freebsd-nq/sys/kern/subr_smp.c

634 lines
16 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
/*
* This module holds the global variables and machine independent functions
* used for the kernel SMP support.
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
*/
2003-06-11 00:56:59 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
1997-08-25 21:28:08 +00:00
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
#include <sys/ktr.h>
#include <sys/proc.h>
#include <sys/bus.h>
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <machine/cpu.h>
#include <machine/smp.h>
#include "opt_sched.h"
#ifdef SMP
volatile cpumask_t stopped_cpus;
volatile cpumask_t started_cpus;
cpumask_t idle_cpus_mask;
cpumask_t hlt_cpus_mask;
cpumask_t logical_cpus_mask;
2002-03-19 21:25:46 +00:00
void (*cpustop_restartfunc)(void);
#endif
/* This is used in modules that need to work in both SMP and UP. */
cpumask_t all_cpus;
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
int mp_ncpus;
/* export this for libkvm consumers. */
int mp_maxcpus = MAXCPU;
volatile int smp_started;
u_int mp_maxid;
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD, NULL, "Kernel SMP");
SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD, &mp_maxid, 0,
"Max CPU ID.");
SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD, &mp_maxcpus, 0,
"Max number of CPUs that the system was compiled for.");
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
int smp_active = 0; /* are the APs allowed to run? */
SYSCTL_INT(_kern_smp, OID_AUTO, active, CTLFLAG_RW, &smp_active, 0,
"Number of Auxillary Processors (APs) that were successfully started");
int smp_disabled = 0; /* has smp been disabled? */
SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN, &smp_disabled, 0,
"SMP has been disabled from the loader");
TUNABLE_INT("kern.smp.disabled", &smp_disabled);
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
int smp_cpus = 1; /* how many cpu's running */
SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD, &smp_cpus, 0,
"Number of CPUs online");
int smp_topology = 0; /* Which topology we're using. */
SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RD, &smp_topology, 0,
"Topology override setting; 0 is default provided by hardware.");
TUNABLE_INT("kern.smp.topology", &smp_topology);
#ifdef SMP
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
/* Enable forwarding of a signal to a process running on a different CPU */
static int forward_signal_enabled = 1;
SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
&forward_signal_enabled, 0,
"Forwarding of a signal to a process on a different CPU");
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
/* Enable forwarding of roundrobin to all other cpus */
static int forward_roundrobin_enabled = 1;
SYSCTL_INT(_kern_smp, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
&forward_roundrobin_enabled, 0,
"Forwarding of roundrobin to all other CPUs");
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
/* Variables needed for SMP rendezvous. */
static volatile int smp_rv_ncpus;
static void (*volatile smp_rv_setup_func)(void *arg);
static void (*volatile smp_rv_action_func)(void *arg);
2008-01-02 17:09:15 +00:00
static void (*volatile smp_rv_teardown_func)(void *arg);
2009-01-26 15:32:39 +00:00
static void *volatile smp_rv_func_arg;
static volatile int smp_rv_waiters[3];
/*
* Shared mutex to restrict busywaits between smp_rendezvous() and
* smp(_targeted)_tlb_shootdown(). A deadlock occurs if both of these
* functions trigger at once and cause multiple CPUs to busywait with
* interrupts disabled.
*/
struct mtx smp_ipi_mtx;
/*
* Let the MD SMP code initialize mp_maxid very early if it can.
*/
static void
mp_setmaxid(void *dummy)
{
cpu_mp_setmaxid();
}
SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
/*
* Call the MD SMP initialization code.
*/
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
static void
mp_start(void *dummy)
{
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
/* Probe for MP hardware. */
if (smp_disabled != 0 || cpu_mp_probe() == 0) {
mp_ncpus = 1;
all_cpus = PCPU_GET(cpumask);
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
return;
}
mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
cpu_mp_start();
printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
mp_ncpus);
cpu_mp_announce();
}
SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
void
forward_signal(struct thread *td)
{
int id;
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
/*
* signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
* this thread, so all we need to do is poke it if it is currently
* executing so that it executes ast().
