freebsd-nq/sys/dev/smc/if_smc.c

1329 lines
28 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2008 Benno Rice. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for SMSC LAN91C111, may work for older variants.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/sockio.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/taskqueue.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_mib.h>
#include <net/if_media.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <net/bpf.h>
#include <net/bpfdesc.h>
#include <dev/smc/if_smcreg.h>
#include <dev/smc/if_smcvar.h>
#include <dev/mii/mii.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/mii/miivar.h>
#define SMC_LOCK(sc) mtx_lock(&(sc)->smc_mtx)
#define SMC_UNLOCK(sc) mtx_unlock(&(sc)->smc_mtx)
#define SMC_ASSERT_LOCKED(sc) mtx_assert(&(sc)->smc_mtx, MA_OWNED)
#define SMC_INTR_PRIORITY 0
#define SMC_RX_PRIORITY 5
#define SMC_TX_PRIORITY 10
devclass_t smc_devclass;
static const char *smc_chip_ids[16] = {
NULL, NULL, NULL,
/* 3 */ "SMSC LAN91C90 or LAN91C92",
/* 4 */ "SMSC LAN91C94",
/* 5 */ "SMSC LAN91C95",
/* 6 */ "SMSC LAN91C96",
/* 7 */ "SMSC LAN91C100",
/* 8 */ "SMSC LAN91C100FD",
/* 9 */ "SMSC LAN91C110FD or LAN91C111FD",
NULL, NULL, NULL,
NULL, NULL, NULL
};
static void smc_init(void *);
static void smc_start(struct ifnet *);
static void smc_stop(struct smc_softc *);
static int smc_ioctl(struct ifnet *, u_long, caddr_t);
static void smc_init_locked(struct smc_softc *);
static void smc_start_locked(struct ifnet *);
static void smc_reset(struct smc_softc *);
static int smc_mii_ifmedia_upd(struct ifnet *);
static void smc_mii_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void smc_mii_tick(void *);
static void smc_mii_mediachg(struct smc_softc *);
static int smc_mii_mediaioctl(struct smc_softc *, struct ifreq *, u_long);
static void smc_task_intr(void *, int);
static void smc_task_rx(void *, int);
static void smc_task_tx(void *, int);
static driver_filter_t smc_intr;
static timeout_t smc_watchdog;
#ifdef DEVICE_POLLING
static poll_handler_t smc_poll;
#endif
/*
* MII bit-bang glue
*/
static uint32_t smc_mii_bitbang_read(device_t);
static void smc_mii_bitbang_write(device_t, uint32_t);
static const struct mii_bitbang_ops smc_mii_bitbang_ops = {
smc_mii_bitbang_read,
smc_mii_bitbang_write,
{
MGMT_MDO, /* MII_BIT_MDO */
MGMT_MDI, /* MII_BIT_MDI */
MGMT_MCLK, /* MII_BIT_MDC */
MGMT_MDOE, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
static __inline void
smc_select_bank(struct smc_softc *sc, uint16_t bank)
{
bus_barrier(sc->smc_reg, BSR, 2,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
bus_write_2(sc->smc_reg, BSR, bank & BSR_BANK_MASK);
bus_barrier(sc->smc_reg, BSR, 2,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
/* Never call this when not in bank 2. */
static __inline void
smc_mmu_wait(struct smc_softc *sc)
{
KASSERT((bus_read_2(sc->smc_reg, BSR) &
BSR_BANK_MASK) == 2, ("%s: smc_mmu_wait called when not in bank 2",
device_get_nameunit(sc->smc_dev)));
while (bus_read_2(sc->smc_reg, MMUCR) & MMUCR_BUSY)
;
}
static __inline uint8_t
smc_read_1(struct smc_softc *sc, bus_size_t offset)
{
return (bus_read_1(sc->smc_reg, offset));
}
static __inline void
smc_write_1(struct smc_softc *sc, bus_size_t offset, uint8_t val)
{
bus_write_1(sc->smc_reg, offset, val);
}
static __inline uint16_t
smc_read_2(struct smc_softc *sc, bus_size_t offset)
