freebsd-nq/usr.sbin/bhyve/pci_emul.c

1640 lines
36 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/linker_set.h>
#include <sys/errno.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <assert.h>
#include <stdbool.h>
#include <machine/vmm.h>
#include <vmmapi.h>
#include "bhyverun.h"
#include "inout.h"
#include "mem.h"
#include "pci_emul.h"
#include "ioapic.h"
#define CONF1_ADDR_PORT 0x0cf8
#define CONF1_DATA_PORT 0x0cfc
#define CONF1_ENABLE 0x80000000ul
#define CFGWRITE(pi,off,val,b) \
do { \
if ((b) == 1) { \
pci_set_cfgdata8((pi),(off),(val)); \
} else if ((b) == 2) { \
pci_set_cfgdata16((pi),(off),(val)); \
} else { \
pci_set_cfgdata32((pi),(off),(val)); \
} \
} while (0)
#define MAXSLOTS (PCI_SLOTMAX + 1)
#define MAXFUNCS (PCI_FUNCMAX + 1)
static struct slotinfo {
char *si_name;
char *si_param;
struct pci_devinst *si_devi;
int si_legacy;
} pci_slotinfo[MAXSLOTS][MAXFUNCS];
/*
* Used to keep track of legacy interrupt owners/requestors
*/
#define NLIRQ 16
static struct lirqinfo {
int li_generic;
int li_acount;
struct pci_devinst *li_owner; /* XXX should be a list */
} lirq[NLIRQ];
SET_DECLARE(pci_devemu_set, struct pci_devemu);
static uint64_t pci_emul_iobase;
static uint64_t pci_emul_membase32;
static uint64_t pci_emul_membase64;
#define PCI_EMUL_IOBASE 0x2000
#define PCI_EMUL_IOLIMIT 0x10000
#define PCI_EMUL_MEMLIMIT32 0xE0000000 /* 3.5GB */
#define PCI_EMUL_MEMBASE64 0xD000000000UL
#define PCI_EMUL_MEMLIMIT64 0xFD00000000UL
static struct pci_devemu *pci_emul_finddev(char *name);
static int pci_emul_devices;
/*
* I/O access
*/
/*
* Slot options are in the form:
*
* <slot>[:<func>],<emul>[,<config>]
*
* slot is 0..31
* func is 0..7
* emul is a string describing the type of PCI device e.g. virtio-net
* config is an optional string, depending on the device, that can be
* used for configuration.
* Examples are:
* 1,virtio-net,tap0
* 3:0,dummy
*/
static void
pci_parse_slot_usage(char *aopt)
{
fprintf(stderr, "Invalid PCI slot info field \"%s\"\n", aopt);
}
int
pci_parse_slot(char *opt, int legacy)
{
char *slot, *func, *emul, *config;
char *str, *cpy;
int error, snum, fnum;
error = -1;
str = cpy = strdup(opt);
slot = strsep(&str, ",");
func = NULL;
if (strchr(slot, ':') != NULL) {
func = cpy;
(void) strsep(&func, ":");
}
emul = strsep(&str, ",");
config = str;
if (emul == NULL) {
pci_parse_slot_usage(opt);
goto done;
}
snum = atoi(slot);
fnum = func ? atoi(func) : 0;
if (snum < 0 || snum >= MAXSLOTS || fnum < 0 || fnum >= MAXFUNCS) {
pci_parse_slot_usage(opt);
goto done;
}
if (pci_slotinfo[snum][fnum].si_name != NULL) {
fprintf(stderr, "pci slot %d:%d already occupied!\n",
snum, fnum);
goto done;
}
if (pci_emul_finddev(emul) == NULL) {
fprintf(stderr, "pci slot %d:%d: unknown device \"%s\"\n",
snum, fnum, emul);
goto done;
}
error = 0;
pci_slotinfo[snum][fnum].si_name = emul;
pci_slotinfo[snum][fnum].si_param = config;
pci_slotinfo[snum][fnum].si_legacy = legacy;
done:
if (error)
free(cpy);
return (error);
}
static int
pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
{
if (offset < pi->pi_msix.pba_offset)
return (0);
if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
return (0);
}
return (1);
}
int
pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
uint64_t value)
{
int msix_entry_offset;
int tab_index;
char *dest;
/* support only 4 or 8 byte writes */
if (size != 4 && size != 8)
return (-1);
/*
* Return if table index is beyond what device supports
*/
tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
if (tab_index >= pi->pi_msix.table_count)
return (-1);
msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
/* support only aligned writes */
if ((msix_entry_offset % size) != 0)
return (-1);
dest = (char *)(pi->pi_msix.table + tab_index);
dest += msix_entry_offset;
if (size == 4)
*((uint32_t *)dest) = value;
else
*((uint64_t *)dest) = value;
return (0);
}
uint64_t
pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
{
char *dest;
int msix_entry_offset;
int tab_index;
uint64_t retval = ~0;
/*
* The PCI standard only allows 4 and 8 byte accesses to the MSI-X
* table but we also allow 1 byte access to accomodate reads from
* ddb.