*/
THREAD_LOCK_ASSERT(td, MA_OWNED);
KASSERT(TD_IS_RUNNING(td),
("forward_signal: thread is not TDS_RUNNING"));
CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
if (!smp_started || cold || panicstr)
return;
if (!forward_signal_enabled)
return;
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
/* No need to IPI ourself. */
if (td == curthread)
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
return;
id = td->td_oncpu;
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
if (id == NOCPU)
return;
ipi_selected(1 << id, IPI_AST);
}
void
forward_roundrobin(void)
{
struct pcpu *pc;
struct thread *td;
cpumask_t id, map, me;
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
CTR0(KTR_SMP, "forward_roundrobin()");
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
if (!smp_started || cold || panicstr)
return;
if (!forward_roundrobin_enabled)
return;
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
map = 0;
me = PCPU_GET(cpumask);
SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
td = pc->pc_curthread;
id = pc->pc_cpumask;
if (id != me && (id & stopped_cpus) == 0 &&
!TD_IS_IDLETHREAD(td)) {
td->td_flags |= TDF_NEEDRESCHED;
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
map |= id;
}
}
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
ipi_selected(map, IPI_AST);
}
/*
* When called the executing CPU will send an IPI to all other CPUs
* requesting that they halt execution.
*
* Usually (but not necessarily) called with 'other_cpus' as its arg.
*
* - Signals all CPUs in map to stop.
* - Waits for each to stop.
*
* Returns:
* -1: error
* 0: NA
* 1: ok
*
* XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
* from executing at same time.
*/
int
stop_cpus(cpumask_t map)
{
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
int i;
if (!smp_started)
return 0;
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
CTR1(KTR_SMP, "stop_cpus(%x)", map);
/* send the stop IPI to all CPUs in map */
ipi_selected(map, IPI_STOP);
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
i = 0;
while ((stopped_cpus & map) != map) {
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
/* spin */
cpu_spinwait();
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
i++;
#ifdef DIAGNOSTIC
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
if (i == 100000) {
printf("timeout stopping cpus\n");
break;
}
#endif
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
}
return 1;
}
/*
* Called by a CPU to restart stopped CPUs.
*
* Usually (but not necessarily) called with 'stopped_cpus' as its arg.
*
* - Signals all CPUs in map to restart.
* - Waits for each to restart.
*
* Returns:
* -1: error
* 0: NA
* 1: ok
*/
int
restart_cpus(cpumask_t map)
{
if (!smp_started)
return 0;
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
CTR1(KTR_SMP, "restart_cpus(%x)", map);
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
/* signal other cpus to restart */
atomic_store_rel_int(&started_cpus, map);
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
/* wait for each to clear its bit */
while ((stopped_cpus & map) != 0)
cpu_spinwait();
return 1;
}
/*
* All-CPU rendezvous. CPUs are signalled, all execute the setup function
* (if specified), rendezvous, execute the action function (if specified),
* rendezvous again, execute the teardown function (if specified), and then
* resume.
*
* Note that the supplied external functions _must_ be reentrant and aware
* that they are running in parallel and in an unknown lock context.
*/
void
smp_rendezvous_action(void)
{
void* local_func_arg = smp_rv_func_arg;
void (*local_setup_func)(void*) = smp_rv_setup_func;
void (*local_action_func)(void*) = smp_rv_action_func;
void (*local_teardown_func)(void*) = smp_rv_teardown_func;
2008-01-02 17:09:15 +00:00
/* Ensure we have up-to-date values. */
atomic_add_acq_int(&smp_rv_waiters[0], 1);
while (smp_rv_waiters[0] < smp_rv_ncpus)
cpu_spinwait();
/* setup function */
if (local_setup_func != smp_no_rendevous_barrier) {
if (smp_rv_setup_func != NULL)
smp_rv_setup_func(smp_rv_func_arg);
2008-01-02 17:09:15 +00:00
/* spin on entry rendezvous */
atomic_add_int(&smp_rv_waiters[1], 1);
while (smp_rv_waiters[1] < smp_rv_ncpus)
cpu_spinwait();
}
/* action function */
if (local_action_func != NULL)
local_action_func(local_func_arg);
/* spin on exit rendezvous */
atomic_add_int(&smp_rv_waiters[2], 1);
if (local_teardown_func == smp_no_rendevous_barrier)
return;
while (smp_rv_waiters[2] < smp_rv_ncpus)
cpu_spinwait();
2008-01-02 17:09:15 +00:00
/* teardown function */
if (local_teardown_func != NULL)
local_teardown_func(local_func_arg);
}
void
smp_rendezvous_cpus(cpumask_t map,