{
return (bus_read_2(sc->smc_reg, offset));
}
static __inline void
smc_write_2(struct smc_softc *sc, bus_size_t offset, uint16_t val)
{
bus_write_2(sc->smc_reg, offset, val);
}
static __inline void
smc_read_multi_2(struct smc_softc *sc, bus_size_t offset, uint16_t *datap,
bus_size_t count)
{
bus_read_multi_2(sc->smc_reg, offset, datap, count);
}
static __inline void
smc_write_multi_2(struct smc_softc *sc, bus_size_t offset, uint16_t *datap,
bus_size_t count)
{
bus_write_multi_2(sc->smc_reg, offset, datap, count);
}
static __inline void
smc_barrier(struct smc_softc *sc, bus_size_t offset, bus_size_t length,
int flags)
{
bus_barrier(sc->smc_reg, offset, length, flags);
}
int
smc_probe(device_t dev)
{
int rid, type, error;
uint16_t val;
struct smc_softc *sc;
struct resource *reg;
sc = device_get_softc(dev);
rid = 0;
type = SYS_RES_IOPORT;
error = 0;
if (sc->smc_usemem)
type = SYS_RES_MEMORY;
reg = bus_alloc_resource_anywhere(dev, type, &rid, 16, RF_ACTIVE);
if (reg == NULL) {
if (bootverbose)
device_printf(dev,
"could not allocate I/O resource for probe\n");
return (ENXIO);
}
/* Check for the identification value in the BSR. */
val = bus_read_2(reg, BSR);
if ((val & BSR_IDENTIFY_MASK) != BSR_IDENTIFY) {
if (bootverbose)
device_printf(dev, "identification value not in BSR\n");
error = ENXIO;
goto done;
}
/*
* Try switching banks and make sure we still get the identification
* value.
*/
bus_write_2(reg, BSR, 0);
val = bus_read_2(reg, BSR);
if ((val & BSR_IDENTIFY_MASK) != BSR_IDENTIFY) {
if (bootverbose)
device_printf(dev,
"identification value not in BSR after write\n");
error = ENXIO;
goto done;
}
#if 0
/* Check the BAR. */
bus_write_2(reg, BSR, 1);
val = bus_read_2(reg, BAR);
val = BAR_ADDRESS(val);
if (rman_get_start(reg) != val) {
if (bootverbose)
device_printf(dev, "BAR address %x does not match "
"I/O resource address %lx\n", val,
rman_get_start(reg));
error = ENXIO;
goto done;
}
#endif
/* Compare REV against known chip revisions. */
bus_write_2(reg, BSR, 3);
val = bus_read_2(reg, REV);
val = (val & REV_CHIP_MASK) >> REV_CHIP_SHIFT;
if (smc_chip_ids[val] == NULL) {
if (bootverbose)
device_printf(dev, "Unknown chip revision: %d\n", val);
error = ENXIO;
goto done;
}
device_set_desc(dev, smc_chip_ids[val]);
done:
bus_release_resource(dev, type, rid, reg);
return (error);
}
int
smc_attach(device_t dev)
{
int type, error;
uint16_t val;
u_char eaddr[ETHER_ADDR_LEN];
struct smc_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
error = 0;
sc->smc_dev = dev;
ifp = sc->smc_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
error = ENOSPC;
goto done;
}
mtx_init(&sc->smc_mtx, device_get_nameunit(dev), NULL, MTX_DEF);
/* Set up watchdog callout. */
callout_init_mtx(&sc->smc_watchdog, &sc->smc_mtx, 0);
type = SYS_RES_IOPORT;
if (sc->smc_usemem)
type = SYS_RES_MEMORY;
sc->smc_reg_rid = 0;
sc->smc_reg = bus_alloc_resource_anywhere(dev, type, &sc->smc_reg_rid,
16, RF_ACTIVE);
if (sc->smc_reg == NULL) {
error = ENXIO;
goto done;
}
sc->smc_irq = bus_alloc_resource_anywhere(dev, SYS_RES_IRQ,
&sc->smc_irq_rid, 1, RF_ACTIVE | RF_SHAREABLE);
if (sc->smc_irq == NULL) {
error = ENXIO;
goto done;
}
SMC_LOCK(sc);
smc_reset(sc);
SMC_UNLOCK(sc);
smc_select_bank(sc, 3);
val = smc_read_2(sc, REV);
sc->smc_chip = (val & REV_CHIP_MASK) >> REV_CHIP_SHIFT;
sc->smc_rev = (val * REV_REV_MASK) >> REV_REV_SHIFT;