*/
if (size != 1 && size != 4 && size != 8)
return (retval);
msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
/* support only aligned reads */
if ((msix_entry_offset % size) != 0) {
return (retval);
}
tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
if (tab_index < pi->pi_msix.table_count) {
/* valid MSI-X Table access */
dest = (char *)(pi->pi_msix.table + tab_index);
dest += msix_entry_offset;
if (size == 1)
retval = *((uint8_t *)dest);
else if (size == 4)
retval = *((uint32_t *)dest);
else
retval = *((uint64_t *)dest);
} else if (pci_valid_pba_offset(pi, offset)) {
/* return 0 for PBA access */
retval = 0;
}
return (retval);
}
int
pci_msix_table_bar(struct pci_devinst *pi)
{
if (pi->pi_msix.table != NULL)
return (pi->pi_msix.table_bar);
else
return (-1);
}
int
pci_msix_pba_bar(struct pci_devinst *pi)
{
if (pi->pi_msix.table != NULL)
return (pi->pi_msix.pba_bar);
else
return (-1);
}
static int
pci_emul_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
struct pci_devinst *pdi = arg;
struct pci_devemu *pe = pdi->pi_d;
uint64_t offset;
int i;
for (i = 0; i <= PCI_BARMAX; i++) {
if (pdi->pi_bar[i].type == PCIBAR_IO &&
port >= pdi->pi_bar[i].addr &&
port + bytes <= pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
offset = port - pdi->pi_bar[i].addr;
if (in)
*eax = (*pe->pe_barread)(ctx, vcpu, pdi, i,
offset, bytes);
else
(*pe->pe_barwrite)(ctx, vcpu, pdi, i, offset,
bytes, *eax);
return (0);
}
}
return (-1);
}
static int
pci_emul_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
int size, uint64_t *val, void *arg1, long arg2)
{
struct pci_devinst *pdi = arg1;
struct pci_devemu *pe = pdi->pi_d;
uint64_t offset;
int bidx = (int) arg2;
assert(bidx <= PCI_BARMAX);
assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
pdi->pi_bar[bidx].type == PCIBAR_MEM64);
assert(addr >= pdi->pi_bar[bidx].addr &&
addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
offset = addr - pdi->pi_bar[bidx].addr;
if (dir == MEM_F_WRITE)
(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset, size, *val);
else
*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx, offset, size);
return (0);
}
static int
pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
uint64_t *addr)
{
uint64_t base;
assert((size & (size - 1)) == 0); /* must be a power of 2 */
base = roundup2(*baseptr, size);
if (base + size <= limit) {
*addr = base;
*baseptr = base + size;
return (0);
} else
return (-1);
}
int
pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
uint64_t size)
{
return (pci_emul_alloc_pbar(pdi, idx, 0, type, size));
}
/*
* Register (or unregister) the MMIO or I/O region associated with the BAR
* register 'idx' of an emulated pci device.
*/
static void
modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
{
int error;
struct inout_port iop;
struct mem_range mr;
switch (pi->pi_bar[idx].type) {
case PCIBAR_IO:
bzero(&iop, sizeof(struct inout_port));
iop.name = pi->pi_name;
iop.port = pi->pi_bar[idx].addr;
iop.size = pi->pi_bar[idx].size;
if (registration) {
iop.flags = IOPORT_F_INOUT;
iop.handler = pci_emul_io_handler;
iop.arg = pi;
error = register_inout(&iop);
} else
error = unregister_inout(&iop);
break;
case PCIBAR_MEM32:
case PCIBAR_MEM64:
bzero(&mr, sizeof(struct mem_range));
mr.name = pi->pi_name;
mr.base = pi->pi_bar[idx].addr;
mr.size = pi->pi_bar[idx].size;
if (registration) {
mr.flags = MEM_F_RW;
mr.handler = pci_emul_mem_handler;
mr.arg1 = pi;
mr.arg2 = idx;
error = register_mem(&mr);
} else
error = unregister_mem(&mr);
break;
default:
error = EINVAL;
break;
}
assert(error == 0);
}
static void
unregister_bar(struct pci_devinst *pi, int idx)
{
modify_bar_registration(pi, idx, 0);
}
static void
register_bar(struct pci_devinst *pi, int idx)
{
modify_bar_registration(pi, idx, 1);
}
/* Are we decoding i/o port accesses for the emulated pci device? */
static int
porten(struct pci_devinst *pi)
{
uint16_t cmd;
cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
return (cmd & PCIM_CMD_PORTEN);
}
/* Are we decoding memory accesses for the emulated pci device? */
static int
memen(struct pci_devinst *pi)
{
uint16_t cmd;
cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
return (cmd & PCIM_CMD_MEMEN);
}
/*
* Update the MMIO or I/O address that is decoded by the BAR register.
