freebsd-nq/sys/dev/alc/if_alc.c

3777 lines
111 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_llc.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/in_cksum.h>
#include <dev/alc/if_alcreg.h>
#include <dev/alc/if_alcvar.h>
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#undef ALC_USE_CUSTOM_CSUM
#ifdef ALC_USE_CUSTOM_CSUM
#define ALC_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
#else
#define ALC_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
#endif
MODULE_DEPEND(alc, pci, 1, 1, 1);
MODULE_DEPEND(alc, ether, 1, 1, 1);
MODULE_DEPEND(alc, miibus, 1, 1, 1);
/* Tunables. */
static int msi_disable = 0;
static int msix_disable = 0;
TUNABLE_INT("hw.alc.msi_disable", &msi_disable);
TUNABLE_INT("hw.alc.msix_disable", &msix_disable);
/*
* Devices supported by this driver.
*/
static struct alc_ident alc_ident_table[] = {
{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8131, 9 * 1024,
"Atheros AR8131 PCIe Gigabit Ethernet" },
{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8132, 9 * 1024,
"Atheros AR8132 PCIe Fast Ethernet" },
{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151, 6 * 1024,
"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151_V2, 6 * 1024,
"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B, 6 * 1024,
"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B2, 6 * 1024,
"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
{ 0, 0, 0, NULL}
};
static void alc_aspm(struct alc_softc *, int);
static int alc_attach(device_t);
static int alc_check_boundary(struct alc_softc *);
static int alc_detach(device_t);
static void alc_disable_l0s_l1(struct alc_softc *);
static int alc_dma_alloc(struct alc_softc *);
static void alc_dma_free(struct alc_softc *);
static void alc_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int alc_encap(struct alc_softc *, struct mbuf **);
static struct alc_ident *
alc_find_ident(device_t);
#ifndef __NO_STRICT_ALIGNMENT
static struct mbuf *
alc_fixup_rx(struct ifnet *, struct mbuf *);
#endif
static void alc_get_macaddr(struct alc_softc *);
static void alc_init(void *);
static void alc_init_cmb(struct alc_softc *);
static void alc_init_locked(struct alc_softc *);
static void alc_init_rr_ring(struct alc_softc *);
static int alc_init_rx_ring(struct alc_softc *);
static void alc_init_smb(struct alc_softc *);
static void alc_init_tx_ring(struct alc_softc *);
static void alc_int_task(void *, int);
static int alc_intr(void *);
static int alc_ioctl(struct ifnet *, u_long, caddr_t);
static void alc_mac_config(struct alc_softc *);
static int alc_miibus_readreg(device_t, int, int);
static void alc_miibus_statchg(device_t);
static int alc_miibus_writereg(device_t, int, int, int);
static int alc_mediachange(struct ifnet *);
static void alc_mediastatus(struct ifnet *, struct ifmediareq *);
static int alc_newbuf(struct alc_softc *, struct alc_rxdesc *);
static void alc_phy_down(struct alc_softc *);
static void alc_phy_reset(struct alc_softc *);
static int alc_probe(device_t);
static void alc_reset(struct alc_softc *);
static int alc_resume(device_t);
static void alc_rxeof(struct alc_softc *, struct rx_rdesc *);
static int alc_rxintr(struct alc_softc *, int);
static void alc_rxfilter(struct alc_softc *);
static void alc_rxvlan(struct alc_softc *);
static void alc_setlinkspeed(struct alc_softc *);
static void alc_setwol(struct alc_softc *);
static int alc_shutdown(device_t);
static void alc_start(struct ifnet *);
static void alc_start_locked(struct ifnet *);
static void alc_start_queue(struct alc_softc *);
static void alc_stats_clear(struct alc_softc *);
static void alc_stats_update(struct alc_softc *);
static void alc_stop(struct alc_softc *);
static void alc_stop_mac(struct alc_softc *);
static void alc_stop_queue(struct alc_softc *);
static int alc_suspend(device_t);
static void alc_sysctl_node(struct alc_softc *);
static void alc_tick(void *);
static void alc_txeof(struct alc_softc *);
static void alc_watchdog(struct alc_softc *);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS);
static device_method_t alc_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, alc_probe),
DEVMETHOD(device_attach, alc_attach),
DEVMETHOD(device_detach, alc_detach),
DEVMETHOD(device_shutdown, alc_shutdown),
DEVMETHOD(device_suspend, alc_suspend),
DEVMETHOD(device_resume, alc_resume),
/* MII interface. */
DEVMETHOD(miibus_readreg, alc_miibus_readreg),
DEVMETHOD(miibus_writereg, alc_miibus_writereg),
DEVMETHOD(miibus_statchg, alc_miibus_statchg),
{ NULL, NULL }
};
static driver_t alc_driver = {
"alc",
alc_methods,
sizeof(struct alc_softc)
};
static devclass_t alc_devclass;
DRIVER_MODULE(alc, pci, alc_driver, alc_devclass, 0, 0);
DRIVER_MODULE(miibus, alc, miibus_driver, miibus_devclass, 0, 0);
static struct resource_spec alc_res_spec_mem[] = {
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec alc_irq_spec_legacy[] = {
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0, 0 }
};
static struct resource_spec alc_irq_spec_msi[] = {
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec alc_irq_spec_msix[] = {
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ -1, 0, 0 }
};
static uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
static int
alc_miibus_readreg(device_t dev, int phy, int reg)
{
struct alc_softc *sc;
uint32_t v;
int i;
sc = device_get_softc(dev);
/*
* For AR8132 fast ethernet controller, do not report 1000baseT
* capability to mii(4). Even though AR8132 uses the same
* model/revision number of F1 gigabit PHY, the PHY has no
* ability to establish 1000baseT link.
*/
if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
reg == MII_EXTSR)
return (0);
CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
v = CSR_READ_4(sc, ALC_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0) {
device_printf(sc->alc_dev, "phy read timeout : %d\n", reg);
return (0);
}
return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
}
static int
alc_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct alc_softc *sc;
uint32_t v;
int i;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
(val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
v = CSR_READ_4(sc, ALC_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0)
device_printf(sc->alc_dev, "phy write timeout : %d\n", reg);
return (0);
}
static void
alc_miibus_statchg(device_t dev)
{
struct alc_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t reg;
sc = device_get_softc(dev);
mii = device_get_softc(sc->alc_miibus);
ifp = sc->alc_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
sc->alc_flags &= ~ALC_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->alc_flags |= ALC_FLAG_LINK;
break;
case IFM_1000_T:
if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
sc->alc_flags |= ALC_FLAG_LINK;
break;
default:
break;
}
}
alc_stop_queue(sc);
/* Stop Rx/Tx MACs. */
alc_stop_mac(sc);
/* Program MACs with resolved speed/duplex/flow-control. */
if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
alc_start_queue(sc);
alc_mac_config(sc);
/* Re-enable Tx/Rx MACs. */
reg = CSR_READ_4(sc, ALC_MAC_CFG);
reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
}
}
static void
alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct alc_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
ALC_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0) {
ALC_UNLOCK(sc);
return;
}
mii = device_get_softc(sc->alc_miibus);
mii_pollstat(mii);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = mii->mii_media_active;
ALC_UNLOCK(sc);
}
static int
alc_mediachange(struct ifnet *ifp)
{
struct alc_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
ALC_LOCK(sc);
mii = device_get_softc(sc->alc_miibus);
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
ALC_UNLOCK(sc);
return (error);
}
static struct alc_ident *
alc_find_ident(device_t dev)
{
struct alc_ident *ident;
uint16_t vendor, devid;
vendor = pci_get_vendor(dev);
devid = pci_get_device(dev);
for (ident = alc_ident_table; ident->name != NULL; ident++) {
if (vendor == ident->vendorid && devid == ident->deviceid)
return (ident);
}
return (NULL);
}
static int
alc_probe(device_t dev)
{
struct alc_ident *ident;
ident = alc_find_ident(dev);
if (ident != NULL) {
device_set_desc(dev, ident->name);
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static void
alc_get_macaddr(struct alc_softc *sc)
{
uint32_t ea[2], opt;
uint16_t val;
int eeprom, i;
eeprom = 0;
opt = CSR_READ_4(sc, ALC_OPT_CFG);
if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
(CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
/*
* EEPROM found, let TWSI reload EEPROM configuration.
* This will set ethernet address of controller.
*/
eeprom++;
switch (sc->alc_ident->deviceid) {
case DEVICEID_ATHEROS_AR8131:
case DEVICEID_ATHEROS_AR8132:
if ((opt & OPT_CFG_CLK_ENB) == 0) {
opt |= OPT_CFG_CLK_ENB;
CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
CSR_READ_4(sc, ALC_OPT_CFG);
DELAY(1000);
}
break;
case DEVICEID_ATHEROS_AR8151:
case DEVICEID_ATHEROS_AR8151_V2:
case DEVICEID_ATHEROS_AR8152_B:
case DEVICEID_ATHEROS_AR8152_B2:
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x00);
val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, val & 0xFF7F);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x3B);
val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, val | 0x0008);
DELAY(20);
break;
}
CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
CSR_READ_4(sc, ALC_WOL_CFG);
CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
TWSI_CFG_SW_LD_START);
for (i = 100; i > 0; i--) {
DELAY(1000);
if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
TWSI_CFG_SW_LD_START) == 0)
break;
}
if (i == 0)
device_printf(sc->alc_dev,
"reloading EEPROM timeout!\n");
} else {
if (bootverbose)
device_printf(sc->alc_dev, "EEPROM not found!\n");
}
if (eeprom != 0) {
switch (sc->alc_ident->deviceid) {
case DEVICEID_ATHEROS_AR8131:
case DEVICEID_ATHEROS_AR8132:
if ((opt & OPT_CFG_CLK_ENB) != 0) {
opt &= ~OPT_CFG_CLK_ENB;
CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
CSR_READ_4(sc, ALC_OPT_CFG);
DELAY(1000);
}
break;
case DEVICEID_ATHEROS_AR8151:
case DEVICEID_ATHEROS_AR8151_V2:
case DEVICEID_ATHEROS_AR8152_B:
case DEVICEID_ATHEROS_AR8152_B2:
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x00);
val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, val | 0x0080);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x3B);
val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, val & 0xFFF7);
DELAY(20);
break;
}
}
ea[0] = CSR_READ_4(sc, ALC_PAR0);
ea[1] = CSR_READ_4(sc, ALC_PAR1);
sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
}
static void
alc_disable_l0s_l1(struct alc_softc *sc)
{
uint32_t pmcfg;
/* Another magic from vendor. */
pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
PM_CFG_SERDES_PD_EX_L1);
pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
PM_CFG_SERDES_L1_ENB;
CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
}
static void
alc_phy_reset(struct alc_softc *sc)
{
uint16_t data;
/* Reset magic from Linux. */
CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_SEL_ANA_RESET);
CSR_READ_2(sc, ALC_GPHY_CFG);
DELAY(10 * 1000);
CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
GPHY_CFG_SEL_ANA_RESET);
CSR_READ_2(sc, ALC_GPHY_CFG);
DELAY(10 * 1000);
/* DSP fixup, Vendor magic. */
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x000A);
data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data & 0xDFFF);
}
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x003B);
data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data & 0xFFF7);
DELAY(20 * 1000);
}
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151) {
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x0029);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, 0x929D);
}
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x0029);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, 0xB6DD);
}
/* Load DSP codes, vendor magic. */
data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, MII_ANA_CFG18);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data);
data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
ANA_SERDES_EN_LCKDT;
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, MII_ANA_CFG5);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data);
data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
ANA_LONG_CABLE_TH_100_MASK) |
((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
ANA_SHORT_CABLE_TH_100_SHIFT) |
ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, MII_ANA_CFG54);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data);
data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, MII_ANA_CFG4);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data);
data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
ANA_OEN_125M;
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, MII_ANA_CFG0);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data);
DELAY(1000);
/* Disable hibernation. */
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
0x0029);
data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA);
data &= ~0x8000;
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
data);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
0x000B);
data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA);
data &= ~0x8000;
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
data);
}
static void
alc_phy_down(struct alc_softc *sc)
{
switch (sc->alc_ident->deviceid) {
case DEVICEID_ATHEROS_AR8151:
case DEVICEID_ATHEROS_AR8151_V2:
/*
* GPHY power down caused more problems on AR8151 v2.0.
