2002-08-26 15:57:08 +00:00
|
|
|
/*-
|
|
|
|
* Copyright (c) 1994,1995 Stefan Esser, Wolfgang StanglMeier
|
|
|
|
* Copyright (c) 2000 Michael Smith <msmith@freebsd.org>
|
|
|
|
* Copyright (c) 2000 BSDi
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
|
|
* derived from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* $FreeBSD$
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __PCIB_PRIVATE_H__
|
|
|
|
#define __PCIB_PRIVATE_H__
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Export portions of generic PCI:PCI bridge support so that it can be
|
|
|
|
* used by subclasses.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Bridge-specific data.
|
|
|
|
*/
|
|
|
|
struct pcib_softc
|
|
|
|
{
|
|
|
|
device_t dev;
|
2004-01-11 06:52:31 +00:00
|
|
|
uint32_t flags; /* flags */
|
2006-12-14 16:53:48 +00:00
|
|
|
#define PCIB_SUBTRACTIVE 0x1
|
2007-01-13 04:57:37 +00:00
|
|
|
#define PCIB_DISABLE_MSI 0x2
|
2003-08-22 03:11:53 +00:00
|
|
|
uint16_t command; /* command register */
|
2007-09-30 11:05:18 +00:00
|
|
|
uint32_t domain; /* domain number */
|
2003-08-22 03:11:53 +00:00
|
|
|
uint8_t secbus; /* secondary bus number */
|
|
|
|
uint8_t subbus; /* subordinate bus number */
|
2002-08-26 15:57:08 +00:00
|
|
|
pci_addr_t pmembase; /* base address of prefetchable memory */
|
|
|
|
pci_addr_t pmemlimit; /* topmost address of prefetchable memory */
|
|
|
|
pci_addr_t membase; /* base address of memory window */
|
|
|
|
pci_addr_t memlimit; /* topmost address of memory window */
|
2003-08-22 03:11:53 +00:00
|
|
|
uint32_t iobase; /* base address of port window */
|
|
|
|
uint32_t iolimit; /* topmost address of port window */
|
|
|
|
uint16_t secstat; /* secondary bus status register */
|
|
|
|
uint16_t bridgectl; /* bridge control register */
|
|
|
|
uint8_t seclat; /* secondary bus latency timer */
|
2002-08-26 15:57:08 +00:00
|
|
|
};
|
|
|
|
|
2003-08-22 03:11:53 +00:00
|
|
|
typedef uint32_t pci_read_config_fn(int b, int s, int f, int reg, int width);
|
2002-11-22 17:50:47 +00:00
|
|
|
|
|
|
|
int host_pcib_get_busno(pci_read_config_fn read_config, int bus,
|
2003-08-22 03:11:53 +00:00
|
|
|
int slot, int func, uint8_t *busnum);
|
2002-09-06 22:14:00 +00:00
|
|
|
int pcib_attach(device_t dev);
|
2002-08-26 15:57:08 +00:00
|
|
|
void pcib_attach_common(device_t dev);
|
|
|
|
int pcib_read_ivar(device_t dev, device_t child, int which, uintptr_t *result);
|
|
|
|
int pcib_write_ivar(device_t dev, device_t child, int which, uintptr_t value);
|
|
|
|
struct resource *pcib_alloc_resource(device_t dev, device_t child, int type, int *rid,
|
|
|
|
u_long start, u_long end, u_long count, u_int flags);
|
|
|
|
int pcib_maxslots(device_t dev);
|
2003-08-22 03:11:53 +00:00
|
|
|
uint32_t pcib_read_config(device_t dev, int b, int s, int f, int reg, int width);
|
|
|
|
void pcib_write_config(device_t dev, int b, int s, int f, int reg, uint32_t val, int width);
|
2003-01-14 11:37:56 +00:00
|
|
|
int pcib_route_interrupt(device_t pcib, device_t dev, int pin);
|
First cut at MI support for PCI Message Signalled Interrupts (MSI):
- Add 3 new functions to the pci_if interface along with suitable wrappers
to provide the device driver visible API:
- pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count'
here is an in and out parameter. The driver stores the desired number
of messages in '*count' before calling the function. On success,
'*count' holds the number of messages allocated to the device. Also on
success, the driver can access the messages as SYS_RES_IRQ resources
starting at rid 1. Note that the legacy INTx interrupt resource will
not be available when using MSI. Note that this function will allocate
either MSI or MSI-X messages depending on the devices capabilities and
the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note
that the driver should activate the memory resource that holds the
MSI-X table and pending bit array (PBA) before calling this function
if the device supports MSI-X.
- pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function
releases the messages allocated for this device. All of the
SYS_RES_IRQ resources need to be released for this function to succeed.
- pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns
the maximum number of MSI or MSI-X messages supported by this device.
MSI-X is preferred if present, but this function will honor the
'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function
should return the largest value that pci_alloc_msi() can return
(assuming the MD code is able to allocate sufficient backing resources
for all of the messages).