*
* If the pci device has enabled the address space decoding then intercept
* the address range decoded by the BAR register.
*/
static void
update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type)
{
int decode;
if (pi->pi_bar[idx].type == PCIBAR_IO)
decode = porten(pi);
else
decode = memen(pi);
if (decode)
unregister_bar(pi, idx);
switch (type) {
case PCIBAR_IO:
case PCIBAR_MEM32:
pi->pi_bar[idx].addr = addr;
break;
case PCIBAR_MEM64:
pi->pi_bar[idx].addr &= ~0xffffffffUL;
pi->pi_bar[idx].addr |= addr;
break;
case PCIBAR_MEMHI64:
pi->pi_bar[idx].addr &= 0xffffffff;
pi->pi_bar[idx].addr |= addr;
break;
default:
assert(0);
}
if (decode)
register_bar(pi, idx);
}
int
pci_emul_alloc_pbar(struct pci_devinst *pdi, int idx, uint64_t hostbase,
enum pcibar_type type, uint64_t size)
{
int error;
uint64_t *baseptr, limit, addr, mask, lobits, bar;
assert(idx >= 0 && idx <= PCI_BARMAX);
if ((size & (size - 1)) != 0)
size = 1UL << flsl(size); /* round up to a power of 2 */
/* Enforce minimum BAR sizes required by the PCI standard */
if (type == PCIBAR_IO) {
if (size < 4)
size = 4;
} else {
if (size < 16)
size = 16;
}
switch (type) {
case PCIBAR_NONE:
baseptr = NULL;
addr = mask = lobits = 0;
break;
case PCIBAR_IO:
if (hostbase &&
pci_slotinfo[pdi->pi_slot][pdi->pi_func].si_legacy) {
assert(hostbase < PCI_EMUL_IOBASE);
baseptr = &hostbase;
} else {
baseptr = &pci_emul_iobase;
}
limit = PCI_EMUL_IOLIMIT;
mask = PCIM_BAR_IO_BASE;
lobits = PCIM_BAR_IO_SPACE;
break;
case PCIBAR_MEM64:
/*
* XXX
* Some drivers do not work well if the 64-bit BAR is allocated
* above 4GB. Allow for this by allocating small requests under
* 4GB unless then allocation size is larger than some arbitrary
* number (32MB currently).
*/
if (size > 32 * 1024 * 1024) {
/*
* XXX special case for device requiring peer-peer DMA
*/
if (size == 0x100000000UL)
baseptr = &hostbase;
else
baseptr = &pci_emul_membase64;
limit = PCI_EMUL_MEMLIMIT64;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
PCIM_BAR_MEM_PREFETCH;
break;
} else {
baseptr = &pci_emul_membase32;
limit = PCI_EMUL_MEMLIMIT32;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
}
break;
case PCIBAR_MEM32:
baseptr = &pci_emul_membase32;
limit = PCI_EMUL_MEMLIMIT32;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
break;
default:
printf("pci_emul_alloc_base: invalid bar type %d\n", type);
assert(0);
}
if (baseptr != NULL) {
error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
if (error != 0)
return (error);
}
pdi->pi_bar[idx].type = type;
pdi->pi_bar[idx].addr = addr;
pdi->pi_bar[idx].size = size;
/* Initialize the BAR register in config space */
bar = (addr & mask) | lobits;
pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
if (type == PCIBAR_MEM64) {
assert(idx + 1 <= PCI_BARMAX);
pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
}
register_bar(pdi, idx);
return (0);
}
#define CAP_START_OFFSET 0x40
static int
pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
{
int i, capoff, capid, reallen;
uint16_t sts;
static u_char endofcap[4] = {
PCIY_RESERVED, 0, 0, 0
};
assert(caplen > 0 && capdata[0] != PCIY_RESERVED);
reallen = roundup2(caplen, 4); /* dword aligned */
sts = pci_get_cfgdata16(pi, PCIR_STATUS);
if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
capoff = CAP_START_OFFSET;
pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
} else {
capoff = pci_get_cfgdata8(pi, PCIR_CAP_PTR);
while (1) {
assert((capoff & 0x3) == 0);
capid = pci_get_cfgdata8(pi, capoff);
if (capid == PCIY_RESERVED)
break;
capoff = pci_get_cfgdata8(pi, capoff + 1);
}
}
/* Check if we have enough space */
if (capoff + reallen + sizeof(endofcap) > PCI_REGMAX + 1)
return (-1);
/* Copy the capability */
for (i = 0; i < caplen; i++)
pci_set_cfgdata8(pi, capoff + i, capdata[i]);
/* Set the next capability pointer */
pci_set_cfgdata8(pi, capoff + 1, capoff + reallen);
/* Copy of the reserved capability which serves as the end marker */
for (i = 0; i < sizeof(endofcap); i++)
pci_set_cfgdata8(pi, capoff + reallen + i, endofcap[i]);
return (0);
}
static struct pci_devemu *