* When driver is reloaded after GPHY power down,
* accesses to PHY/MAC registers hung the system. Only
* cold boot recovered from it. I'm not sure whether
* AR8151 v1.0 also requires this one though. I don't
* have AR8151 v1.0 controller in hand.
* The only option left is to isolate the PHY and
* initiates power down the PHY which in turn saves
* more power when driver is unloaded.
*/
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
MII_BMCR, BMCR_ISO | BMCR_PDOWN);
break;
default:
/* Force PHY down. */
CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
GPHY_CFG_PWDOWN_HW);
DELAY(1000);
break;
}
}
static void
alc_aspm(struct alc_softc *sc, int media)
{
uint32_t pmcfg;
uint16_t linkcfg;
ALC_LOCK_ASSERT(sc);
pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
(ALC_FLAG_APS | ALC_FLAG_PCIE))
linkcfg = CSR_READ_2(sc, sc->alc_expcap +
PCIER_LINK_CTL);
else
linkcfg = 0;
pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
pmcfg |= PM_CFG_MAC_ASPM_CHK;
pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
/* Disable extended sync except AR8152 B v1.0 */
linkcfg &= ~PCIEM_LINK_CTL_EXTENDED_SYNC;
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
sc->alc_rev == ATHEROS_AR8152_B_V10)
linkcfg |= PCIEM_LINK_CTL_EXTENDED_SYNC;
CSR_WRITE_2(sc, sc->alc_expcap + PCIER_LINK_CTL,
linkcfg);
pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
PM_CFG_HOTRST);
pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
PM_CFG_L1_ENTRY_TIMER_SHIFT);
pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
PM_CFG_PM_REQ_TIMER_SHIFT);
pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
}
if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
pmcfg |= PM_CFG_ASPM_L0S_ENB;
if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
pmcfg |= PM_CFG_ASPM_L1_ENB;
if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
if (sc->alc_ident->deviceid ==
DEVICEID_ATHEROS_AR8152_B)
pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
PM_CFG_SERDES_PLL_L1_ENB |
PM_CFG_SERDES_BUDS_RX_L1_ENB);
pmcfg |= PM_CFG_CLK_SWH_L1;
if (media == IFM_100_TX || media == IFM_1000_T) {
pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
switch (sc->alc_ident->deviceid) {
case DEVICEID_ATHEROS_AR8152_B:
pmcfg |= (7 <<
PM_CFG_L1_ENTRY_TIMER_SHIFT);
break;
case DEVICEID_ATHEROS_AR8152_B2:
case DEVICEID_ATHEROS_AR8151_V2:
pmcfg |= (4 <<
PM_CFG_L1_ENTRY_TIMER_SHIFT);
break;
default:
pmcfg |= (15 <<
PM_CFG_L1_ENTRY_TIMER_SHIFT);
break;
}
}
} else {
pmcfg |= PM_CFG_SERDES_L1_ENB |
PM_CFG_SERDES_PLL_L1_ENB |
PM_CFG_SERDES_BUDS_RX_L1_ENB;
pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
}
} else {
pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
PM_CFG_SERDES_PLL_L1_ENB);
pmcfg |= PM_CFG_CLK_SWH_L1;
if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
pmcfg |= PM_CFG_ASPM_L1_ENB;
}
CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
}
static int
alc_attach(device_t dev)
{
struct alc_softc *sc;
struct ifnet *ifp;
char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
uint16_t burst;
int base, error, i, msic, msixc, state;
uint32_t cap, ctl, val;
error = 0;
sc = device_get_softc(dev);
sc->alc_dev = dev;
mtx_init(&sc->alc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->alc_tick_ch, &sc->alc_mtx, 0);
TASK_INIT(&sc->alc_int_task, 0, alc_int_task, sc);
sc->alc_ident = alc_find_ident(dev);
/* Map the device. */
pci_enable_busmaster(dev);
sc->alc_res_spec = alc_res_spec_mem;
sc->alc_irq_spec = alc_irq_spec_legacy;
error = bus_alloc_resources(dev, sc->alc_res_spec, sc->alc_res);
if (error != 0) {
device_printf(dev, "cannot allocate memory resources.\n");
goto fail;
}
/* Set PHY address. */
sc->alc_phyaddr = ALC_PHY_ADDR;
/* Initialize DMA parameters. */
sc->alc_dma_rd_burst = 0;
sc->alc_dma_wr_burst = 0;
sc->alc_rcb = DMA_CFG_RCB_64;
if (pci_find_cap(dev, PCIY_EXPRESS, &base) == 0) {
sc->alc_flags |= ALC_FLAG_PCIE;
sc->alc_expcap = base;
burst = CSR_READ_2(sc, base + PCIER_DEVICE_CTL);
sc->alc_dma_rd_burst =
(burst & PCIEM_CTL_MAX_READ_REQUEST) >> 12;
sc->alc_dma_wr_burst = (burst & PCIEM_CTL_MAX_PAYLOAD) >> 5;
if (bootverbose) {
device_printf(dev, "Read request size : %u bytes.\n",
alc_dma_burst[sc->alc_dma_rd_burst]);
device_printf(dev, "TLP payload size : %u bytes.\n",
alc_dma_burst[sc->alc_dma_wr_burst]);
}
if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
sc->alc_dma_rd_burst = 3;
if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
sc->alc_dma_wr_burst = 3;
/* Clear data link and flow-control protocol error. */
val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
PCIE_PHYMISC_FORCE_RCV_DET);
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
pci_get_revid(dev) == ATHEROS_AR8152_B_V10) {
val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
PCIE_PHYMISC2_SERDES_TH_MASK);
val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
}
/* Disable ASPM L0S and L1. */
cap = CSR_READ_2(sc, base + PCIER_LINK_CAP);
if ((cap & PCIEM_LINK_CAP_ASPM) != 0) {
ctl = CSR_READ_2(sc, base + PCIER_LINK_CTL);
if ((ctl & PCIEM_LINK_CTL_RCB) != 0)
sc->alc_rcb = DMA_CFG_RCB_128;
if (bootverbose)
device_printf(dev, "RCB %u bytes\n",
sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
state = ctl & PCIEM_LINK_CTL_ASPMC;
if (state & PCIEM_LINK_CTL_ASPMC_L0S)
sc->alc_flags |= ALC_FLAG_L0S;
if (state & PCIEM_LINK_CTL_ASPMC_L1)
sc->alc_flags |= ALC_FLAG_L1S;
if (bootverbose)
device_printf(sc->alc_dev, "ASPM %s %s\n",
aspm_state[state],
state == 0 ? "disabled" : "enabled");
alc_disable_l0s_l1(sc);
} else {
if (bootverbose)
device_printf(sc->alc_dev,
"no ASPM support\n");
}
}
/* Reset PHY. */
alc_phy_reset(sc);
/* Reset the ethernet controller. */
alc_reset(sc);
/*
* One odd thing is AR8132 uses the same PHY hardware(F1
* gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
* the PHY supports 1000Mbps but that's not true. The PHY
* used in AR8132 can't establish gigabit link even if it
* shows the same PHY model/revision number of AR8131.
*/
switch (sc->alc_ident->deviceid) {
case DEVICEID_ATHEROS_AR8152_B:
case DEVICEID_ATHEROS_AR8152_B2:
sc->alc_flags |= ALC_FLAG_APS;
/* FALLTHROUGH */
case DEVICEID_ATHEROS_AR8132:
sc->alc_flags |= ALC_FLAG_FASTETHER;
break;
case DEVICEID_ATHEROS_AR8151:
case DEVICEID_ATHEROS_AR8151_V2:
sc->alc_flags |= ALC_FLAG_APS;
/* FALLTHROUGH */
default:
break;
}
sc->alc_flags |= ALC_FLAG_ASPM_MON | ALC_FLAG_JUMBO;
/*
* It seems that AR813x/AR815x has silicon bug for SMB. In
* addition, Atheros said that enabling SMB wouldn't improve
* performance. However I think it's bad to access lots of
* registers to extract MAC statistics.
*/
sc->alc_flags |= ALC_FLAG_SMB_BUG;
/*
* Don't use Tx CMB. It is known to have silicon bug.
*/
sc->alc_flags |= ALC_FLAG_CMB_BUG;
sc->alc_rev = pci_get_revid(dev);
sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
MASTER_CHIP_REV_SHIFT;
if (bootverbose) {
device_printf(dev, "PCI device revision : 0x%04x\n",
sc->alc_rev);
device_printf(dev, "Chip id/revision : 0x%04x\n",
sc->alc_chip_rev);
}
device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n",
CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
/* Allocate IRQ resources. */
msixc = pci_msix_count(dev);
msic = pci_msi_count(dev);
if (bootverbose) {
device_printf(dev, "MSIX count : %d\n", msixc);
device_printf(dev, "MSI count : %d\n", msic);
}
/* Prefer MSIX over MSI. */
if (msix_disable == 0 || msi_disable == 0) {
if (msix_disable == 0 && msixc == ALC_MSIX_MESSAGES &&
pci_alloc_msix(dev, &msixc) == 0) {
if (msic == ALC_MSIX_MESSAGES) {
device_printf(dev,
"Using %d MSIX message(s).\n", msixc);
sc->alc_flags |= ALC_FLAG_MSIX;
sc->alc_irq_spec = alc_irq_spec_msix;
} else
pci_release_msi(dev);
}
if (msi_disable == 0 && (sc->alc_flags & ALC_FLAG_MSIX) == 0 &&
msic == ALC_MSI_MESSAGES &&
pci_alloc_msi(dev, &msic) == 0) {
if (msic == ALC_MSI_MESSAGES) {
device_printf(dev,
"Using %d MSI message(s).\n", msic);
sc->alc_flags |= ALC_FLAG_MSI;
sc->alc_irq_spec = alc_irq_spec_msi;
} else
pci_release_msi(dev);
}
}
error = bus_alloc_resources(dev, sc->alc_irq_spec, sc->alc_irq);
if (error != 0) {
device_printf(dev, "cannot allocate IRQ resources.\n");
goto fail;
}
/* Create device sysctl node. */
alc_sysctl_node(sc);
if ((error = alc_dma_alloc(sc) != 0))
goto fail;
/* Load station address. */
alc_get_macaddr(sc);
ifp = sc->alc_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "cannot allocate ifnet structure.\n");
error = ENXIO;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = alc_ioctl;
ifp->if_start = alc_start;
ifp->if_init = alc_init;
ifp->if_snd.ifq_drv_maxlen = ALC_TX_RING_CNT - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
ifp->if_hwassist = ALC_CSUM_FEATURES | CSUM_TSO;
if (pci_find_cap(dev, PCIY_PMG, &base) == 0) {
ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
sc->alc_flags |= ALC_FLAG_PM;
sc->alc_pmcap = base;
}
ifp->if_capenable = ifp->if_capabilities;
/* Set up MII bus. */
error = mii_attach(dev, &sc->alc_miibus, ifp, alc_mediachange,
alc_mediastatus, BMSR_DEFCAPMASK, sc->alc_phyaddr, MII_OFFSET_ANY,
MIIF_DOPAUSE);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
ether_ifattach(ifp, sc->alc_eaddr);
/* VLAN capability setup. */
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
ifp->if_capenable = ifp->if_capabilities;
/*
* XXX
* It seems enabling Tx checksum offloading makes more trouble.
