(readfd, fsrbuf, (SBLOCK_UFS2 - secsize) / dev_bsize,
secsize) != 0) {
printf("RECOVERY DATA COULD NOT BE CREATED\n");
free(fsrbuf);
return;
}
fsr = (struct fsrecovery *)&fsrbuf[secsize - sizeof *fsr];
fsr->fsr_magic = sblock.fs_magic;
fsr->fsr_fpg = sblock.fs_fpg;
fsr->fsr_fsbtodb = sblock.fs_fsbtodb;
fsr->fsr_sblkno = sblock.fs_sblkno;
fsr->fsr_ncg = sblock.fs_ncg;
blwrite(writefd, fsrbuf, (SBLOCK_UFS2 - secsize) / secsize, secsize);
free(fsrbuf);
}