pci_emul_finddev(char *name)
{
struct pci_devemu **pdpp, *pdp;
SET_FOREACH(pdpp, pci_devemu_set) {
pdp = *pdpp;
if (!strcmp(pdp->pe_emu, name)) {
return (pdp);
}
}
return (NULL);
}
static int
pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int slot, int func,
char *params)
{
struct pci_devinst *pdi;
int err;
pdi = malloc(sizeof(struct pci_devinst));
bzero(pdi, sizeof(*pdi));
pdi->pi_vmctx = ctx;
pdi->pi_bus = 0;
pdi->pi_slot = slot;
pdi->pi_func = func;
pdi->pi_d = pde;
snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot);
/* Disable legacy interrupts */
pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
pci_set_cfgdata8(pdi, PCIR_COMMAND,
PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
err = (*pde->pe_init)(ctx, pdi, params);
if (err != 0) {
free(pdi);
} else {
pci_emul_devices++;
pci_slotinfo[slot][func].si_devi = pdi;
}
return (err);
}
void
pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
{
int mmc;
CTASSERT(sizeof(struct msicap) == 14);
/* Number of msi messages must be a power of 2 between 1 and 32 */
assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
mmc = ffs(msgnum) - 1;
bzero(msicap, sizeof(struct msicap));
msicap->capid = PCIY_MSI;
msicap->nextptr = nextptr;
msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
}
int
pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
{
struct msicap msicap;
pci_populate_msicap(&msicap, msgnum, 0);
return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
}
static void
pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
uint32_t msix_tab_size, int nextptr)
{
CTASSERT(sizeof(struct msixcap) == 12);
assert(msix_tab_size % 4096 == 0);
bzero(msixcap, sizeof(struct msixcap));
msixcap->capid = PCIY_MSIX;
msixcap->nextptr = nextptr;
/*
* Message Control Register, all fields set to
* zero except for the Table Size.
* Note: Table size N is encoded as N-1
*/
msixcap->msgctrl = msgnum - 1;
/*
* MSI-X BAR setup:
* - MSI-X table start at offset 0
* - PBA table starts at a 4K aligned offset after the MSI-X table
*/
msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
}
static void
pci_msix_table_init(struct pci_devinst *pi, int table_entries)
{
int i, table_size;
assert(table_entries > 0);
assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
pi->pi_msix.table = malloc(table_size);
bzero(pi->pi_msix.table, table_size);
/* set mask bit of vector control register */
for (i = 0; i < table_entries; i++)
pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
}
int
pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
{
uint16_t pba_index;
uint32_t tab_size;
struct msixcap msixcap;
assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
/* Align table size to nearest 4K */
tab_size = roundup2(tab_size, 4096);
pi->pi_msix.table_bar = barnum;
pi->pi_msix.pba_bar = barnum;
pi->pi_msix.table_offset = 0;
pi->pi_msix.table_count = msgnum;
pi->pi_msix.pba_offset = tab_size;
/* calculate the MMIO size required for MSI-X PBA */
pba_index = (msgnum - 1) / (PBA_TABLE_ENTRY_SIZE * 8);
pi->pi_msix.pba_size = (pba_index + 1) * PBA_TABLE_ENTRY_SIZE;
pci_msix_table_init(pi, msgnum);
pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size, 0);
/* allocate memory for MSI-X Table and PBA */
pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
tab_size + pi->pi_msix.pba_size);
return (pci_emul_add_capability(pi, (u_char *)&msixcap,
sizeof(msixcap)));
}
void
msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val)
{
uint16_t msgctrl, rwmask;
int off, table_bar;
off = offset - capoff;
table_bar = pi->pi_msix.table_bar;
/* Message Control Register */
if (off == 2 && bytes == 2) {
rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
msgctrl = pci_get_cfgdata16(pi, offset);
msgctrl &= ~rwmask;
msgctrl |= val & rwmask;
val = msgctrl;
pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
}
CFGWRITE(pi, offset, val, bytes);
}
void
msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val)
{
uint16_t msgctrl, rwmask, msgdata, mme;
uint32_t addrlo;
/*
* If guest is writing to the message control register make sure
* we do not overwrite read-only fields.