* Sometimes the controller does not receive any frames when
* Tx checksum offloading is enabled. I'm not sure whether this
* is a bug in Tx checksum offloading logic or I got broken
* sample boards. To safety, don't enable Tx checksum offloading
* by default but give chance to users to toggle it if they know
* their controllers work without problems.
*/
ifp->if_capenable &= ~IFCAP_TXCSUM;
ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
/* Tell the upper layer(s) we support long frames. */
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
/* Create local taskq. */
sc->alc_tq = taskqueue_create_fast("alc_taskq", M_WAITOK,
taskqueue_thread_enqueue, &sc->alc_tq);
if (sc->alc_tq == NULL) {
device_printf(dev, "could not create taskqueue.\n");
ether_ifdetach(ifp);
error = ENXIO;
goto fail;
}
taskqueue_start_threads(&sc->alc_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->alc_dev));
if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
msic = ALC_MSIX_MESSAGES;
else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
msic = ALC_MSI_MESSAGES;
else
msic = 1;
for (i = 0; i < msic; i++) {
error = bus_setup_intr(dev, sc->alc_irq[i],
INTR_TYPE_NET | INTR_MPSAFE, alc_intr, NULL, sc,
&sc->alc_intrhand[i]);
if (error != 0)
break;
}
if (error != 0) {
device_printf(dev, "could not set up interrupt handler.\n");
taskqueue_free(sc->alc_tq);
sc->alc_tq = NULL;
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error != 0)
alc_detach(dev);
return (error);
}
static int
alc_detach(device_t dev)
{
struct alc_softc *sc;
struct ifnet *ifp;
int i, msic;
sc = device_get_softc(dev);
ifp = sc->alc_ifp;
if (device_is_attached(dev)) {
ether_ifdetach(ifp);
ALC_LOCK(sc);
alc_stop(sc);
ALC_UNLOCK(sc);
callout_drain(&sc->alc_tick_ch);
taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
}
if (sc->alc_tq != NULL) {
taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
taskqueue_free(sc->alc_tq);
sc->alc_tq = NULL;
}
if (sc->alc_miibus != NULL) {
device_delete_child(dev, sc->alc_miibus);
sc->alc_miibus = NULL;
}
bus_generic_detach(dev);
alc_dma_free(sc);
if (ifp != NULL) {
if_free(ifp);
sc->alc_ifp = NULL;
}
if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
msic = ALC_MSIX_MESSAGES;
else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
msic = ALC_MSI_MESSAGES;
else
msic = 1;
for (i = 0; i < msic; i++) {
if (sc->alc_intrhand[i] != NULL) {
bus_teardown_intr(dev, sc->alc_irq[i],
sc->alc_intrhand[i]);
sc->alc_intrhand[i] = NULL;
}
}
if (sc->alc_res[0] != NULL)
alc_phy_down(sc);
bus_release_resources(dev, sc->alc_irq_spec, sc->alc_irq);
if ((sc->alc_flags & (ALC_FLAG_MSI | ALC_FLAG_MSIX)) != 0)
pci_release_msi(dev);
bus_release_resources(dev, sc->alc_res_spec, sc->alc_res);
mtx_destroy(&sc->alc_mtx);
return (0);
}
#define ALC_SYSCTL_STAT_ADD32(c, h, n, p, d) \
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
#define ALC_SYSCTL_STAT_ADD64(c, h, n, p, d) \
SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
static void
alc_sysctl_node(struct alc_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *child, *parent;
struct sysctl_oid *tree;
struct alc_hw_stats *stats;
int error;
stats = &sc->alc_stats;
ctx = device_get_sysctl_ctx(sc->alc_dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->alc_dev));
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_rx_mod, 0,
sysctl_hw_alc_int_mod, "I", "alc Rx interrupt moderation");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_tx_mod, 0,
sysctl_hw_alc_int_mod, "I", "alc Tx interrupt moderation");
/* Pull in device tunables. */
sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
error = resource_int_value(device_get_name(sc->alc_dev),
device_get_unit(sc->alc_dev), "int_rx_mod", &sc->alc_int_rx_mod);
if (error == 0) {
if (sc->alc_int_rx_mod < ALC_IM_TIMER_MIN ||
sc->alc_int_rx_mod > ALC_IM_TIMER_MAX) {
device_printf(sc->alc_dev, "int_rx_mod value out of "
"range; using default: %d\n",
ALC_IM_RX_TIMER_DEFAULT);
sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
}
}
sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
error = resource_int_value(device_get_name(sc->alc_dev),
device_get_unit(sc->alc_dev), "int_tx_mod", &sc->alc_int_tx_mod);
if (error == 0) {
if (sc->alc_int_tx_mod < ALC_IM_TIMER_MIN ||
sc->alc_int_tx_mod > ALC_IM_TIMER_MAX) {
device_printf(sc->alc_dev, "int_tx_mod value out of "
"range; using default: %d\n",
ALC_IM_TX_TIMER_DEFAULT);
sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
}
}
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
CTLTYPE_INT | CTLFLAG_RW, &sc->alc_process_limit, 0,
sysctl_hw_alc_proc_limit, "I",
"max number of Rx events to process");
/* Pull in device tunables. */
sc->alc_process_limit = ALC_PROC_DEFAULT;
error = resource_int_value(device_get_name(sc->alc_dev),
device_get_unit(sc->alc_dev), "process_limit",
&sc->alc_process_limit);
if (error == 0) {
if (sc->alc_process_limit < ALC_PROC_MIN ||
sc->alc_process_limit > ALC_PROC_MAX) {
device_printf(sc->alc_dev,
"process_limit value out of range; "
"using default: %d\n", ALC_PROC_DEFAULT);
sc->alc_process_limit = ALC_PROC_DEFAULT;
}
}
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "ALC statistics");
parent = SYSCTL_CHILDREN(tree);
/* Rx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
NULL, "Rx MAC statistics");
child = SYSCTL_CHILDREN(tree);
ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
&stats->rx_frames, "Good frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
&stats->rx_bcast_frames, "Good broadcast frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
&stats->rx_mcast_frames, "Good multicast frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
&stats->rx_pause_frames, "Pause control frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
&stats->rx_control_frames, "Control frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
&stats->rx_crcerrs, "CRC errors");
ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
&stats->rx_lenerrs, "Frames with length mismatched");
ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
&stats->rx_bytes, "Good octets");
ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
&stats->rx_bcast_bytes, "Good broadcast octets");
ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
&stats->rx_mcast_bytes, "Good multicast octets");
ALC_SYSCTL_STAT_ADD32(ctx, child, "runts",
&stats->rx_runts, "Too short frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "fragments",
&stats->rx_fragments, "Fragmented frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
&stats->rx_pkts_64, "64 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
&stats->rx_pkts_65_127, "65 to 127 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
&stats->rx_pkts_128_255, "128 to 255 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
&stats->rx_pkts_256_511, "256 to 511 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
&stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
&stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
&stats->rx_pkts_1519_max, "1519 to max frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
&stats->rx_pkts_truncated, "Truncated frames due to MTU size");
ALC_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
&stats->rx_fifo_oflows, "FIFO overflows");
ALC_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
&stats->rx_rrs_errs, "Return status write-back errors");
ALC_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
&stats->rx_alignerrs, "Alignment errors");
ALC_SYSCTL_STAT_ADD32(ctx, child, "filtered",
&stats->rx_pkts_filtered,
"Frames dropped due to address filtering");
/* Tx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
NULL, "Tx MAC statistics");
child = SYSCTL_CHILDREN(tree);
ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
&stats->tx_frames, "Good frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
&stats->tx_bcast_frames, "Good broadcast frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
&stats->tx_mcast_frames, "Good multicast frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
&stats->tx_pause_frames, "Pause control frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
&stats->tx_control_frames, "Control frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
&stats->tx_excess_defer, "Frames with excessive derferrals");
ALC_SYSCTL_STAT_ADD32(ctx, child, "defers",
&stats->tx_excess_defer, "Frames with derferrals");
ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
&stats->tx_bytes, "Good octets");
ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
&stats->tx_bcast_bytes, "Good broadcast octets");
ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
&stats->tx_mcast_bytes, "Good multicast octets");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
&stats->tx_pkts_64, "64 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
&stats->tx_pkts_65_127, "65 to 127 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
&stats->tx_pkts_128_255, "128 to 255 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
&stats->tx_pkts_256_511, "256 to 511 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
&stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
&stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
&stats->tx_pkts_1519_max, "1519 to max frames");
ALC_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
&stats->tx_single_colls, "Single collisions");
ALC_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
&stats->tx_multi_colls, "Multiple collisions");
ALC_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
&stats->tx_late_colls, "Late collisions");
ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
&stats->tx_excess_colls, "Excessive collisions");
ALC_SYSCTL_STAT_ADD32(ctx, child, "abort",
&stats->tx_abort, "Aborted frames due to Excessive collisions");
ALC_SYSCTL_STAT_ADD32(ctx, child, "underruns",
&stats->tx_underrun, "FIFO underruns");
ALC_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
&stats->tx_desc_underrun, "Descriptor write-back errors");
ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
&stats->tx_lenerrs, "Frames with length mismatched");
ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
&stats->tx_pkts_truncated, "Truncated frames due to MTU size");
}
#undef ALC_SYSCTL_STAT_ADD32
#undef ALC_SYSCTL_STAT_ADD64
struct alc_dmamap_arg {
bus_addr_t alc_busaddr;
};
static void
alc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct alc_dmamap_arg *ctx;
if (error != 0)
return;
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
ctx = (struct alc_dmamap_arg *)arg;
ctx->alc_busaddr = segs[0].ds_addr;
}
/*
* Normal and high Tx descriptors shares single Tx high address.
* Four Rx descriptor/return rings and CMB shares the same Rx
* high address.
*/
static int
alc_check_boundary(struct alc_softc *sc)
{
bus_addr_t cmb_end, rx_ring_end, rr_ring_end, tx_ring_end;
rx_ring_end = sc->alc_rdata.alc_rx_ring_paddr + ALC_RX_RING_SZ;
rr_ring_end = sc->alc_rdata.alc_rr_ring_paddr + ALC_RR_RING_SZ;
cmb_end = sc->alc_rdata.alc_cmb_paddr + ALC_CMB_SZ;
tx_ring_end = sc->alc_rdata.alc_tx_ring_paddr + ALC_TX_RING_SZ;
/* 4GB boundary crossing is not allowed. */
if ((ALC_ADDR_HI(rx_ring_end) !=
ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr)) ||
(ALC_ADDR_HI(rr_ring_end) !=
ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) ||
(ALC_ADDR_HI(cmb_end) !=
ALC_ADDR_HI(sc->alc_rdata.alc_cmb_paddr)) ||
(ALC_ADDR_HI(tx_ring_end) !=
ALC_ADDR_HI(sc->alc_rdata.alc_tx_ring_paddr)))
return (EFBIG);
/*
* Make sure Rx return descriptor/Rx descriptor/CMB use
* the same high address.