void (* setup_func)(void *),
void (* action_func)(void *),
void (* teardown_func)(void *),
void *arg)
{
int i, ncpus = 0;
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
if (!smp_started) {
if (setup_func != NULL)
setup_func(arg);
if (action_func != NULL)
action_func(arg);
if (teardown_func != NULL)
teardown_func(arg);
return;
}
for (i = 0; i < mp_maxid; i++)
if (((1 << i) & map) != 0 && !CPU_ABSENT(i))
ncpus++;
/* obtain rendezvous lock */
mtx_lock_spin(&smp_ipi_mtx);
/* set static function pointers */
smp_rv_ncpus = ncpus;
smp_rv_setup_func = setup_func;
smp_rv_action_func = action_func;
smp_rv_teardown_func = teardown_func;
smp_rv_func_arg = arg;
smp_rv_waiters[1] = 0;
smp_rv_waiters[2] = 0;
atomic_store_rel_int(&smp_rv_waiters[0], 0);
Overhaul of the SMP code. Several portions of the SMP kernel support have been made machine independent and various other adjustments have been made to support Alpha SMP. - It splits the per-process portions of hardclock() and statclock() off into hardclock_process() and statclock_process() respectively. hardclock() and statclock() call the *_process() functions for the current process so that UP systems will run as before. For SMP systems, it is simply necessary to ensure that all other processors execute the *_process() functions when the main clock functions are triggered on one CPU by an interrupt. For the alpha 4100, clock interrupts are delievered in a staggered broadcast fashion, so we simply call hardclock/statclock on the boot CPU and call the *_process() functions on the secondaries. For x86, we call statclock and hardclock as usual and then call forward_hardclock/statclock in the MD code to send an IPI to cause the AP's to execute forwared_hardclock/statclock which then call the *_process() functions. - forward_signal() and forward_roundrobin() have been reworked to be MI and to involve less hackery. Now the cpu doing the forward sets any flags, etc. and sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically return so that they can execute ast() and don't bother with setting the astpending or needresched flags themselves. This also removes the loop in forward_signal() as sched_lock closes the race condition that the loop worked around. - need_resched(), resched_wanted() and clear_resched() have been changed to take a process to act on rather than assuming curproc so that they can be used to implement forward_roundrobin() as described above. - Various other SMP variables have been moved to a MI subr_smp.c and a new header sys/smp.h declares MI SMP variables and API's. The IPI API's from machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h. - The globaldata_register() and globaldata_find() functions as well as the SLIST of globaldata structures has become MI and moved into subr_smp.c. Also, the globaldata list is only available if SMP support is compiled in. Reviewed by: jake, peter Looked over by: eivind
2001-04-27 19:28:25 +00:00
/* signal other processors, which will enter the IPI with interrupts off */
ipi_selected(map & ~(1 << curcpu), IPI_RENDEZVOUS);
/* Check if the current CPU is in the map */
if ((map & (1 << curcpu)) != 0)
smp_rendezvous_action();
2008-01-02 17:09:15 +00:00
if (teardown_func == smp_no_rendevous_barrier)
while (atomic_load_acq_int(&smp_rv_waiters[2]) < ncpus)
cpu_spinwait();
2008-01-02 17:09:15 +00:00
/* release lock */
mtx_unlock_spin(&smp_ipi_mtx);
}
void
smp_rendezvous(void (* setup_func)(void *),
void (* action_func)(void *),
void (* teardown_func)(void *),
void *arg)
{
smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
}
static struct cpu_group group[MAXCPU];
struct cpu_group *
smp_topo(void)
{
struct cpu_group *top;
/*
* Check for a fake topology request for debugging purposes.
*/
switch (smp_topology) {
case 1:
/* Dual core with no sharing. */
top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
break;
case 2:
/* No topology, all cpus are equal. */
top = smp_topo_none();
break;
case 3:
/* Dual core with shared L2. */
top = smp_topo_1level(CG_SHARE_L2, 2, 0);
break;
case 4:
/* quad core, shared l3 among each package, private l2. */
top = smp_topo_1level(CG_SHARE_L3, 4, 0);
break;
case 5:
/* quad core, 2 dualcore parts on each package share l2. */
top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
break;
case 6:
/* Single-core 2xHTT */
top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
break;
case 7:
/* quad core with a shared l3, 8 threads sharing L2. */
top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
CG_FLAG_THREAD);
break;
default:
/* Default, ask the system what it wants. */
top = cpu_topo();
break;
}
/*
* Verify the returned topology.