*/
if ((offset - capoff) == 2 && bytes == 2) {
rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
msgctrl = pci_get_cfgdata16(pi, offset);
msgctrl &= ~rwmask;
msgctrl |= val & rwmask;
val = msgctrl;
addrlo = pci_get_cfgdata32(pi, capoff + 4);
if (msgctrl & PCIM_MSICTRL_64BIT)
msgdata = pci_get_cfgdata16(pi, capoff + 12);
else
msgdata = pci_get_cfgdata16(pi, capoff + 8);
/*
* XXX check delivery mode, destination mode etc
*/
mme = msgctrl & PCIM_MSICTRL_MME_MASK;
pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
if (pi->pi_msi.enabled) {
pi->pi_msi.cpu = (addrlo >> 12) & 0xff;
pi->pi_msi.vector = msgdata & 0xff;
pi->pi_msi.msgnum = 1 << (mme >> 4);
} else {
pi->pi_msi.cpu = 0;
pi->pi_msi.vector = 0;
pi->pi_msi.msgnum = 0;
}
}
CFGWRITE(pi, offset, val, bytes);
}
void
pciecap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val)
{
/* XXX don't write to the readonly parts */
CFGWRITE(pi, offset, val, bytes);
}
#define PCIECAP_VERSION 0x2
int
pci_emul_add_pciecap(struct pci_devinst *pi, int type)
{
int err;
struct pciecap pciecap;
CTASSERT(sizeof(struct pciecap) == 60);
if (type != PCIEM_TYPE_ROOT_PORT)
return (-1);
bzero(&pciecap, sizeof(pciecap));
pciecap.capid = PCIY_EXPRESS;
pciecap.pcie_capabilities = PCIECAP_VERSION | PCIEM_TYPE_ROOT_PORT;
pciecap.link_capabilities = 0x411; /* gen1, x1 */
pciecap.link_status = 0x11; /* gen1, x1 */
err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
return (err);
}
/*
* This function assumes that 'coff' is in the capabilities region of the
* config space.
*/
static void
pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val)
{
int capid;
uint8_t capoff, nextoff;
/* Do not allow un-aligned writes */
if ((offset & (bytes - 1)) != 0)
return;
/* Find the capability that we want to update */
capoff = CAP_START_OFFSET;
while (1) {
capid = pci_get_cfgdata8(pi, capoff);
if (capid == PCIY_RESERVED)
break;
nextoff = pci_get_cfgdata8(pi, capoff + 1);
if (offset >= capoff && offset < nextoff)
break;
capoff = nextoff;
}
assert(offset >= capoff);
/*
* Capability ID and Next Capability Pointer are readonly
*/
if (offset == capoff || offset == capoff + 1)
return;
switch (capid) {
case PCIY_MSI:
msicap_cfgwrite(pi, capoff, offset, bytes, val);
break;
case PCIY_MSIX:
msixcap_cfgwrite(pi, capoff, offset, bytes, val);
break;
case PCIY_EXPRESS:
pciecap_cfgwrite(pi, capoff, offset, bytes, val);
break;
default:
break;
}
}
static int
pci_emul_iscap(struct pci_devinst *pi, int offset)
{
int found;
uint16_t sts;
uint8_t capid, lastoff;
found = 0;
sts = pci_get_cfgdata16(pi, PCIR_STATUS);
if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
lastoff = pci_get_cfgdata8(pi, PCIR_CAP_PTR);
while (1) {
assert((lastoff & 0x3) == 0);
capid = pci_get_cfgdata8(pi, lastoff);
if (capid == PCIY_RESERVED)
break;
lastoff = pci_get_cfgdata8(pi, lastoff + 1);
}
if (offset >= CAP_START_OFFSET && offset <= lastoff)
found = 1;
}
return (found);
}
static int
pci_emul_fallback_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
int size, uint64_t *val, void *arg1, long arg2)
{
/*
* Ignore writes; return 0xff's for reads. The mem read code
* will take care of truncating to the correct size.
*/
if (dir == MEM_F_READ) {
*val = 0xffffffffffffffff;
}
return (0);
}
int
init_pci(struct vmctx *ctx)
{
struct mem_range memp;
struct pci_devemu *pde;
struct slotinfo *si;
size_t lowmem;
int slot, func;
int error;
pci_emul_iobase = PCI_EMUL_IOBASE;
pci_emul_membase32 = vm_get_lowmem_limit(ctx);
pci_emul_membase64 = PCI_EMUL_MEMBASE64;
/*
* Allow ISA IRQs 5,10,11,12, and 15 to be available for
* generic use
*/
lirq[5].li_generic = 1;
lirq[10].li_generic = 1;
lirq[11].li_generic = 1;
lirq[12].li_generic = 1;
lirq[15].li_generic = 1;
for (slot = 0; slot < MAXSLOTS; slot++) {
for (func = 0; func < MAXFUNCS; func++) {
si = &pci_slotinfo[slot][func];
if (si->si_name != NULL) {
pde = pci_emul_finddev(si->si_name);
assert(pde != NULL);
error = pci_emul_init(ctx, pde, slot, func,
si->si_param);
if (error)
return (error);
}
}
}
/*
* The guest physical memory map looks like the following:
* [0, lowmem) guest system memory
* [lowmem, lowmem_limit) memory hole (may be absent)
* [lowmem_limit, 4GB) PCI hole (32-bit BAR allocation)
* [4GB, 4GB + highmem)
*
* Accesses to memory addresses that are not allocated to system
* memory or PCI devices return 0xff's.