if (bootverbose)
device_printf(dev, "revision %x\n", sc->smc_rev);
callout_init_mtx(&sc->smc_mii_tick_ch, &sc->smc_mtx,
CALLOUT_RETURNUNLOCKED);
if (sc->smc_chip >= REV_CHIP_91110FD) {
(void)mii_attach(dev, &sc->smc_miibus, ifp,
smc_mii_ifmedia_upd, smc_mii_ifmedia_sts, BMSR_DEFCAPMASK,
MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (sc->smc_miibus != NULL) {
sc->smc_mii_tick = smc_mii_tick;
sc->smc_mii_mediachg = smc_mii_mediachg;
sc->smc_mii_mediaioctl = smc_mii_mediaioctl;
}
}
smc_select_bank(sc, 1);
eaddr[0] = smc_read_1(sc, IAR0);
eaddr[1] = smc_read_1(sc, IAR1);
eaddr[2] = smc_read_1(sc, IAR2);
eaddr[3] = smc_read_1(sc, IAR3);
eaddr[4] = smc_read_1(sc, IAR4);
eaddr[5] = smc_read_1(sc, IAR5);
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = smc_init;
ifp->if_ioctl = smc_ioctl;
ifp->if_start = smc_start;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
IFQ_SET_READY(&ifp->if_snd);
ifp->if_capabilities = ifp->if_capenable = 0;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
ether_ifattach(ifp, eaddr);
/* Set up taskqueue */
TASK_INIT(&sc->smc_intr, SMC_INTR_PRIORITY, smc_task_intr, ifp);
TASK_INIT(&sc->smc_rx, SMC_RX_PRIORITY, smc_task_rx, ifp);
TASK_INIT(&sc->smc_tx, SMC_TX_PRIORITY, smc_task_tx, ifp);
sc->smc_tq = taskqueue_create_fast("smc_taskq", M_NOWAIT,
taskqueue_thread_enqueue, &sc->smc_tq);
taskqueue_start_threads(&sc->smc_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->smc_dev));
/* Mask all interrupts. */
sc->smc_mask = 0;
smc_write_1(sc, MSK, 0);
/* Wire up interrupt */
error = bus_setup_intr(dev, sc->smc_irq,
INTR_TYPE_NET|INTR_MPSAFE, smc_intr, NULL, sc, &sc->smc_ih);
if (error != 0)
goto done;
done:
if (error != 0)
smc_detach(dev);
return (error);
}
int
smc_detach(device_t dev)
{
int type;
struct smc_softc *sc;
sc = device_get_softc(dev);
SMC_LOCK(sc);
smc_stop(sc);
SMC_UNLOCK(sc);
if (sc->smc_ifp != NULL) {
ether_ifdetach(sc->smc_ifp);
}
callout_drain(&sc->smc_watchdog);
callout_drain(&sc->smc_mii_tick_ch);
#ifdef DEVICE_POLLING
if (sc->smc_ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(sc->smc_ifp);
#endif
if (sc->smc_ih != NULL)
bus_teardown_intr(sc->smc_dev, sc->smc_irq, sc->smc_ih);
if (sc->smc_tq != NULL) {
taskqueue_drain(sc->smc_tq, &sc->smc_intr);
taskqueue_drain(sc->smc_tq, &sc->smc_rx);
taskqueue_drain(sc->smc_tq, &sc->smc_tx);
taskqueue_free(sc->smc_tq);
sc->smc_tq = NULL;
}
if (sc->smc_ifp != NULL) {
if_free(sc->smc_ifp);
}
if (sc->smc_miibus != NULL) {
device_delete_child(sc->smc_dev, sc->smc_miibus);
bus_generic_detach(sc->smc_dev);
}
if (sc->smc_reg != NULL) {
type = SYS_RES_IOPORT;
if (sc->smc_usemem)
type = SYS_RES_MEMORY;
bus_release_resource(sc->smc_dev, type, sc->smc_reg_rid,
sc->smc_reg);
}
if (sc->smc_irq != NULL)
bus_release_resource(sc->smc_dev, SYS_RES_IRQ, sc->smc_irq_rid,
sc->smc_irq);
if (mtx_initialized(&sc->smc_mtx))
mtx_destroy(&sc->smc_mtx);
return (0);
}
static void
smc_start(struct ifnet *ifp)
{
struct smc_softc *sc;
sc = ifp->if_softc;
SMC_LOCK(sc);
smc_start_locked(ifp);
SMC_UNLOCK(sc);
}
static void
smc_start_locked(struct ifnet *ifp)
{
struct smc_softc *sc;
struct mbuf *m;
u_int len, npages, spin_count;
sc = ifp->if_softc;
SMC_ASSERT_LOCKED(sc);
if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
return;
if (IFQ_IS_EMPTY(&ifp->if_snd))
return;
/*
* Grab the next packet. If it's too big, drop it.