*/
if ((ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(rr_ring_end)) ||
(ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(cmb_end)))
return (EFBIG);
return (0);
}
static int
alc_dma_alloc(struct alc_softc *sc)
{
struct alc_txdesc *txd;
struct alc_rxdesc *rxd;
bus_addr_t lowaddr;
struct alc_dmamap_arg ctx;
int error, i;
lowaddr = BUS_SPACE_MAXADDR;
again:
/* Create parent DMA tag. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->alc_dev), /* parent */
1, 0, /* alignment, boundary */
lowaddr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_parent_tag);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create parent DMA tag.\n");
goto fail;
}
/* Create DMA tag for Tx descriptor ring. */
error = bus_dma_tag_create(
sc->alc_cdata.alc_parent_tag, /* parent */
ALC_TX_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ALC_TX_RING_SZ, /* maxsize */
1, /* nsegments */
ALC_TX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_tx_ring_tag);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create Tx ring DMA tag.\n");
goto fail;
}
/* Create DMA tag for Rx free descriptor ring. */
error = bus_dma_tag_create(
sc->alc_cdata.alc_parent_tag, /* parent */
ALC_RX_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ALC_RX_RING_SZ, /* maxsize */
1, /* nsegments */
ALC_RX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_rx_ring_tag);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create Rx ring DMA tag.\n");
goto fail;
}
/* Create DMA tag for Rx return descriptor ring. */
error = bus_dma_tag_create(
sc->alc_cdata.alc_parent_tag, /* parent */
ALC_RR_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ALC_RR_RING_SZ, /* maxsize */
1, /* nsegments */
ALC_RR_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_rr_ring_tag);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create Rx return ring DMA tag.\n");
goto fail;
}
/* Create DMA tag for coalescing message block. */
error = bus_dma_tag_create(
sc->alc_cdata.alc_parent_tag, /* parent */
ALC_CMB_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ALC_CMB_SZ, /* maxsize */
1, /* nsegments */
ALC_CMB_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_cmb_tag);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create CMB DMA tag.\n");
goto fail;
}
/* Create DMA tag for status message block. */
error = bus_dma_tag_create(
sc->alc_cdata.alc_parent_tag, /* parent */
ALC_SMB_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ALC_SMB_SZ, /* maxsize */
1, /* nsegments */
ALC_SMB_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_smb_tag);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create SMB DMA tag.\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
error = bus_dmamem_alloc(sc->alc_cdata.alc_tx_ring_tag,
(void **)&sc->alc_rdata.alc_tx_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->alc_cdata.alc_tx_ring_map);
if (error != 0) {
device_printf(sc->alc_dev,
"could not allocate DMA'able memory for Tx ring.\n");
goto fail;
}
ctx.alc_busaddr = 0;
error = bus_dmamap_load(sc->alc_cdata.alc_tx_ring_tag,
sc->alc_cdata.alc_tx_ring_map, sc->alc_rdata.alc_tx_ring,
ALC_TX_RING_SZ, alc_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.alc_busaddr == 0) {
device_printf(sc->alc_dev,
"could not load DMA'able memory for Tx ring.\n");
goto fail;
}
sc->alc_rdata.alc_tx_ring_paddr = ctx.alc_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
error = bus_dmamem_alloc(sc->alc_cdata.alc_rx_ring_tag,
(void **)&sc->alc_rdata.alc_rx_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->alc_cdata.alc_rx_ring_map);
if (error != 0) {
device_printf(sc->alc_dev,
"could not allocate DMA'able memory for Rx ring.\n");
goto fail;
}
ctx.alc_busaddr = 0;
error = bus_dmamap_load(sc->alc_cdata.alc_rx_ring_tag,
sc->alc_cdata.alc_rx_ring_map, sc->alc_rdata.alc_rx_ring,
ALC_RX_RING_SZ, alc_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.alc_busaddr == 0) {
device_printf(sc->alc_dev,
"could not load DMA'able memory for Rx ring.\n");
goto fail;
}
sc->alc_rdata.alc_rx_ring_paddr = ctx.alc_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx return ring. */
error = bus_dmamem_alloc(sc->alc_cdata.alc_rr_ring_tag,
(void **)&sc->alc_rdata.alc_rr_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->alc_cdata.alc_rr_ring_map);
if (error != 0) {
device_printf(sc->alc_dev,
"could not allocate DMA'able memory for Rx return ring.\n");
goto fail;
}
ctx.alc_busaddr = 0;
error = bus_dmamap_load(sc->alc_cdata.alc_rr_ring_tag,
sc->alc_cdata.alc_rr_ring_map, sc->alc_rdata.alc_rr_ring,
ALC_RR_RING_SZ, alc_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.alc_busaddr == 0) {
device_printf(sc->alc_dev,
"could not load DMA'able memory for Tx ring.\n");
goto fail;
}
sc->alc_rdata.alc_rr_ring_paddr = ctx.alc_busaddr;
/* Allocate DMA'able memory and load the DMA map for CMB. */
error = bus_dmamem_alloc(sc->alc_cdata.alc_cmb_tag,
(void **)&sc->alc_rdata.alc_cmb,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->alc_cdata.alc_cmb_map);
if (error != 0) {
device_printf(sc->alc_dev,
"could not allocate DMA'able memory for CMB.\n");
goto fail;
}
ctx.alc_busaddr = 0;
error = bus_dmamap_load(sc->alc_cdata.alc_cmb_tag,
sc->alc_cdata.alc_cmb_map, sc->alc_rdata.alc_cmb,
ALC_CMB_SZ, alc_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.alc_busaddr == 0) {
device_printf(sc->alc_dev,
"could not load DMA'able memory for CMB.\n");
goto fail;
}
sc->alc_rdata.alc_cmb_paddr = ctx.alc_busaddr;
/* Allocate DMA'able memory and load the DMA map for SMB. */
error = bus_dmamem_alloc(sc->alc_cdata.alc_smb_tag,
(void **)&sc->alc_rdata.alc_smb,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->alc_cdata.alc_smb_map);
if (error != 0) {
device_printf(sc->alc_dev,
"could not allocate DMA'able memory for SMB.\n");
goto fail;
}
ctx.alc_busaddr = 0;
error = bus_dmamap_load(sc->alc_cdata.alc_smb_tag,
sc->alc_cdata.alc_smb_map, sc->alc_rdata.alc_smb,
ALC_SMB_SZ, alc_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.alc_busaddr == 0) {
device_printf(sc->alc_dev,
"could not load DMA'able memory for CMB.\n");
goto fail;
}
sc->alc_rdata.alc_smb_paddr = ctx.alc_busaddr;
/* Make sure we've not crossed 4GB boundary. */
if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
(error = alc_check_boundary(sc)) != 0) {
device_printf(sc->alc_dev, "4GB boundary crossed, "
"switching to 32bit DMA addressing mode.\n");
alc_dma_free(sc);
/*
* Limit max allowable DMA address space to 32bit
* and try again.
*/
lowaddr = BUS_SPACE_MAXADDR_32BIT;
goto again;
}
/*
* Create Tx buffer parent tag.
* AR813x/AR815x allows 64bit DMA addressing of Tx/Rx buffers
* so it needs separate parent DMA tag as parent DMA address
* space could be restricted to be within 32bit address space
* by 4GB boundary crossing.
*/
error = bus_dma_tag_create(
bus_get_dma_tag(sc->alc_dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_buffer_tag);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create parent buffer DMA tag.\n");
goto fail;
}
/* Create DMA tag for Tx buffers. */
error = bus_dma_tag_create(
sc->alc_cdata.alc_buffer_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ALC_TSO_MAXSIZE, /* maxsize */
ALC_MAXTXSEGS, /* nsegments */
ALC_TSO_MAXSEGSIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_tx_tag);
if (error != 0) {
device_printf(sc->alc_dev, "could not create Tx DMA tag.\n");
goto fail;
}
/* Create DMA tag for Rx buffers. */
error = bus_dma_tag_create(
sc->alc_cdata.alc_buffer_tag, /* parent */
ALC_RX_BUF_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->alc_cdata.alc_rx_tag);
if (error != 0) {
device_printf(sc->alc_dev, "could not create Rx DMA tag.\n");
goto fail;
}
/* Create DMA maps for Tx buffers. */
for (i = 0; i < ALC_TX_RING_CNT; i++) {
txd = &sc->alc_cdata.alc_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->alc_cdata.alc_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create Tx dmamap.\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
&sc->alc_cdata.alc_rx_sparemap)) != 0) {
device_printf(sc->alc_dev,
"could not create spare Rx dmamap.\n");
goto fail;
}
for (i = 0; i < ALC_RX_RING_CNT; i++) {
rxd = &sc->alc_cdata.alc_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc->alc_dev,
"could not create Rx dmamap.\n");
goto fail;
}
}
fail:
return (error);
}
static void
alc_dma_free(struct alc_softc *sc)
{
struct alc_txdesc *txd;
struct alc_rxdesc *rxd;
int i;
/* Tx buffers. */
if (sc->alc_cdata.alc_tx_tag != NULL) {
for (i = 0; i < ALC_TX_RING_CNT; i++) {
txd = &sc->alc_cdata.alc_txdesc[i];
if (txd->tx_dmamap != NULL) {
bus_dmamap_destroy(sc->alc_cdata.alc_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc->alc_cdata.alc_tx_tag);
sc->alc_cdata.alc_tx_tag = NULL;
}
/* Rx buffers */
if (sc->alc_cdata.alc_rx_tag != NULL) {
for (i = 0; i < ALC_RX_RING_CNT; i++) {
rxd = &sc->alc_cdata.alc_rxdesc[i];
if (rxd->rx_dmamap != NULL) {
bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->alc_cdata.alc_rx_sparemap != NULL) {
bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
sc->alc_cdata.alc_rx_sparemap);
sc->alc_cdata.alc_rx_sparemap = NULL;
}
bus_dma_tag_destroy(sc->alc_cdata.alc_rx_tag);
sc->alc_cdata.alc_rx_tag = NULL;
}
/* Tx descriptor ring. */
if (sc->alc_cdata.alc_tx_ring_tag != NULL) {
if (sc->alc_rdata.alc_tx_ring_paddr != 0)
bus_dmamap_unload(sc->alc_cdata.alc_tx_ring_tag,
sc->alc_cdata.alc_tx_ring_map);
if (sc->alc_rdata.alc_tx_ring != NULL)
bus_dmamem_free(sc->alc_cdata.alc_tx_ring_tag,
sc->alc_rdata.alc_tx_ring,
sc->alc_cdata.alc_tx_ring_map);
sc->alc_rdata.alc_tx_ring_paddr = 0;
sc->alc_rdata.alc_tx_ring = NULL;
bus_dma_tag_destroy(sc->alc_cdata.alc_tx_ring_tag);
sc->alc_cdata.alc_tx_ring_tag = NULL;
}
/* Rx ring. */
if (sc->alc_cdata.alc_rx_ring_tag != NULL) {
if (sc->alc_rdata.alc_rx_ring_paddr != 0)
bus_dmamap_unload(sc->alc_cdata.alc_rx_ring_tag,
sc->alc_cdata.alc_rx_ring_map);
if (sc->alc_rdata.alc_rx_ring != NULL)
bus_dmamem_free(sc->alc_cdata.alc_rx_ring_tag,
sc->alc_rdata.alc_rx_ring,
sc->alc_cdata.alc_rx_ring_map);
sc->alc_rdata.alc_rx_ring_paddr = 0;
sc->alc_rdata.alc_rx_ring = NULL;
bus_dma_tag_destroy(sc->alc_cdata.alc_rx_ring_tag);
sc->alc_cdata.alc_rx_ring_tag = NULL;
}
/* Rx return ring. */
if (sc->alc_cdata.alc_rr_ring_tag != NULL) {
if (sc->alc_rdata.alc_rr_ring_paddr != 0)
bus_dmamap_unload(sc->alc_cdata.alc_rr_ring_tag,
sc->alc_cdata.alc_rr_ring_map);
if (sc->alc_rdata.alc_rr_ring != NULL)
bus_dmamem_free(sc->alc_cdata.alc_rr_ring_tag,
sc->alc_rdata.alc_rr_ring,
sc->alc_cdata.alc_rr_ring_map);
sc->alc_rdata.alc_rr_ring_paddr = 0;
sc->alc_rdata.alc_rr_ring = NULL;
bus_dma_tag_destroy(sc->alc_cdata.alc_rr_ring_tag);
sc->alc_cdata.alc_rr_ring_tag = NULL;
}
/* CMB block */
if (sc->alc_cdata.alc_cmb_tag != NULL) {
if (sc->alc_rdata.alc_cmb_paddr != 0)
bus_dmamap_unload(sc->alc_cdata.alc_cmb_tag,
sc->alc_cdata.alc_cmb_map);
if (sc->alc_rdata.alc_cmb != NULL)
bus_dmamem_free(sc->alc_cdata.alc_cmb_tag,
sc->alc_rdata.alc_cmb,
sc->alc_cdata.alc_cmb_map);
sc->alc_rdata.alc_cmb_paddr = 0;
sc->alc_rdata.alc_cmb = NULL;
bus_dma_tag_destroy(sc->alc_cdata.alc_cmb_tag);
sc->alc_cdata.alc_cmb_tag = NULL;
}
/* SMB block */
if (sc->alc_cdata.alc_smb_tag != NULL) {
if (sc->alc_rdata.alc_smb_paddr != 0)
bus_dmamap_unload(sc->alc_cdata.alc_smb_tag,
sc->alc_cdata.alc_smb_map);
if (sc->alc_rdata.alc_smb != NULL)
bus_dmamem_free(sc->alc_cdata.alc_smb_tag,
sc->alc_rdata.alc_smb,
sc->alc_cdata.alc_smb_map);
sc->alc_rdata.alc_smb_paddr = 0;
sc->alc_rdata.alc_smb = NULL;
bus_dma_tag_destroy(sc->alc_cdata.alc_smb_tag);
sc->alc_cdata.alc_smb_tag = NULL;
}
if (sc->alc_cdata.alc_buffer_tag != NULL) {
bus_dma_tag_destroy(sc->alc_cdata.alc_buffer_tag);
sc->alc_cdata.alc_buffer_tag = NULL;
}
if (sc->alc_cdata.alc_parent_tag != NULL) {
bus_dma_tag_destroy(sc->alc_cdata.alc_parent_tag);
sc->alc_cdata.alc_parent_tag = NULL;
}
}
static int
alc_shutdown(device_t dev)
{
return (alc_suspend(dev));
}
/*
* Note, this driver resets the link speed to 10/100Mbps by
* restarting auto-negotiation in suspend/shutdown phase but we
* don't know whether that auto-negotiation would succeed or not
* as driver has no control after powering off/suspend operation.