*/
error = vm_get_memory_seg(ctx, 0, &lowmem);
assert(error == 0);
memset(&memp, 0, sizeof(struct mem_range));
memp.name = "PCI hole";
memp.flags = MEM_F_RW;
memp.base = lowmem;
memp.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
memp.handler = pci_emul_fallback_handler;
error = register_mem_fallback(&memp);
assert(error == 0);
return (0);
}
int
pci_msi_enabled(struct pci_devinst *pi)
{
return (pi->pi_msi.enabled);
}
int
pci_msi_msgnum(struct pci_devinst *pi)
{
if (pi->pi_msi.enabled)
return (pi->pi_msi.msgnum);
else
return (0);
}
int
pci_msix_enabled(struct pci_devinst *pi)
{
return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
}
void
pci_generate_msix(struct pci_devinst *pi, int index)
{
struct msix_table_entry *mte;
if (!pci_msix_enabled(pi))
return;
if (pi->pi_msix.function_mask)
return;
if (index >= pi->pi_msix.table_count)
return;
mte = &pi->pi_msix.table[index];
if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
/* XXX Set PBA bit if interrupt is disabled */
vm_lapic_irq(pi->pi_vmctx,
(mte->addr >> 12) & 0xff, mte->msg_data & 0xff);
}
}
void
pci_generate_msi(struct pci_devinst *pi, int msg)
{
if (pci_msi_enabled(pi) && msg < pci_msi_msgnum(pi)) {
vm_lapic_irq(pi->pi_vmctx,
pi->pi_msi.cpu,
pi->pi_msi.vector + msg);
}
}
int
pci_is_legacy(struct pci_devinst *pi)
{
return (pci_slotinfo[pi->pi_slot][pi->pi_func].si_legacy);
}
static int
pci_lintr_alloc(struct pci_devinst *pi, int vec)
{
int i;
assert(vec < NLIRQ);
if (vec == -1) {
for (i = 0; i < NLIRQ; i++) {
if (lirq[i].li_generic &&
lirq[i].li_owner == NULL) {
vec = i;
break;
}
}
} else {
if (lirq[vec].li_owner != NULL) {
vec = -1;
}
}
assert(vec != -1);
lirq[vec].li_owner = pi;
pi->pi_lintr_pin = vec;
return (vec);
}
int
pci_lintr_request(struct pci_devinst *pi, int vec)
{
vec = pci_lintr_alloc(pi, vec);
pci_set_cfgdata8(pi, PCIR_INTLINE, vec);
pci_set_cfgdata8(pi, PCIR_INTPIN, 1);
return (0);
}
void
pci_lintr_assert(struct pci_devinst *pi)
{
assert(pi->pi_lintr_pin);
ioapic_assert_pin(pi->pi_vmctx, pi->pi_lintr_pin);
}
void
pci_lintr_deassert(struct pci_devinst *pi)
{
assert(pi->pi_lintr_pin);
ioapic_deassert_pin(pi->pi_vmctx, pi->pi_lintr_pin);
}
/*
* Return 1 if the emulated device in 'slot' is a multi-function device.
* Return 0 otherwise.
*/
static int
pci_emul_is_mfdev(int slot)
{
int f, numfuncs;
numfuncs = 0;
for (f = 0; f < MAXFUNCS; f++) {
if (pci_slotinfo[slot][f].si_devi != NULL) {
numfuncs++;
}
}
return (numfuncs > 1);
}
/*
* Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
* whether or not is a multi-function being emulated in the pci 'slot'.
*/
static void
pci_emul_hdrtype_fixup(int slot, int off, int bytes, uint32_t *rv)
{
int mfdev;
if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
mfdev = pci_emul_is_mfdev(slot);
switch (bytes) {
case 1:
case 2:
*rv &= ~PCIM_MFDEV;
if (mfdev) {
*rv |= PCIM_MFDEV;
}
break;
case 4:
*rv &= ~(PCIM_MFDEV << 16);
if (mfdev) {
*rv |= (PCIM_MFDEV << 16);
}
break;
}
}
}
static int cfgbus, cfgslot, cfgfunc, cfgoff;
static int
pci_emul_cfgaddr(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
uint32_t x;
if (bytes != 4) {
if (in)
*eax = (bytes == 2) ? 0xffff : 0xff;
return (0);
}
if (in) {
x = (cfgbus << 16) |
(cfgslot << 11) |
(cfgfunc << 8) |
cfgoff;
*eax = x | CONF1_ENABLE;
} else {
x = *eax;
cfgoff = x & PCI_REGMAX;
cfgfunc = (x >> 8) & PCI_FUNCMAX;
cfgslot = (x >> 11) & PCI_SLOTMAX;
cfgbus = (x >> 16) & PCI_BUSMAX;
}
return (0);
}
INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
static uint32_t
bits_changed(uint32_t old, uint32_t new, uint32_t mask)
{
return ((old ^ new) & mask);
}
static void
pci_emul_cmdwrite(struct pci_devinst *pi, uint32_t new, int bytes)
{
int i;
uint16_t old;
/*
* The command register is at an offset of 4 bytes and thus the
* guest could write 1, 2 or 4 bytes starting at this offset.