*/
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
len = m_length(m, NULL);
len += (len & 1);
if (len > ETHER_MAX_LEN - ETHER_CRC_LEN) {
if_printf(ifp, "large packet discarded\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
m_freem(m);
return; /* XXX readcheck? */
}
/*
* Flag that we're busy.
*/
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
sc->smc_pending = m;
/*
* Work out how many 256 byte "pages" we need. We have to include the
* control data for the packet in this calculation.
*/
npages = (len + PKT_CTRL_DATA_LEN) >> 8;
if (npages == 0)
npages = 1;
/*
* Request memory.
*/
smc_select_bank(sc, 2);
smc_mmu_wait(sc);
smc_write_2(sc, MMUCR, MMUCR_CMD_TX_ALLOC | npages);
/*
* Spin briefly to see if the allocation succeeds.
*/
spin_count = TX_ALLOC_WAIT_TIME;
do {
if (smc_read_1(sc, IST) & ALLOC_INT) {
smc_write_1(sc, ACK, ALLOC_INT);
break;
}
} while (--spin_count);
/*
* If the allocation is taking too long, unmask the alloc interrupt
* and wait.
*/
if (spin_count == 0) {
sc->smc_mask |= ALLOC_INT;
if ((ifp->if_capenable & IFCAP_POLLING) == 0)
smc_write_1(sc, MSK, sc->smc_mask);
return;
}
taskqueue_enqueue(sc->smc_tq, &sc->smc_tx);
}
static void
smc_task_tx(void *context, int pending)
{
struct ifnet *ifp;
struct smc_softc *sc;
struct mbuf *m, *m0;
u_int packet, len;
int last_len;
uint8_t *data;
(void)pending;
ifp = (struct ifnet *)context;
sc = ifp->if_softc;
SMC_LOCK(sc);
if (sc->smc_pending == NULL) {
SMC_UNLOCK(sc);
goto next_packet;
}
m = m0 = sc->smc_pending;
sc->smc_pending = NULL;
smc_select_bank(sc, 2);
/*
* Check the allocation result.
*/
packet = smc_read_1(sc, ARR);
/*
* If the allocation failed, requeue the packet and retry.
*/
if (packet & ARR_FAILED) {
IFQ_DRV_PREPEND(&ifp->if_snd, m);
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
smc_start_locked(ifp);
SMC_UNLOCK(sc);
return;
}
/*
* Tell the device to write to our packet number.
*/
smc_write_1(sc, PNR, packet);
smc_write_2(sc, PTR, 0 | PTR_AUTO_INCR);
/*
* Tell the device how long the packet is (including control data).
*/
len = m_length(m, 0);
len += PKT_CTRL_DATA_LEN;
smc_write_2(sc, DATA0, 0);
smc_write_2(sc, DATA0, len);
/*
* Push the data out to the device.
*/
data = NULL;
last_len = 0;
for (; m != NULL; m = m->m_next) {
data = mtod(m, uint8_t *);
smc_write_multi_2(sc, DATA0, (uint16_t *)data, m->m_len / 2);
last_len = m->m_len;
}
/*
* Push out the control byte and and the odd byte if needed.
*/
if ((len & 1) != 0 && data != NULL)
smc_write_2(sc, DATA0, (CTRL_ODD << 8) | data[last_len - 1]);
else
smc_write_2(sc, DATA0, 0);
/*
* Unmask the TX empty interrupt.