* If the renegotiation fail WOL may not work. Running at 1Gbps
* will draw more power than 375mA at 3.3V which is specified in
* PCI specification and that would result in complete
* shutdowning power to ethernet controller.
*
* TODO
* Save current negotiated media speed/duplex/flow-control to
* softc and restore the same link again after resuming. PHY
* handling such as power down/resetting to 100Mbps may be better
* handled in suspend method in phy driver.
*/
static void
alc_setlinkspeed(struct alc_softc *sc)
{
struct mii_data *mii;
int aneg, i;
mii = device_get_softc(sc->alc_miibus);
mii_pollstat(mii);
aneg = 0;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch IFM_SUBTYPE(mii->mii_media_active) {
case IFM_10_T:
case IFM_100_TX:
return;
case IFM_1000_T:
aneg++;
break;
default:
break;
}
}
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_100T2CR, 0);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
DELAY(1000);
if (aneg != 0) {
/*
* Poll link state until alc(4) get a 10/100Mbps link.
*/
for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
mii_pollstat(mii);
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
== (IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(
mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
alc_mac_config(sc);
return;
default:
break;
}
}
ALC_UNLOCK(sc);
pause("alclnk", hz);
ALC_LOCK(sc);
}
if (i == MII_ANEGTICKS_GIGE)
device_printf(sc->alc_dev,
"establishing a link failed, WOL may not work!");
}
/*
* No link, force MAC to have 100Mbps, full-duplex link.
* This is the last resort and may/may not work.
*/
mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
alc_mac_config(sc);
}
static void
alc_setwol(struct alc_softc *sc)
{
struct ifnet *ifp;
uint32_t reg, pmcs;
uint16_t pmstat;
ALC_LOCK_ASSERT(sc);
alc_disable_l0s_l1(sc);
ifp = sc->alc_ifp;
if ((sc->alc_flags & ALC_FLAG_PM) == 0) {
/* Disable WOL. */
CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
reg |= PCIE_PHYMISC_FORCE_RCV_DET;
CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
/* Force PHY power down. */
alc_phy_down(sc);
CSR_WRITE_4(sc, ALC_MASTER_CFG,
CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
return;
}
if ((ifp->if_capenable & IFCAP_WOL) != 0) {
if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
alc_setlinkspeed(sc);
CSR_WRITE_4(sc, ALC_MASTER_CFG,
CSR_READ_4(sc, ALC_MASTER_CFG) & ~MASTER_CLK_SEL_DIS);
}
pmcs = 0;
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
CSR_WRITE_4(sc, ALC_WOL_CFG, pmcs);
reg = CSR_READ_4(sc, ALC_MAC_CFG);
reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
MAC_CFG_BCAST);
if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
if ((ifp->if_capenable & IFCAP_WOL) != 0)
reg |= MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
reg |= PCIE_PHYMISC_FORCE_RCV_DET;
CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
if ((ifp->if_capenable & IFCAP_WOL) == 0) {
/* WOL disabled, PHY power down. */
alc_phy_down(sc);
CSR_WRITE_4(sc, ALC_MASTER_CFG,
CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
}
/* Request PME. */
pmstat = pci_read_config(sc->alc_dev,
sc->alc_pmcap + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->alc_dev,
sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
}
static int
alc_suspend(device_t dev)
{
struct alc_softc *sc;
sc = device_get_softc(dev);
ALC_LOCK(sc);
alc_stop(sc);
alc_setwol(sc);
ALC_UNLOCK(sc);
return (0);
}
static int
alc_resume(device_t dev)
{
struct alc_softc *sc;
struct ifnet *ifp;
uint16_t pmstat;
sc = device_get_softc(dev);
ALC_LOCK(sc);
if ((sc->alc_flags & ALC_FLAG_PM) != 0) {
/* Disable PME and clear PME status. */
pmstat = pci_read_config(sc->alc_dev,
sc->alc_pmcap + PCIR_POWER_STATUS, 2);
if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
pmstat &= ~PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->alc_dev,
sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
}
}
/* Reset PHY. */
alc_phy_reset(sc);
ifp = sc->alc_ifp;
if ((ifp->if_flags & IFF_UP) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
alc_init_locked(sc);
}
ALC_UNLOCK(sc);
return (0);
}
static int
alc_encap(struct alc_softc *sc, struct mbuf **m_head)
{
struct alc_txdesc *txd, *txd_last;
struct tx_desc *desc;
struct mbuf *m;
struct ip *ip;
struct tcphdr *tcp;
bus_dma_segment_t txsegs[ALC_MAXTXSEGS];
bus_dmamap_t map;
uint32_t cflags, hdrlen, ip_off, poff, vtag;
int error, idx, nsegs, prod;
ALC_LOCK_ASSERT(sc);
M_ASSERTPKTHDR((*m_head));
m = *m_head;
ip = NULL;
tcp = NULL;
ip_off = poff = 0;
if ((m->m_pkthdr.csum_flags & (ALC_CSUM_FEATURES | CSUM_TSO)) != 0) {
/*
* AR813x/AR815x requires offset of TCP/UDP header in its
* Tx descriptor to perform Tx checksum offloading. TSO
* also requires TCP header offset and modification of
* IP/TCP header. This kind of operation takes many CPU
* cycles on FreeBSD so fast host CPU is required to get
* smooth TSO performance.
*/
struct ether_header *eh;
if (M_WRITABLE(m) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_NOWAIT);
/* Release original mbufs. */
m_freem(*m_head);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
ip_off = sizeof(struct ether_header);
m = m_pullup(m, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
eh = mtod(m, struct ether_header *);
/*
* Check if hardware VLAN insertion is off.
* Additional check for LLC/SNAP frame?
*/
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
ip_off = sizeof(struct ether_vlan_header);
m = m_pullup(m, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
}
m = m_pullup(m, ip_off + sizeof(struct ip));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
ip = (struct ip *)(mtod(m, char *) + ip_off);
poff = ip_off + (ip->ip_hl << 2);
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
m = m_pullup(m, poff + sizeof(struct tcphdr));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
m = m_pullup(m, poff + (tcp->th_off << 2));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
/*
* Due to strict adherence of Microsoft NDIS
* Large Send specification, hardware expects
* a pseudo TCP checksum inserted by upper
* stack. Unfortunately the pseudo TCP
* checksum that NDIS refers to does not include
* TCP payload length so driver should recompute
* the pseudo checksum here. Hopefully this
* wouldn't be much burden on modern CPUs.
*
* Reset IP checksum and recompute TCP pseudo
* checksum as NDIS specification said.
*/
ip = (struct ip *)(mtod(m, char *) + ip_off);
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
ip->ip_sum = 0;
tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
}
*m_head = m;
}
prod = sc->alc_cdata.alc_tx_prod;
txd = &sc->alc_cdata.alc_txdesc[prod];
txd_last = txd;
map = txd->tx_dmamap;
error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
*m_head, txsegs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_NOWAIT, ALC_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
*m_head, txsegs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/* Check descriptor overrun. */
if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, map);
return (ENOBUFS);
}
bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, map, BUS_DMASYNC_PREWRITE);
m = *m_head;
cflags = TD_ETHERNET;
vtag = 0;
desc = NULL;
idx = 0;
/* Configure VLAN hardware tag insertion. */
if ((m->m_flags & M_VLANTAG) != 0) {
vtag = htons(m->m_pkthdr.ether_vtag);
vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
cflags |= TD_INS_VLAN_TAG;
}
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
/* Request TSO and set MSS. */
cflags |= TD_TSO | TD_TSO_DESCV1;
cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << TD_MSS_SHIFT) &
TD_MSS_MASK;
/* Set TCP header offset. */
cflags |= (poff << TD_TCPHDR_OFFSET_SHIFT) &
TD_TCPHDR_OFFSET_MASK;
/*
* AR813x/AR815x requires the first buffer should
* only hold IP/TCP header data. Payload should
* be handled in other descriptors.