*/
old = pci_get_cfgdata16(pi, PCIR_COMMAND); /* stash old value */
CFGWRITE(pi, PCIR_COMMAND, new, bytes); /* update config */
new = pci_get_cfgdata16(pi, PCIR_COMMAND); /* get updated value */
/*
* If the MMIO or I/O address space decoding has changed then
* register/unregister all BARs that decode that address space.
*/
for (i = 0; i < PCI_BARMAX; i++) {
switch (pi->pi_bar[i].type) {
case PCIBAR_NONE:
case PCIBAR_MEMHI64:
break;
case PCIBAR_IO:
/* I/O address space decoding changed? */
if (bits_changed(old, new, PCIM_CMD_PORTEN)) {
if (porten(pi))
register_bar(pi, i);
else
unregister_bar(pi, i);
}
break;
case PCIBAR_MEM32:
case PCIBAR_MEM64:
/* MMIO address space decoding changed? */
if (bits_changed(old, new, PCIM_CMD_MEMEN)) {
if (memen(pi))
register_bar(pi, i);
else
unregister_bar(pi, i);
}
break;
default:
assert(0);
}
}
}
static int
pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
struct pci_devinst *pi;
struct pci_devemu *pe;
int coff, idx, needcfg;
uint64_t addr, bar, mask;
assert(bytes == 1 || bytes == 2 || bytes == 4);
if (cfgbus == 0)
pi = pci_slotinfo[cfgslot][cfgfunc].si_devi;
else
pi = NULL;
coff = cfgoff + (port - CONF1_DATA_PORT);
#if 0
printf("pcicfg-%s from 0x%0x of %d bytes (%d/%d/%d)\n\r",
in ? "read" : "write", coff, bytes, cfgbus, cfgslot, cfgfunc);
#endif
/*
* Just return if there is no device at this cfgslot:cfgfunc or
* if the guest is doing an un-aligned access
*/
if (pi == NULL || (coff & (bytes - 1)) != 0) {
if (in)
*eax = 0xffffffff;
return (0);
}
pe = pi->pi_d;
/*
* Config read
*/
if (in) {
/* Let the device emulation override the default handler */
if (pe->pe_cfgread != NULL) {
needcfg = pe->pe_cfgread(ctx, vcpu, pi,
coff, bytes, eax);
} else {
needcfg = 1;
}
if (needcfg) {
if (bytes == 1)
*eax = pci_get_cfgdata8(pi, coff);
else if (bytes == 2)
*eax = pci_get_cfgdata16(pi, coff);
else
*eax = pci_get_cfgdata32(pi, coff);
}
pci_emul_hdrtype_fixup(cfgslot, coff, bytes, eax);
} else {
/* Let the device emulation override the default handler */
if (pe->pe_cfgwrite != NULL &&
(*pe->pe_cfgwrite)(ctx, vcpu, pi, coff, bytes, *eax) == 0)
return (0);
/*
* Special handling for write to BAR registers
*/
if (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)) {
/*
* Ignore writes to BAR registers that are not
* 4-byte aligned.
*/
if (bytes != 4 || (coff & 0x3) != 0)
return (0);
idx = (coff - PCIR_BAR(0)) / 4;
mask = ~(pi->pi_bar[idx].size - 1);
switch (pi->pi_bar[idx].type) {
case PCIBAR_NONE:
pi->pi_bar[idx].addr = bar = 0;
break;
case PCIBAR_IO:
addr = *eax & mask;
addr &= 0xffff;
bar = addr | PCIM_BAR_IO_SPACE;
/*
* Register the new BAR value for interception
*/
if (addr != pi->pi_bar[idx].addr) {
update_bar_address(pi, addr, idx,
PCIBAR_IO);
}
break;
case PCIBAR_MEM32:
addr = bar = *eax & mask;
bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
if (addr != pi->pi_bar[idx].addr) {
update_bar_address(pi, addr, idx,
PCIBAR_MEM32);
}
break;
case PCIBAR_MEM64:
addr = bar = *eax & mask;
bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
PCIM_BAR_MEM_PREFETCH;
if (addr != (uint32_t)pi->pi_bar[idx].addr) {
update_bar_address(pi, addr, idx,
PCIBAR_MEM64);
}
break;
case PCIBAR_MEMHI64:
mask = ~(pi->pi_bar[idx - 1].size - 1);
addr = ((uint64_t)*eax << 32) & mask;
bar = addr >> 32;
if (bar != pi->pi_bar[idx - 1].addr >> 32) {
update_bar_address(pi, addr, idx - 1,
PCIBAR_MEMHI64);
}
break;
default:
assert(0);
}
pci_set_cfgdata32(pi, coff, bar);
} else if (pci_emul_iscap(pi, coff)) {
pci_emul_capwrite(pi, coff, bytes, *eax);
} else if (coff == PCIR_COMMAND) {
pci_emul_cmdwrite(pi, *eax, bytes);
} else {
CFGWRITE(pi, coff, *eax, bytes);
}
}
return (0);
}
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
/*
* I/O ports to configure PCI IRQ routing. We ignore all writes to it.