*/
sc->smc_mask |= TX_EMPTY_INT;
if ((ifp->if_capenable & IFCAP_POLLING) == 0)
smc_write_1(sc, MSK, sc->smc_mask);
/*
* Enqueue the packet.
*/
smc_mmu_wait(sc);
smc_write_2(sc, MMUCR, MMUCR_CMD_ENQUEUE);
callout_reset(&sc->smc_watchdog, hz * 2, smc_watchdog, sc);
/*
* Finish up.
*/
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
SMC_UNLOCK(sc);
BPF_MTAP(ifp, m0);
m_freem(m0);
next_packet:
/*
* See if there's anything else to do.
*/
smc_start(ifp);
}
static void
smc_task_rx(void *context, int pending)
{
u_int packet, status, len;
uint8_t *data;
struct ifnet *ifp;
struct smc_softc *sc;
struct mbuf *m, *mhead, *mtail;
(void)pending;
ifp = (struct ifnet *)context;
sc = ifp->if_softc;
mhead = mtail = NULL;
SMC_LOCK(sc);
packet = smc_read_1(sc, FIFO_RX);
while ((packet & FIFO_EMPTY) == 0) {
/*
* Grab an mbuf and attach a cluster.
*/
MGETHDR(m, M_NOWAIT, MT_DATA);
if (m == NULL) {
break;
}
if (!(MCLGET(m, M_NOWAIT))) {
m_freem(m);
break;
}
/*
* Point to the start of the packet.
*/
smc_select_bank(sc, 2);
smc_write_1(sc, PNR, packet);
smc_write_2(sc, PTR, 0 | PTR_READ | PTR_RCV | PTR_AUTO_INCR);
/*
* Grab status and packet length.
*/
status = smc_read_2(sc, DATA0);
len = smc_read_2(sc, DATA0) & RX_LEN_MASK;
len -= 6;
if (status & RX_ODDFRM)
len += 1;
/*
* Check for errors.
*/
if (status & (RX_TOOSHORT | RX_TOOLNG | RX_BADCRC | RX_ALGNERR)) {
smc_mmu_wait(sc);
smc_write_2(sc, MMUCR, MMUCR_CMD_RELEASE);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
m_freem(m);
break;
}
/*
* Set the mbuf up the way we want it.
*/
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len + 2; /* XXX: Is this right? */
m_adj(m, ETHER_ALIGN);
/*
* Pull the packet out of the device. Make sure we're in the
* right bank first as things may have changed while we were
* allocating our mbuf.
*/
smc_select_bank(sc, 2);
smc_write_1(sc, PNR, packet);
smc_write_2(sc, PTR, 4 | PTR_READ | PTR_RCV | PTR_AUTO_INCR);
data = mtod(m, uint8_t *);
smc_read_multi_2(sc, DATA0, (uint16_t *)data, len >> 1);
if (len & 1) {
data += len & ~1;
*data = smc_read_1(sc, DATA0);
}
/*
* Tell the device we're done.
*/
smc_mmu_wait(sc);
smc_write_2(sc, MMUCR, MMUCR_CMD_RELEASE);
if (m == NULL) {
break;
}
if (mhead == NULL) {
mhead = mtail = m;
m->m_next = NULL;
} else {
mtail->m_next = m;
mtail = m;
}
packet = smc_read_1(sc, FIFO_RX);
}
sc->smc_mask |= RCV_INT;
if ((ifp->if_capenable & IFCAP_POLLING) == 0)
smc_write_1(sc, MSK, sc->smc_mask);
SMC_UNLOCK(sc);
while (mhead != NULL) {
m = mhead;
mhead = mhead->m_next;
m->m_next = NULL;
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
(*ifp->if_input)(ifp, m);
}
}
#ifdef DEVICE_POLLING
static void
smc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct smc_softc *sc;
sc = ifp->if_softc;
SMC_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
SMC_UNLOCK(sc);
return;
}
SMC_UNLOCK(sc);
if (cmd == POLL_AND_CHECK_STATUS)
taskqueue_enqueue(sc->smc_tq, &sc->smc_intr);
}
#endif
static int
smc_intr(void *context)
{
struct smc_softc *sc;
uint32_t curbank;
sc = (struct smc_softc *)context;
/*
* Save current bank and restore later in this function
*/
curbank = (smc_read_2(sc, BSR) & BSR_BANK_MASK);
/*
* Block interrupts in order to let smc_task_intr to kick in
*/
smc_select_bank(sc, 2);
smc_write_1(sc, MSK, 0);
/* Restore bank */
smc_select_bank(sc, curbank);
taskqueue_enqueue(sc->smc_tq, &sc->smc_intr);
return (FILTER_HANDLED);
}
static void
smc_task_intr(void *context, int pending)
{
struct smc_softc *sc;
struct ifnet *ifp;
u_int status, packet, counter, tcr;
(void)pending;
ifp = (struct ifnet *)context;
sc = ifp->if_softc;
SMC_LOCK(sc);
smc_select_bank(sc, 2);
/*
* Find out what interrupts are flagged.
