freebsd-nq/sys/crypto/aesni/aesni.h
John-Mark Gurney 08fca7a56b Add some new modes to OpenCrypto. These modes are AES-ICM (can be used
for counter mode), and AES-GCM.  Both of these modes have been added to
the aesni module.

Included is a set of tests to validate that the software and aesni
module calculate the correct values.  These use the NIST KAT test
vectors.  To run the test, you will need to install a soon to be
committed port, nist-kat that will install the vectors.  Using a port
is necessary as the test vectors are around 25MB.

All the man pages were updated.  I have added a new man page, crypto.7,
which includes a description of how to use each mode.  All the new modes
and some other AES modes are present.  It would be good for someone
else to go through and document the other modes.

A new ioctl was added to support AEAD modes which AES-GCM is one of them.
Without this ioctl, it is not possible to test AEAD modes from userland.

Add a timing safe bcmp for use to compare MACs.  Previously we were using
bcmp which could leak timing info and result in the ability to forge
messages.

Add a minor optimization to the aesni module so that single segment
mbufs don't get copied and instead are updated in place.  The aesni
module needs to be updated to support blocked IO so segmented mbufs
don't have to be copied.

We require that the IV be specified for all calls for both GCM and ICM.
This is to ensure proper use of these functions.

Obtained from:	p4: //depot/projects/opencrypto
Relnotes:	yes
Sponsored by:	FreeBSD Foundation
Sponsored by:	NetGate
2014-12-12 19:56:36 +00:00

118 lines
4.5 KiB
C

/*-
* Copyright (c) 2010 Konstantin Belousov <kib@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _AESNI_H_
#define _AESNI_H_
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <opencrypto/cryptodev.h>
#if defined(__amd64__) || (defined(__i386__) && !defined(PC98))
#include <machine/cpufunc.h>
#include <machine/cputypes.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#endif
#if defined(__i386__)
#include <machine/npx.h>
#elif defined(__amd64__)
#include <machine/fpu.h>
#endif
#define AES128_ROUNDS 10
#define AES192_ROUNDS 12
#define AES256_ROUNDS 14
#define AES_SCHED_LEN ((AES256_ROUNDS + 1) * AES_BLOCK_LEN)
struct aesni_session {
uint8_t enc_schedule[AES_SCHED_LEN] __aligned(16);
uint8_t dec_schedule[AES_SCHED_LEN] __aligned(16);
uint8_t xts_schedule[AES_SCHED_LEN] __aligned(16);
uint8_t iv[AES_BLOCK_LEN];
int algo;
int rounds;
/* uint8_t *ses_ictx; */
/* uint8_t *ses_octx; */
/* int ses_mlen; */
int used;
uint32_t id;
TAILQ_ENTRY(aesni_session) next;
struct fpu_kern_ctx *fpu_ctx;
};
/*
* Internal functions, implemented in assembler.
*/
void aesni_set_enckey(const uint8_t *userkey,
uint8_t *encrypt_schedule /*__aligned(16)*/, int number_of_rounds);
void aesni_set_deckey(const uint8_t *encrypt_schedule /*__aligned(16)*/,
uint8_t *decrypt_schedule /*__aligned(16)*/, int number_of_rounds);
/*
* Slightly more public interfaces.
*/
void aesni_encrypt_cbc(int rounds, const void *key_schedule /*__aligned(16)*/,
size_t len, const uint8_t *from, uint8_t *to,
const uint8_t iv[AES_BLOCK_LEN]);
void aesni_decrypt_cbc(int rounds, const void *key_schedule /*__aligned(16)*/,
size_t len, uint8_t *buf, const uint8_t iv[AES_BLOCK_LEN]);
void aesni_encrypt_ecb(int rounds, const void *key_schedule /*__aligned(16)*/,
size_t len, const uint8_t *from, uint8_t *to);
void aesni_decrypt_ecb(int rounds, const void *key_schedule /*__aligned(16)*/,
size_t len, const uint8_t *from, uint8_t *to);
void aesni_encrypt_icm(int rounds, const void *key_schedule /*__aligned(16)*/,
size_t len, const uint8_t *from, uint8_t *to,
const uint8_t iv[AES_BLOCK_LEN]);
void aesni_encrypt_xts(int rounds, const void *data_schedule /*__aligned(16)*/,
const void *tweak_schedule /*__aligned(16)*/, size_t len,
const uint8_t *from, uint8_t *to, const uint8_t iv[AES_BLOCK_LEN]);
void aesni_decrypt_xts(int rounds, const void *data_schedule /*__aligned(16)*/,
const void *tweak_schedule /*__aligned(16)*/, size_t len,
const uint8_t *from, uint8_t *to, const uint8_t iv[AES_BLOCK_LEN]);
/* GCM & GHASH functions */
void AES_GCM_encrypt(const unsigned char *in, unsigned char *out,
const unsigned char *addt, const unsigned char *ivec,
unsigned char *tag, uint32_t nbytes, uint32_t abytes, int ibytes,
const unsigned char *key, int nr);
int AES_GCM_decrypt(const unsigned char *in, unsigned char *out,
const unsigned char *addt, const unsigned char *ivec,
unsigned char *tag, uint32_t nbytes, uint32_t abytes, int ibytes,
const unsigned char *key, int nr);
int aesni_cipher_setup_common(struct aesni_session *ses, const uint8_t *key,
int keylen);
uint8_t *aesni_cipher_alloc(struct cryptodesc *enccrd, struct cryptop *crp,
int *allocated);
#endif /* _AESNI_H_ */