*/
hdrlen = poff + (tcp->th_off << 2);
desc = &sc->alc_rdata.alc_tx_ring[prod];
desc->len = htole32(TX_BYTES(hdrlen | vtag));
desc->flags = htole32(cflags);
desc->addr = htole64(txsegs[0].ds_addr);
sc->alc_cdata.alc_tx_cnt++;
ALC_DESC_INC(prod, ALC_TX_RING_CNT);
if (m->m_len - hdrlen > 0) {
/* Handle remaining payload of the first fragment. */
desc = &sc->alc_rdata.alc_tx_ring[prod];
desc->len = htole32(TX_BYTES((m->m_len - hdrlen) |
vtag));
desc->flags = htole32(cflags);
desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
sc->alc_cdata.alc_tx_cnt++;
ALC_DESC_INC(prod, ALC_TX_RING_CNT);
}
/* Handle remaining fragments. */
idx = 1;
} else if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
/* Configure Tx checksum offload. */
#ifdef ALC_USE_CUSTOM_CSUM
cflags |= TD_CUSTOM_CSUM;
/* Set checksum start offset. */
cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
TD_PLOAD_OFFSET_MASK;
/* Set checksum insertion position of TCP/UDP. */
cflags |= (((poff + m->m_pkthdr.csum_data) >> 1) <<
TD_CUSTOM_CSUM_OFFSET_SHIFT) & TD_CUSTOM_CSUM_OFFSET_MASK;
#else
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
cflags |= TD_IPCSUM;
if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
cflags |= TD_TCPCSUM;
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
cflags |= TD_UDPCSUM;
/* Set TCP/UDP header offset. */
cflags |= (poff << TD_L4HDR_OFFSET_SHIFT) &
TD_L4HDR_OFFSET_MASK;
#endif
}
for (; idx < nsegs; idx++) {
desc = &sc->alc_rdata.alc_tx_ring[prod];
desc->len = htole32(TX_BYTES(txsegs[idx].ds_len) | vtag);
desc->flags = htole32(cflags);
desc->addr = htole64(txsegs[idx].ds_addr);
sc->alc_cdata.alc_tx_cnt++;
ALC_DESC_INC(prod, ALC_TX_RING_CNT);
}
/* Update producer index. */
sc->alc_cdata.alc_tx_prod = prod;
/* Finally set EOP on the last descriptor. */
prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
desc = &sc->alc_rdata.alc_tx_ring[prod];
desc->flags |= htole32(TD_EOP);
/* Swap dmamap of the first and the last. */
txd = &sc->alc_cdata.alc_txdesc[prod];
map = txd_last->tx_dmamap;
txd_last->tx_dmamap = txd->tx_dmamap;
txd->tx_dmamap = map;
txd->tx_m = m;
return (0);
}
static void
alc_start(struct ifnet *ifp)
{
struct alc_softc *sc;
sc = ifp->if_softc;
ALC_LOCK(sc);
alc_start_locked(ifp);
ALC_UNLOCK(sc);
}
static void
alc_start_locked(struct ifnet *ifp)
{
struct alc_softc *sc;
struct mbuf *m_head;
int enq;
sc = ifp->if_softc;
ALC_LOCK_ASSERT(sc);
/* Reclaim transmitted frames. */
if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
alc_txeof(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->alc_flags & ALC_FLAG_LINK) == 0)
return;
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (alc_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
/* Sync descriptors. */
bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
/* Kick. Assume we're using normal Tx priority queue. */
CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
(sc->alc_cdata.alc_tx_prod <<
MBOX_TD_PROD_LO_IDX_SHIFT) &
MBOX_TD_PROD_LO_IDX_MASK);
/* Set a timeout in case the chip goes out to lunch. */
sc->alc_watchdog_timer = ALC_TX_TIMEOUT;
}
}
static void
alc_watchdog(struct alc_softc *sc)
{
struct ifnet *ifp;
ALC_LOCK_ASSERT(sc);
if (sc->alc_watchdog_timer == 0 || --sc->alc_watchdog_timer)
return;
ifp = sc->alc_ifp;
if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
if_printf(sc->alc_ifp, "watchdog timeout (lost link)\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
alc_init_locked(sc);
return;
}
if_printf(sc->alc_ifp, "watchdog timeout -- resetting\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
alc_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
alc_start_locked(ifp);
}
static int
alc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct alc_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
int error, mask;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
switch (cmd) {
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN ||
ifr->ifr_mtu > (sc->alc_ident->max_framelen -
sizeof(struct ether_vlan_header) - ETHER_CRC_LEN) ||
((sc->alc_flags & ALC_FLAG_JUMBO) == 0 &&
ifr->ifr_mtu > ETHERMTU))
error = EINVAL;
else if (ifp->if_mtu != ifr->ifr_mtu) {
ALC_LOCK(sc);
ifp->if_mtu = ifr->ifr_mtu;
/* AR813x/AR815x has 13 bits MSS field. */
if (ifp->if_mtu > ALC_TSO_MTU &&
(ifp->if_capenable & IFCAP_TSO4) != 0) {
ifp->if_capenable &= ~IFCAP_TSO4;
ifp->if_hwassist &= ~CSUM_TSO;
VLAN_CAPABILITIES(ifp);
}
ALC_UNLOCK(sc);
}
break;
case SIOCSIFFLAGS:
ALC_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
((ifp->if_flags ^ sc->alc_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) != 0)
alc_rxfilter(sc);
else
alc_init_locked(sc);
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
alc_stop(sc);
sc->alc_if_flags = ifp->if_flags;
ALC_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
ALC_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
alc_rxfilter(sc);
ALC_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->alc_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
ALC_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_TXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist |= ALC_CSUM_FEATURES;
else
ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
}
if ((mask & IFCAP_TSO4) != 0 &&
(ifp->if_capabilities & IFCAP_TSO4) != 0) {
ifp->if_capenable ^= IFCAP_TSO4;
if ((ifp->if_capenable & IFCAP_TSO4) != 0) {
/* AR813x/AR815x has 13 bits MSS field. */
if (ifp->if_mtu > ALC_TSO_MTU) {
ifp->if_capenable &= ~IFCAP_TSO4;
ifp->if_hwassist &= ~CSUM_TSO;
} else
ifp->if_hwassist |= CSUM_TSO;
} else
ifp->if_hwassist &= ~CSUM_TSO;
}
if ((mask & IFCAP_WOL_MCAST) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_MCAST;
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
alc_rxvlan(sc);
}
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
ifp->if_capenable &=
~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
ALC_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
alc_mac_config(struct alc_softc *sc)
{
struct mii_data *mii;
uint32_t reg;
ALC_LOCK_ASSERT(sc);
mii = device_get_softc(sc->alc_miibus);
reg = CSR_READ_4(sc, ALC_MAC_CFG);
reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
MAC_CFG_SPEED_MASK);
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
/* Reprogram MAC with resolved speed/duplex. */
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
reg |= MAC_CFG_SPEED_10_100;
break;
case IFM_1000_T:
reg |= MAC_CFG_SPEED_1000;
break;
}
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
reg |= MAC_CFG_FULL_DUPLEX;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
reg |= MAC_CFG_TX_FC;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
reg |= MAC_CFG_RX_FC;
}
CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
}
static void
alc_stats_clear(struct alc_softc *sc)
{
struct smb sb, *smb;
uint32_t *reg;
int i;
if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
sc->alc_cdata.alc_smb_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
smb = sc->alc_rdata.alc_smb;
/* Update done, clear. */
smb->updated = 0;
bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
sc->alc_cdata.alc_smb_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
} else {
for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
reg++) {
CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
i += sizeof(uint32_t);
}
/* Read Tx statistics. */
for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
reg++) {
CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
i += sizeof(uint32_t);
}
}
}
static void
alc_stats_update(struct alc_softc *sc)
{
struct alc_hw_stats *stat;
struct smb sb, *smb;
struct ifnet *ifp;
uint32_t *reg;
int i;
ALC_LOCK_ASSERT(sc);
ifp = sc->alc_ifp;
stat = &sc->alc_stats;
if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
sc->alc_cdata.alc_smb_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
smb = sc->alc_rdata.alc_smb;
if (smb->updated == 0)
return;
} else {
smb = &sb;
/* Read Rx statistics. */
for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
reg++) {
*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
i += sizeof(uint32_t);
}
/* Read Tx statistics. */
for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
reg++) {
*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
i += sizeof(uint32_t);
}
}
/* Rx stats. */
stat->rx_frames += smb->rx_frames;
stat->rx_bcast_frames += smb->rx_bcast_frames;
stat->rx_mcast_frames += smb->rx_mcast_frames;
stat->rx_pause_frames += smb->rx_pause_frames;
stat->rx_control_frames += smb->rx_control_frames;
stat->rx_crcerrs += smb->rx_crcerrs;
stat->rx_lenerrs += smb->rx_lenerrs;
stat->rx_bytes += smb->rx_bytes;
stat->rx_runts += smb->rx_runts;
stat->rx_fragments += smb->rx_fragments;
stat->rx_pkts_64 += smb->rx_pkts_64;
stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
stat->rx_pkts_truncated += smb->rx_pkts_truncated;
stat->rx_fifo_oflows += smb->rx_fifo_oflows;
stat->rx_rrs_errs += smb->rx_rrs_errs;
stat->rx_alignerrs += smb->rx_alignerrs;
stat->rx_bcast_bytes += smb->rx_bcast_bytes;
stat->rx_mcast_bytes += smb->rx_mcast_bytes;
stat->rx_pkts_filtered += smb->rx_pkts_filtered;
/* Tx stats. */
stat->tx_frames += smb->tx_frames;
stat->tx_bcast_frames += smb->tx_bcast_frames;
stat->tx_mcast_frames += smb->tx_mcast_frames;
stat->tx_pause_frames += smb->tx_pause_frames;
stat->tx_excess_defer += smb->tx_excess_defer;
stat->tx_control_frames += smb->tx_control_frames;
stat->tx_deferred += smb->tx_deferred;
stat->tx_bytes += smb->tx_bytes;
stat->tx_pkts_64 += smb->tx_pkts_64;
stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
stat->tx_single_colls += smb->tx_single_colls;
stat->tx_multi_colls += smb->tx_multi_colls;
stat->tx_late_colls += smb->tx_late_colls;
stat->tx_excess_colls += smb->tx_excess_colls;
stat->tx_abort += smb->tx_abort;
stat->tx_underrun += smb->tx_underrun;
stat->tx_desc_underrun += smb->tx_desc_underrun;
stat->tx_lenerrs += smb->tx_lenerrs;
stat->tx_pkts_truncated += smb->tx_pkts_truncated;
stat->tx_bcast_bytes += smb->tx_bcast_bytes;
stat->tx_mcast_bytes += smb->tx_mcast_bytes;
/* Update counters in ifnet. */
if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
smb->tx_multi_colls * 2 + smb->tx_late_colls +
smb->tx_abort * HDPX_CFG_RETRY_DEFAULT);
/*
* XXX
* tx_pkts_truncated counter looks suspicious. It constantly
* increments with no sign of Tx errors. This may indicate
* the counter name is not correct one so I've removed the
* counter in output errors.
*/
if_inc_counter(ifp, IFCOUNTER_OERRORS,
smb->tx_abort + smb->tx_late_colls + smb->tx_underrun);
if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
if_inc_counter(ifp, IFCOUNTER_IERRORS,
smb->rx_crcerrs + smb->rx_lenerrs +
smb->rx_runts + smb->rx_pkts_truncated +
smb->rx_fifo_oflows + smb->rx_rrs_errs +
smb->rx_alignerrs);
if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
/* Update done, clear. */
smb->updated = 0;
bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
sc->alc_cdata.alc_smb_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
static int
alc_intr(void *arg)
{
struct alc_softc *sc;
uint32_t status;
sc = (struct alc_softc *)arg;
status = CSR_READ_4(sc, ALC_INTR_STATUS);
if ((status & ALC_INTRS) == 0)
return (FILTER_STRAY);
/* Disable interrupts. */
CSR_WRITE_4(sc, ALC_INTR_STATUS, INTR_DIS_INT);
taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
return (FILTER_HANDLED);
}
static void
alc_int_task(void *arg, int pending)
{
struct alc_softc *sc;
struct ifnet *ifp;
uint32_t status;
int more;
sc = (struct alc_softc *)arg;
ifp = sc->alc_ifp;
status = CSR_READ_4(sc, ALC_INTR_STATUS);
ALC_LOCK(sc);
if (sc->alc_morework != 0) {
sc->alc_morework = 0;
status |= INTR_RX_PKT;
}
if ((status & ALC_INTRS) == 0)
goto done;
/* Acknowledge interrupts but still disable interrupts. */
CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
more = 0;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if ((status & INTR_RX_PKT) != 0) {
more = alc_rxintr(sc, sc->alc_process_limit);
if (more == EAGAIN)
sc->alc_morework = 1;
else if (more == EIO) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
alc_init_locked(sc);
ALC_UNLOCK(sc);
return;
}
}
if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
INTR_TXQ_TO_RST)) != 0) {
if ((status & INTR_DMA_RD_TO_RST) != 0)
device_printf(sc->alc_dev,
"DMA read error! -- resetting\n");
if ((status & INTR_DMA_WR_TO_RST) != 0)
device_printf(sc->alc_dev,
"DMA write error! -- resetting\n");
if ((status & INTR_TXQ_TO_RST) != 0)
device_printf(sc->alc_dev,
"TxQ reset! -- resetting\n");
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
alc_init_locked(sc);
ALC_UNLOCK(sc);
return;
}
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
alc_start_locked(ifp);
}
if (more == EAGAIN ||
(CSR_READ_4(sc, ALC_INTR_STATUS) & ALC_INTRS) != 0) {
ALC_UNLOCK(sc);
taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
return;
}
done:
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
/* Re-enable interrupts if we're running. */
CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
}
ALC_UNLOCK(sc);
}
static void
alc_txeof(struct alc_softc *sc)
{
struct ifnet *ifp;
struct alc_txdesc *txd;
uint32_t cons, prod;
int prog;
ALC_LOCK_ASSERT(sc);
ifp = sc->alc_ifp;
if (sc->alc_cdata.alc_tx_cnt == 0)
return;
bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_POSTWRITE);
if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_POSTREAD);
prod = sc->alc_rdata.alc_cmb->cons;
} else
prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
/* Assume we're using normal Tx priority queue. */
prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
MBOX_TD_CONS_LO_IDX_SHIFT;
cons = sc->alc_cdata.alc_tx_cons;
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
for (prog = 0; cons != prod; prog++,
ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
if (sc->alc_cdata.alc_tx_cnt <= 0)
break;
prog++;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->alc_cdata.alc_tx_cnt--;
txd = &sc->alc_cdata.alc_txdesc[cons];
if (txd->tx_m != NULL) {
/* Reclaim transmitted mbufs. */
bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_PREREAD);
sc->alc_cdata.alc_tx_cons = cons;
/*
* Unarm watchdog timer only when there is no pending
* frames in Tx queue.