*/
status = smc_read_1(sc, IST) & sc->smc_mask;
/*
* Transmit error
*/
if (status & TX_INT) {
/*
* Kill off the packet if there is one and re-enable transmit.
*/
packet = smc_read_1(sc, FIFO_TX);
if ((packet & FIFO_EMPTY) == 0) {
callout_stop(&sc->smc_watchdog);
smc_select_bank(sc, 2);
smc_write_1(sc, PNR, packet);
smc_write_2(sc, PTR, 0 | PTR_READ |
PTR_AUTO_INCR);
smc_select_bank(sc, 0);
tcr = smc_read_2(sc, EPHSR);
#if 0
if ((tcr & EPHSR_TX_SUC) == 0)
device_printf(sc->smc_dev,
"bad packet\n");
#endif
smc_select_bank(sc, 2);
smc_mmu_wait(sc);
smc_write_2(sc, MMUCR, MMUCR_CMD_RELEASE_PKT);
smc_select_bank(sc, 0);
tcr = smc_read_2(sc, TCR);
tcr |= TCR_TXENA | TCR_PAD_EN;
smc_write_2(sc, TCR, tcr);
smc_select_bank(sc, 2);
taskqueue_enqueue(sc->smc_tq, &sc->smc_tx);
}
/*
* Ack the interrupt.
*/
smc_write_1(sc, ACK, TX_INT);
}
/*
* Receive
*/
if (status & RCV_INT) {
smc_write_1(sc, ACK, RCV_INT);
sc->smc_mask &= ~RCV_INT;
taskqueue_enqueue(sc->smc_tq, &sc->smc_rx);
}
/*
* Allocation
*/
if (status & ALLOC_INT) {
smc_write_1(sc, ACK, ALLOC_INT);
sc->smc_mask &= ~ALLOC_INT;
taskqueue_enqueue(sc->smc_tq, &sc->smc_tx);
}
/*
* Receive overrun
*/
if (status & RX_OVRN_INT) {
smc_write_1(sc, ACK, RX_OVRN_INT);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
}
/*
* Transmit empty
*/
if (status & TX_EMPTY_INT) {
smc_write_1(sc, ACK, TX_EMPTY_INT);
sc->smc_mask &= ~TX_EMPTY_INT;
callout_stop(&sc->smc_watchdog);
/*
* Update collision stats.
*/
smc_select_bank(sc, 0);
counter = smc_read_2(sc, ECR);
smc_select_bank(sc, 2);
if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
((counter & ECR_SNGLCOL_MASK) >> ECR_SNGLCOL_SHIFT) +
((counter & ECR_MULCOL_MASK) >> ECR_MULCOL_SHIFT));
/*
* See if there are any packets to transmit.
*/
taskqueue_enqueue(sc->smc_tq, &sc->smc_tx);
}
/*
* Update the interrupt mask.
