freebsd-nq/sys/crypto/aesni/aesni.h

118 lines
4.5 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2010 Konstantin Belousov <kib@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _AESNI_H_
#define _AESNI_H_
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <opencrypto/cryptodev.h>
#if defined(__amd64__) || (defined(__i386__) && !defined(PC98))
#include <machine/cpufunc.h>
#include <machine/cputypes.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#endif
#if defined(__i386__)
#include <machine/npx.h>
#elif defined(__amd64__)
#include <machine/fpu.h>
#endif
#define AES128_ROUNDS 10
#define AES192_ROUNDS 12
#define AES256_ROUNDS 14
#define AES_SCHED_LEN ((AES256_ROUNDS + 1) * AES_BLOCK_LEN)
struct aesni_session {
uint8_t enc_schedule[AES_SCHED_LEN] __aligned(16);
uint8_t dec_schedule[AES_SCHED_LEN] __aligned(16);
uint8_t xts_schedule[AES_SCHED_LEN] __aligned(16);
uint8_t iv[AES_BLOCK_LEN];
int algo;
int rounds;
/* uint8_t *ses_ictx; */
/* uint8_t *ses_octx; */
/* int ses_mlen; */
int used;
uint32_t id;
TAILQ_ENTRY(aesni_session) next;
Add support for the extended FPU states on amd64, both for native 64bit and 32bit ABIs. As a side-effect, it enables AVX on capable CPUs. In particular: - Query the CPU support for XSAVE, list of the supported extensions and the required size of FPU save area. The hw.use_xsave tunable is provided for disabling XSAVE, and hw.xsave_mask may be used to select the enabled extensions. - Remove the FPU save area from PCB and dynamically allocate the (run-time sized) user save area on the top of the kernel stack, right above the PCB. Reorganize the thread0 PCB initialization to postpone it after BSP is queried for save area size. - The dumppcb, stoppcbs and susppcbs now do not carry the FPU state as well. FPU state is only useful for suspend, where it is saved in dynamically allocated suspfpusave area. - Use XSAVE and XRSTOR to save/restore FPU state, if supported and enabled. - Define new mcontext_t flag _MC_HASFPXSTATE, indicating that mcontext_t has a valid pointer to out-of-struct extended FPU state. Signal handlers are supplied with stack-allocated fpu state. The sigreturn(2) and setcontext(2) syscall honour the flag, allowing the signal handlers to inspect and manipilate extended state in the interrupted context. - The getcontext(2) never returns extended state, since there is no place in the fixed-sized mcontext_t to place variable-sized save area. And, since mcontext_t is embedded into ucontext_t, makes it impossible to fix in a reasonable way. Instead of extending getcontext(2) syscall, provide a sysarch(2) facility to query extended FPU state. - Add ptrace(2) support for getting and setting extended state; while there, implement missed PT_I386_{GET,SET}XMMREGS for 32bit binaries. - Change fpu_kern KPI to not expose struct fpu_kern_ctx layout to consumers, making it opaque. Internally, struct fpu_kern_ctx now contains a space for the extended state. Convert in-kernel consumers of fpu_kern KPI both on i386 and amd64. First version of the support for AVX was submitted by Tim Bird <tim.bird am sony com> on behalf of Sony. This version was written from scratch. Tested by: pho (previous version), Yamagi Burmeister <lists yamagi org> MFC after: 1 month
2012-01-21 17:45:27 +00:00
struct fpu_kern_ctx *fpu_ctx;
};
/*
* Internal functions, implemented in assembler.
*/
void aesni_set_enckey(const uint8_t *userkey,
uint8_t *encrypt_schedule /*__aligned(16)*/, int number_of_rounds);
void aesni_set_deckey(const uint8_t *encrypt_schedule /*__aligned(16)*/,
uint8_t *decrypt_schedule /*__aligned(16)*/, int number_of_rounds);
/*
* Slightly more public interfaces.
*/
void aesni_encrypt_cbc(int rounds, const void *key_schedule /*__aligned(16)*/,
size_t len, const uint8_t *from, uint8_t *to,
const uint8_t iv[AES_BLOCK_LEN]);
void aesni_decrypt_cbc(int rounds, const void *key_schedule /*__aligned(16)*/,
size_t len, uint8_t *buf, const uint8_t iv[AES_BLOCK_LEN]);
void aesni_encrypt_ecb(int rounds, const void *key_schedule /*__aligned(16)*/,
size_t len, const uint8_t *from, uint8_t *to);
void aesni_decrypt_ecb(int rounds, const void *key_schedule /*__aligned(16)*/,
size_t len, const uint8_t *from, uint8_t *to);
2014-12-12 19:56:36 +00:00
void aesni_encrypt_icm(int rounds, const void *key_schedule /*__aligned(16)*/,
size_t len, const uint8_t *from, uint8_t *to,
const uint8_t iv[AES_BLOCK_LEN]);
void aesni_encrypt_xts(int rounds, const void *data_schedule /*__aligned(16)*/,
const void *tweak_schedule /*__aligned(16)*/, size_t len,
const uint8_t *from, uint8_t *to, const uint8_t iv[AES_BLOCK_LEN]);
void aesni_decrypt_xts(int rounds, const void *data_schedule /*__aligned(16)*/,
const void *tweak_schedule /*__aligned(16)*/, size_t len,
const uint8_t *from, uint8_t *to, const uint8_t iv[AES_BLOCK_LEN]);
2014-12-12 19:56:36 +00:00
/* GCM & GHASH functions */
void AES_GCM_encrypt(const unsigned char *in, unsigned char *out,
const unsigned char *addt, const unsigned char *ivec,
unsigned char *tag, uint32_t nbytes, uint32_t abytes, int ibytes,
const unsigned char *key, int nr);
int AES_GCM_decrypt(const unsigned char *in, unsigned char *out,
const unsigned char *addt, const unsigned char *ivec,
unsigned char *tag, uint32_t nbytes, uint32_t abytes, int ibytes,
const unsigned char *key, int nr);
int aesni_cipher_setup_common(struct aesni_session *ses, const uint8_t *key,
int keylen);
uint8_t *aesni_cipher_alloc(struct cryptodesc *enccrd, struct cryptop *crp,
int *allocated);
#endif /* _AESNI_H_ */