*/
if (sc->alc_cdata.alc_tx_cnt == 0)
sc->alc_watchdog_timer = 0;
}
static int
alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd)
{
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
#ifndef __NO_STRICT_ALIGNMENT
m_adj(m, sizeof(uint64_t));
#endif
if (bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_rx_tag,
sc->alc_cdata.alc_rx_sparemap, m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
sc->alc_cdata.alc_rx_sparemap = map;
bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
rxd->rx_desc->addr = htole64(segs[0].ds_addr);
return (0);
}
static int
alc_rxintr(struct alc_softc *sc, int count)
{
struct ifnet *ifp;
struct rx_rdesc *rrd;
uint32_t nsegs, status;
int rr_cons, prog;
bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
sc->alc_cdata.alc_rr_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_POSTWRITE);
rr_cons = sc->alc_cdata.alc_rr_cons;
ifp = sc->alc_ifp;
for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;) {
if (count-- <= 0)
break;
rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
status = le32toh(rrd->status);
if ((status & RRD_VALID) == 0)
break;
nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
if (nsegs == 0) {
/* This should not happen! */
device_printf(sc->alc_dev,
"unexpected segment count -- resetting\n");
return (EIO);
}
alc_rxeof(sc, rrd);
/* Clear Rx return status. */
rrd->status = 0;
ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
sc->alc_cdata.alc_rx_cons += nsegs;
sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
prog += nsegs;
}
if (prog > 0) {
/* Update the consumer index. */
sc->alc_cdata.alc_rr_cons = rr_cons;
/* Sync Rx return descriptors. */
bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
sc->alc_cdata.alc_rr_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/*
* Sync updated Rx descriptors such that controller see
* modified buffer addresses.
*/
bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
/*
* Let controller know availability of new Rx buffers.
* Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
* it may be possible to update ALC_MBOX_RD0_PROD_IDX
* only when Rx buffer pre-fetching is required. In
* addition we already set ALC_RX_RD_FREE_THRESH to
* RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
* it still seems that pre-fetching needs more
* experimentation.
*/
CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
sc->alc_cdata.alc_rx_cons);
}
return (count > 0 ? 0 : EAGAIN);
}
#ifndef __NO_STRICT_ALIGNMENT
static struct mbuf *
alc_fixup_rx(struct ifnet *ifp, struct mbuf *m)
{
struct mbuf *n;
int i;
uint16_t *src, *dst;
src = mtod(m, uint16_t *);
dst = src - 3;
if (m->m_next == NULL) {
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
*dst++ = *src++;
m->m_data -= 6;
return (m);
}
/*
* Append a new mbuf to received mbuf chain and copy ethernet
* header from the mbuf chain. This can save lots of CPU
* cycles for jumbo frame.
*/
MGETHDR(n, M_NOWAIT, MT_DATA);
if (n == NULL) {
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
m_freem(m);
return (NULL);
}
bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
m->m_data += ETHER_HDR_LEN;
m->m_len -= ETHER_HDR_LEN;
n->m_len = ETHER_HDR_LEN;
M_MOVE_PKTHDR(n, m);
n->m_next = m;
return (n);
}
#endif
/* Receive a frame. */
static void
alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
{
struct alc_rxdesc *rxd;
struct ifnet *ifp;
struct mbuf *mp, *m;
uint32_t rdinfo, status, vtag;
int count, nsegs, rx_cons;
ifp = sc->alc_ifp;
status = le32toh(rrd->status);
rdinfo = le32toh(rrd->rdinfo);
rx_cons = RRD_RD_IDX(rdinfo);
nsegs = RRD_RD_CNT(rdinfo);
sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
if ((status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) != 0) {
/*
* We want to pass the following frames to upper
* layer regardless of error status of Rx return
* ring.
*
* o IP/TCP/UDP checksum is bad.
* o frame length and protocol specific length
* does not match.
*
* Force network stack compute checksum for
* errored frames.
*/
status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
return;
}
for (count = 0; count < nsegs; count++,
ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
mp = rxd->rx_m;
/* Add a new receive buffer to the ring. */
if (alc_newbuf(sc, rxd) != 0) {
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
/* Reuse Rx buffers. */
if (sc->alc_cdata.alc_rxhead != NULL)
m_freem(sc->alc_cdata.alc_rxhead);
break;
}
/*
* Assume we've received a full sized frame.
* Actual size is fixed when we encounter the end of
* multi-segmented frame.
*/
mp->m_len = sc->alc_buf_size;
/* Chain received mbufs. */
if (sc->alc_cdata.alc_rxhead == NULL) {
sc->alc_cdata.alc_rxhead = mp;
sc->alc_cdata.alc_rxtail = mp;
} else {
mp->m_flags &= ~M_PKTHDR;
sc->alc_cdata.alc_rxprev_tail =
sc->alc_cdata.alc_rxtail;
sc->alc_cdata.alc_rxtail->m_next = mp;
sc->alc_cdata.alc_rxtail = mp;
}
if (count == nsegs - 1) {
/* Last desc. for this frame. */
m = sc->alc_cdata.alc_rxhead;
m->m_flags |= M_PKTHDR;
/*
* It seems that L1C/L2C controller has no way
* to tell hardware to strip CRC bytes.
*/
m->m_pkthdr.len =
sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
if (nsegs > 1) {
/* Set last mbuf size. */
mp->m_len = sc->alc_cdata.alc_rxlen -
(nsegs - 1) * sc->alc_buf_size;
/* Remove the CRC bytes in chained mbufs. */
if (mp->m_len <= ETHER_CRC_LEN) {
sc->alc_cdata.alc_rxtail =
sc->alc_cdata.alc_rxprev_tail;
sc->alc_cdata.alc_rxtail->m_len -=
(ETHER_CRC_LEN - mp->m_len);
sc->alc_cdata.alc_rxtail->m_next = NULL;
m_freem(mp);
} else {
mp->m_len -= ETHER_CRC_LEN;
}
} else
m->m_len = m->m_pkthdr.len;
m->m_pkthdr.rcvif = ifp;
/*
* Due to hardware bugs, Rx checksum offloading
* was intentionally disabled.
*/
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
(status & RRD_VLAN_TAG) != 0) {
vtag = RRD_VLAN(le32toh(rrd->vtag));
m->m_pkthdr.ether_vtag = ntohs(vtag);
m->m_flags |= M_VLANTAG;
}
#ifndef __NO_STRICT_ALIGNMENT
m = alc_fixup_rx(ifp, m);
if (m != NULL)
#endif
{
/* Pass it on. */
ALC_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
ALC_LOCK(sc);
}
}
}
/* Reset mbuf chains. */
ALC_RXCHAIN_RESET(sc);
}
static void
alc_tick(void *arg)
{
struct alc_softc *sc;
struct mii_data *mii;
sc = (struct alc_softc *)arg;
ALC_LOCK_ASSERT(sc);
mii = device_get_softc(sc->alc_miibus);
mii_tick(mii);
alc_stats_update(sc);
/*
* alc(4) does not rely on Tx completion interrupts to reclaim
* transferred buffers. Instead Tx completion interrupts are
* used to hint for scheduling Tx task. So it's necessary to
* release transmitted buffers by kicking Tx completion
* handler. This limits the maximum reclamation delay to a hz.
*/
alc_txeof(sc);
alc_watchdog(sc);
callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
}
static void
alc_reset(struct alc_softc *sc)
{
uint32_t reg;
int i;
reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
DELAY(10);
if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
break;
}
if (i == 0)
device_printf(sc->alc_dev, "master reset timeout!\n");
for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
break;
DELAY(10);
}
if (i == 0)
device_printf(sc->alc_dev, "reset timeout(0x%08x)!\n", reg);
}
static void
alc_init(void *xsc)
{
struct alc_softc *sc;
sc = (struct alc_softc *)xsc;
ALC_LOCK(sc);
alc_init_locked(sc);
ALC_UNLOCK(sc);
}
static void
alc_init_locked(struct alc_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
uint8_t eaddr[ETHER_ADDR_LEN];
bus_addr_t paddr;
uint32_t reg, rxf_hi, rxf_lo;
ALC_LOCK_ASSERT(sc);
ifp = sc->alc_ifp;
mii = device_get_softc(sc->alc_miibus);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/*
* Cancel any pending I/O.
*/
alc_stop(sc);
/*
* Reset the chip to a known state.
*/
alc_reset(sc);
/* Initialize Rx descriptors. */
if (alc_init_rx_ring(sc) != 0) {
device_printf(sc->alc_dev, "no memory for Rx buffers.\n");
alc_stop(sc);
return;
}
alc_init_rr_ring(sc);
alc_init_tx_ring(sc);
alc_init_cmb(sc);
alc_init_smb(sc);
/* Enable all clocks. */
CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
/* Reprogram the station address. */
bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
CSR_WRITE_4(sc, ALC_PAR0,
eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
/*
* Clear WOL status and disable all WOL feature as WOL
* would interfere Rx operation under normal environments.
*/
CSR_READ_4(sc, ALC_WOL_CFG);
CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
/* Set Tx descriptor base addresses. */
paddr = sc->alc_rdata.alc_tx_ring_paddr;
CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
/* We don't use high priority ring. */
CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
/* Set Tx descriptor counter. */
CSR_WRITE_4(sc, ALC_TD_RING_CNT,
(ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
/* Set Rx descriptor base addresses. */
paddr = sc->alc_rdata.alc_rx_ring_paddr;
CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
/* We use one Rx ring. */
CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
/* Set Rx descriptor counter. */
CSR_WRITE_4(sc, ALC_RD_RING_CNT,
(ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
/*
* Let hardware split jumbo frames into alc_max_buf_sized chunks.
* if it do not fit the buffer size. Rx return descriptor holds
* a counter that indicates how many fragments were made by the
* hardware. The buffer size should be multiple of 8 bytes.
* Since hardware has limit on the size of buffer size, always
* use the maximum value.
* For strict-alignment architectures make sure to reduce buffer
* size by 8 bytes to make room for alignment fixup.
*/
#ifndef __NO_STRICT_ALIGNMENT
sc->alc_buf_size = RX_BUF_SIZE_MAX - sizeof(uint64_t);
#else
sc->alc_buf_size = RX_BUF_SIZE_MAX;
#endif
CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
paddr = sc->alc_rdata.alc_rr_ring_paddr;
/* Set Rx return descriptor base addresses. */
CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
/* We use one Rx return ring. */
CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
/* Set Rx return descriptor counter. */
CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
(ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
paddr = sc->alc_rdata.alc_cmb_paddr;
CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
paddr = sc->alc_rdata.alc_smb_paddr;
CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
/* Reconfigure SRAM - Vendor magic. */
CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
}
/* Tell hardware that we're ready to load DMA blocks. */
CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
/* Configure interrupt moderation timer. */
reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
/*
* We don't want to automatic interrupt clear as task queue
* for the interrupt should know interrupt status.