*/
smc_select_bank(sc, 2);
if ((ifp->if_capenable & IFCAP_POLLING) == 0)
smc_write_1(sc, MSK, sc->smc_mask);
SMC_UNLOCK(sc);
}
static uint32_t
smc_mii_bitbang_read(device_t dev)
{
struct smc_softc *sc;
uint32_t val;
sc = device_get_softc(dev);
SMC_ASSERT_LOCKED(sc);
KASSERT((smc_read_2(sc, BSR) & BSR_BANK_MASK) == 3,
("%s: smc_mii_bitbang_read called with bank %d (!= 3)",
device_get_nameunit(sc->smc_dev),
smc_read_2(sc, BSR) & BSR_BANK_MASK));
val = smc_read_2(sc, MGMT);
smc_barrier(sc, MGMT, 2,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return (val);
}
static void
smc_mii_bitbang_write(device_t dev, uint32_t val)
{
struct smc_softc *sc;
sc = device_get_softc(dev);
SMC_ASSERT_LOCKED(sc);
KASSERT((smc_read_2(sc, BSR) & BSR_BANK_MASK) == 3,
("%s: smc_mii_bitbang_write called with bank %d (!= 3)",
device_get_nameunit(sc->smc_dev),
smc_read_2(sc, BSR) & BSR_BANK_MASK));
smc_write_2(sc, MGMT, val);
smc_barrier(sc, MGMT, 2,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
int
smc_miibus_readreg(device_t dev, int phy, int reg)
{
struct smc_softc *sc;
int val;
sc = device_get_softc(dev);
SMC_LOCK(sc);
smc_select_bank(sc, 3);
val = mii_bitbang_readreg(dev, &smc_mii_bitbang_ops, phy, reg);
SMC_UNLOCK(sc);
return (val);
}
int
smc_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct smc_softc *sc;
sc = device_get_softc(dev);
SMC_LOCK(sc);
smc_select_bank(sc, 3);
mii_bitbang_writereg(dev, &smc_mii_bitbang_ops, phy, reg, data);
SMC_UNLOCK(sc);
return (0);
}
void
smc_miibus_statchg(device_t dev)
{
struct smc_softc *sc;
struct mii_data *mii;
uint16_t tcr;
sc = device_get_softc(dev);
mii = device_get_softc(sc->smc_miibus);
SMC_LOCK(sc);
smc_select_bank(sc, 0);
tcr = smc_read_2(sc, TCR);
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
tcr |= TCR_SWFDUP;
else
tcr &= ~TCR_SWFDUP;
smc_write_2(sc, TCR, tcr);
SMC_UNLOCK(sc);
}
static int
smc_mii_ifmedia_upd(struct ifnet *ifp)
{
struct smc_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
if (sc->smc_miibus == NULL)
return (ENXIO);
mii = device_get_softc(sc->smc_miibus);
return (mii_mediachg(mii));
}
static void
smc_mii_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct smc_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
if (sc->smc_miibus == NULL)
return;
mii = device_get_softc(sc->smc_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
static void
smc_mii_tick(void *context)
{
struct smc_softc *sc;
sc = (struct smc_softc *)context;
if (sc->smc_miibus == NULL)
return;
SMC_UNLOCK(sc);
mii_tick(device_get_softc(sc->smc_miibus));
callout_reset(&sc->smc_mii_tick_ch, hz, smc_mii_tick, sc);
}
static void
smc_mii_mediachg(struct smc_softc *sc)
{
if (sc->smc_miibus == NULL)
return;
mii_mediachg(device_get_softc(sc->smc_miibus));
}
static int
smc_mii_mediaioctl(struct smc_softc *sc, struct ifreq *ifr, u_long command)
{
struct mii_data *mii;
if (sc->smc_miibus == NULL)
return (EINVAL);
mii = device_get_softc(sc->smc_miibus);
return (ifmedia_ioctl(sc->smc_ifp, ifr, &mii->mii_media, command));
}
static void
smc_reset(struct smc_softc *sc)
{
u_int ctr;
SMC_ASSERT_LOCKED(sc);
smc_select_bank(sc, 2);
/*
* Mask all interrupts.
*/
smc_write_1(sc, MSK, 0);
/*
* Tell the device to reset.
*/
smc_select_bank(sc, 0);
smc_write_2(sc, RCR, RCR_SOFT_RST);
/*
* Set up the configuration register.
*/
smc_select_bank(sc, 1);
smc_write_2(sc, CR, CR_EPH_POWER_EN);
DELAY(1);
/*
* Turn off transmit and receive.
*/
smc_select_bank(sc, 0);
smc_write_2(sc, TCR, 0);
smc_write_2(sc, RCR, 0);
/*
* Set up the control register.