- Add default implementations for these 3 methods to the pci_driver generic
PCI bus driver. (The various other PCI bus drivers such as for ACPI and
OFW will inherit these default implementations.) This default
implementation depends on 4 new pcib_if methods that bubble up through
the PCI bridges to the MD code to allocate IRQ values and perform any
needed MD setup code needed:
- PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages.
- PCIB_RELEASE_MSI() releases a group of MSI messages.
- PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message.
- PCIB_RELEASE_MSIX() releases a single MSI-X message.
- Add default implementations for these 4 methods that just pass the
request up to the parent bus's parent bridge driver and use the
default implementation in the various MI PCI bridge drivers.
- Add MI functions for use by MD code when managing MSI and MSI-X
interrupts:
- pci_enable_msi(dev, address, data) programs the MSI capability address
and data registers for a group of MSI messages
- pci_enable_msix(dev, index, address, data) initializes a single MSI-X
message in the MSI-X table
- pci_mask_msix(dev, index) masks a single MSI-X message
- pci_unmask_msix(dev, index) unmasks a single MSI-X message
- pci_pending_msix(dev, index) returns true if the specified MSI-X
message is currently pending
- Save the MSI capability address and data registers in the pci_cfgreg
block in a PCI devices ivars and restore the values when a device is
resumed. Note that the MSI-X table is not currently restored during
resume.
- Add constants for MSI-X register offsets and fields.
- Record interesting data about any MSI-X capability blocks we come
across in the pci_cfgreg block in the ivars for PCI devices.
Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X)
Reviewed by: scottl, grehan, jfv
MFC after: 2 months
2006-11-13 21:47:30 +00:00
|
|
|
int pcib_alloc_msi(device_t pcib, device_t dev, int count, int maxcount, int *irqs);
|
|
|
|
int pcib_release_msi(device_t pcib, device_t dev, int count, int *irqs);
|
2007-05-02 17:50:36 +00:00
|
|
|
int pcib_alloc_msix(device_t pcib, device_t dev, int *irq);
|
First cut at MI support for PCI Message Signalled Interrupts (MSI):
- Add 3 new functions to the pci_if interface along with suitable wrappers
to provide the device driver visible API:
- pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count'
here is an in and out parameter. The driver stores the desired number
of messages in '*count' before calling the function. On success,
'*count' holds the number of messages allocated to the device. Also on
success, the driver can access the messages as SYS_RES_IRQ resources
starting at rid 1. Note that the legacy INTx interrupt resource will
not be available when using MSI. Note that this function will allocate
either MSI or MSI-X messages depending on the devices capabilities and
the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note
that the driver should activate the memory resource that holds the
MSI-X table and pending bit array (PBA) before calling this function
if the device supports MSI-X.
- pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function
releases the messages allocated for this device. All of the
SYS_RES_IRQ resources need to be released for this function to succeed.
- pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns
the maximum number of MSI or MSI-X messages supported by this device.
MSI-X is preferred if present, but this function will honor the
'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function
should return the largest value that pci_alloc_msi() can return
(assuming the MD code is able to allocate sufficient backing resources
for all of the messages).
- Add default implementations for these 3 methods to the pci_driver generic
PCI bus driver. (The various other PCI bus drivers such as for ACPI and
OFW will inherit these default implementations.) This default
implementation depends on 4 new pcib_if methods that bubble up through
the PCI bridges to the MD code to allocate IRQ values and perform any
needed MD setup code needed:
- PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages.
- PCIB_RELEASE_MSI() releases a group of MSI messages.
- PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message.
- PCIB_RELEASE_MSIX() releases a single MSI-X message.
- Add default implementations for these 4 methods that just pass the
request up to the parent bus's parent bridge driver and use the
default implementation in the various MI PCI bridge drivers.
- Add MI functions for use by MD code when managing MSI and MSI-X
interrupts:
- pci_enable_msi(dev, address, data) programs the MSI capability address
and data registers for a group of MSI messages
- pci_enable_msix(dev, index, address, data) initializes a single MSI-X
message in the MSI-X table
- pci_mask_msix(dev, index) masks a single MSI-X message
- pci_unmask_msix(dev, index) unmasks a single MSI-X message
- pci_pending_msix(dev, index) returns true if the specified MSI-X
message is currently pending
- Save the MSI capability address and data registers in the pci_cfgreg
block in a PCI devices ivars and restore the values when a device is
resumed. Note that the MSI-X table is not currently restored during
resume.
- Add constants for MSI-X register offsets and fields.
- Record interesting data about any MSI-X capability blocks we come
across in the pci_cfgreg block in the ivars for PCI devices.
Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X)
Reviewed by: scottl, grehan, jfv
MFC after: 2 months
2006-11-13 21:47:30 +00:00
|
|
|
int pcib_release_msix(device_t pcib, device_t dev, int irq);
|
2007-05-02 17:50:36 +00:00
|
|
|
int pcib_map_msi(device_t pcib, device_t dev, int irq, uint64_t *addr, uint32_t *data);
|
2002-08-26 15:57:08 +00:00
|
|
|
|
|
|
|
#endif
|