*/
reg = MASTER_SA_TIMER_ENB;
if (ALC_USECS(sc->alc_int_rx_mod) != 0)
reg |= MASTER_IM_RX_TIMER_ENB;
if (ALC_USECS(sc->alc_int_tx_mod) != 0)
reg |= MASTER_IM_TX_TIMER_ENB;
CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
/*
* Disable interrupt re-trigger timer. We don't want automatic
* re-triggering of un-ACKed interrupts.
*/
CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
/* Configure CMB. */
if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
} else
CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
/*
* Hardware can be configured to issue SMB interrupt based
* on programmed interval. Since there is a callout that is
* invoked for every hz in driver we use that instead of
* relying on periodic SMB interrupt.
*/
CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
/* Clear MAC statistics. */
alc_stats_clear(sc);
/*
* Always use maximum frame size that controller can support.
* Otherwise received frames that has larger frame length
* than alc(4) MTU would be silently dropped in hardware. This
* would make path-MTU discovery hard as sender wouldn't get
* any responses from receiver. alc(4) supports
* multi-fragmented frames on Rx path so it has no issue on
* assembling fragmented frames. Using maximum frame size also
* removes the need to reinitialize hardware when interface
* MTU configuration was changed.
*
* Be conservative in what you do, be liberal in what you
* accept from others - RFC 793.
*/
CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
/* Disable header split(?) */
CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
/* Configure IPG/IFG parameters. */
CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
/* Set parameters for half-duplex media. */
CSR_WRITE_4(sc, ALC_HDPX_CFG,
((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
HDPX_CFG_LCOL_MASK) |
((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
HDPX_CFG_ABEBT_MASK) |
((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
HDPX_CFG_JAMIPG_MASK));
/*
* Set TSO/checksum offload threshold. For frames that is
* larger than this threshold, hardware wouldn't do
* TSO/checksum offloading.
*/
CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
(sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
TSO_OFFLOAD_THRESH_MASK);
/* Configure TxQ. */
reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
reg >>= 1;
reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
TXQ_CFG_TD_BURST_MASK;
CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
/* Configure Rx free descriptor pre-fetching. */
CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
RX_RD_FREE_THRESH_HI_MASK) |
((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
RX_RD_FREE_THRESH_LO_MASK));
/*
* Configure flow control parameters.
* XON : 80% of Rx FIFO
* XOFF : 30% of Rx FIFO
*/
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132) {
reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
rxf_hi = (reg * 8) / 10;
rxf_lo = (reg * 3) / 10;
CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
RX_FIFO_PAUSE_THRESH_LO_MASK) |
((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
RX_FIFO_PAUSE_THRESH_HI_MASK));
}
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2)
CSR_WRITE_4(sc, ALC_SERDES_LOCK,
CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
SERDES_PHY_CLK_SLOWDOWN);
/* Disable RSS until I understand L1C/L2C's RSS logic. */
CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
/* Configure RxQ. */
reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
RXQ_CFG_RD_BURST_MASK;
reg |= RXQ_CFG_RSS_MODE_DIS;
if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
/* Configure DMA parameters. */
reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
reg |= sc->alc_rcb;
if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
reg |= DMA_CFG_CMB_ENB;
if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
reg |= DMA_CFG_SMB_ENB;
else
reg |= DMA_CFG_SMB_DIS;
reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
DMA_CFG_RD_BURST_SHIFT;
reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
DMA_CFG_WR_BURST_SHIFT;
reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
DMA_CFG_RD_DELAY_CNT_MASK;
reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
DMA_CFG_WR_DELAY_CNT_MASK;
CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
/*
* Configure Tx/Rx MACs.
* - Auto-padding for short frames.
* - Enable CRC generation.
* Actual reconfiguration of MAC for resolved speed/duplex
* is followed after detection of link establishment.
* AR813x/AR815x always does checksum computation regardless
* of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
* have bug in protocol field in Rx return structure so
* these controllers can't handle fragmented frames. Disable
* Rx checksum offloading until there is a newer controller
* that has sane implementation.
*/
reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
MAC_CFG_PREAMBLE_MASK);
if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
reg |= MAC_CFG_SPEED_10_100;
else
reg |= MAC_CFG_SPEED_1000;
CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
/* Set up the receive filter. */
alc_rxfilter(sc);
alc_rxvlan(sc);
/* Acknowledge all pending interrupts and clear it. */
CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
sc->alc_flags &= ~ALC_FLAG_LINK;
/* Switch to the current media. */
mii_mediachg(mii);
callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
static void
alc_stop(struct alc_softc *sc)
{
struct ifnet *ifp;
struct alc_txdesc *txd;
struct alc_rxdesc *rxd;
uint32_t reg;
int i;
ALC_LOCK_ASSERT(sc);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp = sc->alc_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->alc_flags &= ~ALC_FLAG_LINK;
callout_stop(&sc->alc_tick_ch);
sc->alc_watchdog_timer = 0;
alc_stats_update(sc);
/* Disable interrupts. */
CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
alc_stop_queue(sc);
/* Disable DMA. */
reg = CSR_READ_4(sc, ALC_DMA_CFG);
reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
reg |= DMA_CFG_SMB_DIS;
CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
DELAY(1000);
/* Stop Rx/Tx MACs. */
alc_stop_mac(sc);
/* Disable interrupts which might be touched in taskq handler. */
CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
/* Reclaim Rx buffers that have been processed. */
if (sc->alc_cdata.alc_rxhead != NULL)
m_freem(sc->alc_cdata.alc_rxhead);
ALC_RXCHAIN_RESET(sc);
/*
* Free Tx/Rx mbufs still in the queues.
*/
for (i = 0; i < ALC_RX_RING_CNT; i++) {
rxd = &sc->alc_cdata.alc_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->alc_cdata.alc_rx_tag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->alc_cdata.alc_rx_tag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < ALC_TX_RING_CNT; i++) {
txd = &sc->alc_cdata.alc_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
}
static void
alc_stop_mac(struct alc_softc *sc)
{
uint32_t reg;
int i;
ALC_LOCK_ASSERT(sc);
/* Disable Rx/Tx MAC. */
reg = CSR_READ_4(sc, ALC_MAC_CFG);
if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
}
for (i = ALC_TIMEOUT; i > 0; i--) {
reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
if (reg == 0)
break;
DELAY(10);
}
if (i == 0)
device_printf(sc->alc_dev,
"could not disable Rx/Tx MAC(0x%08x)!\n", reg);
}
static void
alc_start_queue(struct alc_softc *sc)
{
uint32_t qcfg[] = {
0,
RXQ_CFG_QUEUE0_ENB,
RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
RXQ_CFG_ENB
};
uint32_t cfg;
ALC_LOCK_ASSERT(sc);
/* Enable RxQ. */
cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
cfg &= ~RXQ_CFG_ENB;
cfg |= qcfg[1];
CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
/* Enable TxQ. */
cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
cfg |= TXQ_CFG_ENB;
CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
}
static void
alc_stop_queue(struct alc_softc *sc)
{
uint32_t reg;
int i;
ALC_LOCK_ASSERT(sc);
/* Disable RxQ. */
reg = CSR_READ_4(sc, ALC_RXQ_CFG);
if ((reg & RXQ_CFG_ENB) != 0) {
reg &= ~RXQ_CFG_ENB;
CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
}
/* Disable TxQ. */
reg = CSR_READ_4(sc, ALC_TXQ_CFG);
if ((reg & TXQ_CFG_ENB) != 0) {
reg &= ~TXQ_CFG_ENB;
CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
}
for (i = ALC_TIMEOUT; i > 0; i--) {
reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
break;
DELAY(10);
}
if (i == 0)
device_printf(sc->alc_dev,
"could not disable RxQ/TxQ (0x%08x)!\n", reg);
}
static void
alc_init_tx_ring(struct alc_softc *sc)
{
struct alc_ring_data *rd;
struct alc_txdesc *txd;
int i;
ALC_LOCK_ASSERT(sc);
sc->alc_cdata.alc_tx_prod = 0;
sc->alc_cdata.alc_tx_cons = 0;
sc->alc_cdata.alc_tx_cnt = 0;
rd = &sc->alc_rdata;
bzero(rd->alc_tx_ring, ALC_TX_RING_SZ);
for (i = 0; i < ALC_TX_RING_CNT; i++) {
txd = &sc->alc_cdata.alc_txdesc[i];
txd->tx_m = NULL;
}
bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
}
static int
alc_init_rx_ring(struct alc_softc *sc)
{
struct alc_ring_data *rd;
struct alc_rxdesc *rxd;
int i;
ALC_LOCK_ASSERT(sc);
sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
sc->alc_morework = 0;
rd = &sc->alc_rdata;
bzero(rd->alc_rx_ring, ALC_RX_RING_SZ);
for (i = 0; i < ALC_RX_RING_CNT; i++) {
rxd = &sc->alc_cdata.alc_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_desc = &rd->alc_rx_ring[i];
if (alc_newbuf(sc, rxd) != 0)
return (ENOBUFS);
}
/*
* Since controller does not update Rx descriptors, driver
* does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
* is enough to ensure coherence.
*/
bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
/* Let controller know availability of new Rx buffers. */
CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
return (0);
}
static void
alc_init_rr_ring(struct alc_softc *sc)
{
struct alc_ring_data *rd;
ALC_LOCK_ASSERT(sc);
sc->alc_cdata.alc_rr_cons = 0;
ALC_RXCHAIN_RESET(sc);
rd = &sc->alc_rdata;
bzero(rd->alc_rr_ring, ALC_RR_RING_SZ);
bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
sc->alc_cdata.alc_rr_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
alc_init_cmb(struct alc_softc *sc)
{
struct alc_ring_data *rd;
ALC_LOCK_ASSERT(sc);
rd = &sc->alc_rdata;
bzero(rd->alc_cmb, ALC_CMB_SZ);
bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
alc_init_smb(struct alc_softc *sc)
{
struct alc_ring_data *rd;
ALC_LOCK_ASSERT(sc);
rd = &sc->alc_rdata;
bzero(rd->alc_smb, ALC_SMB_SZ);
bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
alc_rxvlan(struct alc_softc *sc)
{
struct ifnet *ifp;
uint32_t reg;
ALC_LOCK_ASSERT(sc);
ifp = sc->alc_ifp;
reg = CSR_READ_4(sc, ALC_MAC_CFG);
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
reg |= MAC_CFG_VLAN_TAG_STRIP;
else
reg &= ~MAC_CFG_VLAN_TAG_STRIP;
CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
}
static void
alc_rxfilter(struct alc_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t crc;
uint32_t mchash[2];
uint32_t rxcfg;
ALC_LOCK_ASSERT(sc);
ifp = sc->alc_ifp;
bzero(mchash, sizeof(mchash));
rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
if ((ifp->if_flags & IFF_BROADCAST) != 0)
rxcfg |= MAC_CFG_BCAST;
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
if ((ifp->if_flags & IFF_PROMISC) != 0)
rxcfg |= MAC_CFG_PROMISC;
if ((ifp->if_flags & IFF_ALLMULTI) != 0)
rxcfg |= MAC_CFG_ALLMULTI;
mchash[0] = 0xFFFFFFFF;
mchash[1] = 0xFFFFFFFF;
goto chipit;
}
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &sc->alc_ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
}
if_maddr_runlock(ifp);
chipit:
CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
}
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (arg1 == NULL)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || req->newptr == NULL)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
ALC_PROC_MIN, ALC_PROC_MAX));
}
static int
sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
ALC_IM_TIMER_MIN, ALC_IM_TIMER_MAX));
}