*/
smc_select_bank(sc, 1);
ctr = smc_read_2(sc, CTR);
ctr |= CTR_LE_ENABLE | CTR_AUTO_RELEASE;
smc_write_2(sc, CTR, ctr);
/*
* Reset the MMU.
*/
smc_select_bank(sc, 2);
smc_mmu_wait(sc);
smc_write_2(sc, MMUCR, MMUCR_CMD_MMU_RESET);
}
static void
smc_enable(struct smc_softc *sc)
{
struct ifnet *ifp;
SMC_ASSERT_LOCKED(sc);
ifp = sc->smc_ifp;
/*
* Set up the receive/PHY control register.
*/
smc_select_bank(sc, 0);
smc_write_2(sc, RPCR, RPCR_ANEG | (RPCR_LED_LINK_ANY << RPCR_LSA_SHIFT)
| (RPCR_LED_ACT_ANY << RPCR_LSB_SHIFT));
/*
* Set up the transmit and receive control registers.
*/
smc_write_2(sc, TCR, TCR_TXENA | TCR_PAD_EN);
smc_write_2(sc, RCR, RCR_RXEN | RCR_STRIP_CRC);
/*
* Set up the interrupt mask.
*/
smc_select_bank(sc, 2);
sc->smc_mask = EPH_INT | RX_OVRN_INT | RCV_INT | TX_INT;
if ((ifp->if_capenable & IFCAP_POLLING) != 0)
smc_write_1(sc, MSK, sc->smc_mask);
}
static void
smc_stop(struct smc_softc *sc)
{
SMC_ASSERT_LOCKED(sc);
/*
* Turn off callouts.
*/
callout_stop(&sc->smc_watchdog);
callout_stop(&sc->smc_mii_tick_ch);
/*
* Mask all interrupts.
*/
smc_select_bank(sc, 2);
sc->smc_mask = 0;
smc_write_1(sc, MSK, 0);
#ifdef DEVICE_POLLING
ether_poll_deregister(sc->smc_ifp);
sc->smc_ifp->if_capenable &= ~IFCAP_POLLING;
sc->smc_ifp->if_capenable &= ~IFCAP_POLLING_NOCOUNT;
#endif
/*
* Disable transmit and receive.
*/
smc_select_bank(sc, 0);
smc_write_2(sc, TCR, 0);
smc_write_2(sc, RCR, 0);
sc->smc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
}
static void
smc_watchdog(void *arg)
{
struct smc_softc *sc;
sc = (struct smc_softc *)arg;
device_printf(sc->smc_dev, "watchdog timeout\n");
taskqueue_enqueue(sc->smc_tq, &sc->smc_intr);
}
static void
smc_init(void *context)
{
struct smc_softc *sc;
sc = (struct smc_softc *)context;
SMC_LOCK(sc);
smc_init_locked(sc);
SMC_UNLOCK(sc);
}
static void
smc_init_locked(struct smc_softc *sc)
{
struct ifnet *ifp;
SMC_ASSERT_LOCKED(sc);
ifp = sc->smc_ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
smc_reset(sc);
smc_enable(sc);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
smc_start_locked(ifp);
if (sc->smc_mii_tick != NULL)
callout_reset(&sc->smc_mii_tick_ch, hz, sc->smc_mii_tick, sc);
#ifdef DEVICE_POLLING
SMC_UNLOCK(sc);
ether_poll_register(smc_poll, ifp);
SMC_LOCK(sc);
ifp->if_capenable |= IFCAP_POLLING;
ifp->if_capenable |= IFCAP_POLLING_NOCOUNT;
#endif
}
static int
smc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct smc_softc *sc;
int error;
sc = ifp->if_softc;
error = 0;
switch (cmd) {
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
SMC_LOCK(sc);
smc_stop(sc);
SMC_UNLOCK(sc);
} else {
smc_init(sc);
if (sc->smc_mii_mediachg != NULL)
sc->smc_mii_mediachg(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* XXX
SMC_LOCK(sc);
smc_setmcast(sc);
SMC_UNLOCK(sc);
*/
error = EINVAL;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
if (sc->smc_mii_mediaioctl == NULL) {
error = EINVAL;
break;
}
sc->smc_mii_mediaioctl(sc, (struct ifreq *)data, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}