*/
if (top->cg_count != mp_ncpus)
panic("Built bad topology at %p. CPU count %d != %d",
top, top->cg_count, mp_ncpus);
if (top->cg_mask != all_cpus)
panic("Built bad topology at %p. CPU mask 0x%X != 0x%X",
top, top->cg_mask, all_cpus);
return (top);
}
struct cpu_group *
smp_topo_none(void)
{
struct cpu_group *top;
top = &group[0];
top->cg_parent = NULL;
top->cg_child = NULL;
top->cg_mask = (1 << mp_ncpus) - 1;
top->cg_count = mp_ncpus;
top->cg_children = 0;
top->cg_level = CG_SHARE_NONE;
top->cg_flags = 0;
return (top);
}
static int
smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
int count, int flags, int start)
{
cpumask_t mask;
int i;
for (mask = 0, i = 0; i < count; i++, start++)
mask |= (1 << start);
child->cg_parent = parent;
child->cg_child = NULL;
child->cg_children = 0;
child->cg_level = share;
child->cg_count = count;
child->cg_flags = flags;
child->cg_mask = mask;
parent->cg_children++;
for (; parent != NULL; parent = parent->cg_parent) {
if ((parent->cg_mask & child->cg_mask) != 0)
panic("Duplicate children in %p. mask 0x%X child 0x%X",
parent, parent->cg_mask, child->cg_mask);
parent->cg_mask |= child->cg_mask;
parent->cg_count += child->cg_count;
}
return (start);
}
struct cpu_group *
smp_topo_1level(int share, int count, int flags)
{
struct cpu_group *child;
struct cpu_group *top;
int packages;
int cpu;
int i;
cpu = 0;
top = &group[0];
packages = mp_ncpus / count;
top->cg_child = child = &group[1];
top->cg_level = CG_SHARE_NONE;
for (i = 0; i < packages; i++, child++)
cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
return (top);
}
struct cpu_group *
smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
int l1flags)
{
struct cpu_group *top;
struct cpu_group *l1g;
struct cpu_group *l2g;
int cpu;
int i;
int j;
cpu = 0;
top = &group[0];
l2g = &group[1];
top->cg_child = l2g;
top->cg_level = CG_SHARE_NONE;
top->cg_children = mp_ncpus / (l2count * l1count);
l1g = l2g + top->cg_children;
for (i = 0; i < top->cg_children; i++, l2g++) {
l2g->cg_parent = top;
l2g->cg_child = l1g;
l2g->cg_level = l2share;
for (j = 0; j < l2count; j++, l1g++)
cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
l1flags, cpu);
}
return (top);
}
struct cpu_group *
smp_topo_find(struct cpu_group *top, int cpu)
{
struct cpu_group *cg;
cpumask_t mask;
int children;
int i;
mask = (1 << cpu);
cg = top;
for (;;) {
if ((cg->cg_mask & mask) == 0)
return (NULL);
if (cg->cg_children == 0)
return (cg);
children = cg->cg_children;
for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
if ((cg->cg_mask & mask) != 0)
break;
}
return (NULL);
}
#else /* !SMP */
void
smp_rendezvous_cpus(cpumask_t map,
void (*setup_func)(void *),
void (*action_func)(void *),
void (*teardown_func)(void *),
void *arg)
{
if (setup_func != NULL)
setup_func(arg);
if (action_func != NULL)
action_func(arg);
if (teardown_func != NULL)
teardown_func(arg);
}
void
2008-01-02 17:09:15 +00:00
smp_rendezvous(void (*setup_func)(void *),
void (*action_func)(void *),
void (*teardown_func)(void *),
void *arg)
{
if (setup_func != NULL)
setup_func(arg);
if (action_func != NULL)
action_func(arg);
if (teardown_func != NULL)
teardown_func(arg);
}
/*
* Provide dummy SMP support for UP kernels. Modules that need to use SMP
* APIs will still work using this dummy support.
*/
static void
mp_setvariables_for_up(void *dummy)
{
mp_ncpus = 1;
mp_maxid = PCPU_GET(cpuid);
all_cpus = PCPU_GET(cpumask);
KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
}
SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
mp_setvariables_for_up, NULL);
#endif /* SMP */
void
smp_no_rendevous_barrier(void *dummy)
{
#ifdef SMP
KASSERT((!smp_started),("smp_no_rendevous called and smp is started"));
#endif
}