*/
static int
pci_irq_port_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
assert(in == 0);
return (0);
}
INOUT_PORT(pci_irq, 0xC00, IOPORT_F_OUT, pci_irq_port_handler);
INOUT_PORT(pci_irq, 0xC01, IOPORT_F_OUT, pci_irq_port_handler);
#define PCI_EMUL_TEST
#ifdef PCI_EMUL_TEST
/*
* Define a dummy test device
*/
#define DIOSZ 20
#define DMEMSZ 4096
struct pci_emul_dsoftc {
uint8_t ioregs[DIOSZ];
uint8_t memregs[DMEMSZ];
};
#define PCI_EMUL_MSI_MSGS 4
#define PCI_EMUL_MSIX_MSGS 16
static int
pci_emul_dinit(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
{
int error;
struct pci_emul_dsoftc *sc;
sc = malloc(sizeof(struct pci_emul_dsoftc));
memset(sc, 0, sizeof(struct pci_emul_dsoftc));
pi->pi_arg = sc;
pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
assert(error == 0);
error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
assert(error == 0);
error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
assert(error == 0);
return (0);
}
static void
pci_emul_diow(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
uint64_t offset, int size, uint64_t value)
{
int i;
struct pci_emul_dsoftc *sc = pi->pi_arg;
if (baridx == 0) {
if (offset + size > DIOSZ) {
printf("diow: iow too large, offset %ld size %d\n",
offset, size);
return;
}
if (size == 1) {
sc->ioregs[offset] = value & 0xff;
} else if (size == 2) {
*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
} else if (size == 4) {
*(uint32_t *)&sc->ioregs[offset] = value;
} else {
printf("diow: iow unknown size %d\n", size);
}
/*
* Special magic value to generate an interrupt
*/
if (offset == 4 && size == 4 && pci_msi_enabled(pi))
pci_generate_msi(pi, value % pci_msi_msgnum(pi));
if (value == 0xabcdef) {
for (i = 0; i < pci_msi_msgnum(pi); i++)
pci_generate_msi(pi, i);
}
}
if (baridx == 1) {
if (offset + size > DMEMSZ) {
printf("diow: memw too large, offset %ld size %d\n",
offset, size);
return;
}
if (size == 1) {
sc->memregs[offset] = value;
} else if (size == 2) {
*(uint16_t *)&sc->memregs[offset] = value;
} else if (size == 4) {
*(uint32_t *)&sc->memregs[offset] = value;
} else if (size == 8) {
*(uint64_t *)&sc->memregs[offset] = value;
} else {
printf("diow: memw unknown size %d\n", size);
}
/*
* magic interrupt ??
*/
}
if (baridx > 1) {
printf("diow: unknown bar idx %d\n", baridx);
}
}
static uint64_t
pci_emul_dior(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
uint64_t offset, int size)
{
struct pci_emul_dsoftc *sc = pi->pi_arg;
uint32_t value;
if (baridx == 0) {
if (offset + size > DIOSZ) {
printf("dior: ior too large, offset %ld size %d\n",
offset, size);
return (0);
}
if (size == 1) {
value = sc->ioregs[offset];
} else if (size == 2) {
value = *(uint16_t *) &sc->ioregs[offset];
} else if (size == 4) {
value = *(uint32_t *) &sc->ioregs[offset];
} else {
printf("dior: ior unknown size %d\n", size);
}
}
if (baridx == 1) {
if (offset + size > DMEMSZ) {
printf("dior: memr too large, offset %ld size %d\n",
offset, size);
return (0);
}
if (size == 1) {
value = sc->memregs[offset];
} else if (size == 2) {
value = *(uint16_t *) &sc->memregs[offset];
} else if (size == 4) {
value = *(uint32_t *) &sc->memregs[offset];
} else if (size == 8) {
value = *(uint64_t *) &sc->memregs[offset];
} else {
printf("dior: ior unknown size %d\n", size);
}
}
if (baridx > 1) {
printf("dior: unknown bar idx %d\n", baridx);
return (0);
}
return (value);
}
struct pci_devemu pci_dummy = {
.pe_emu = "dummy",
.pe_init = pci_emul_dinit,
.pe_barwrite = pci_emul_diow,
.pe_barread = pci_emul_dior
};
PCI_EMUL_SET(pci_dummy);
#endif /* PCI_EMUL_TEST */