words, every architecture is now auto-sizing the kmem arena. This revision
changes kmeminit() so that the definition of VM_KMEM_SIZE_SCALE becomes
mandatory and the definition of VM_KMEM_SIZE becomes optional.
Replace or eliminate all existing definitions of VM_KMEM_SIZE. With
auto-sizing enabled, VM_KMEM_SIZE effectively became an alternate spelling
for VM_KMEM_SIZE_MIN on most architectures. Use VM_KMEM_SIZE_MIN for
clarity.
Change kmeminit() so that the effect of defining VM_KMEM_SIZE is similar to
that of setting the tunable vm.kmem_size. Whereas the macros
VM_KMEM_SIZE_{MAX,MIN,SCALE} have had the same effect as the tunables
vm.kmem_size_{max,min,scale}, the effects of VM_KMEM_SIZE and vm.kmem_size
have been distinct. In particular, whereas VM_KMEM_SIZE was overridden by
VM_KMEM_SIZE_{MAX,MIN,SCALE} and vm.kmem_size_{max,min,scale}, vm.kmem_size
was not. Remedy this inconsistency. Now, VM_KMEM_SIZE can be used to set
the size of the kmem arena at compile-time without that value being
overridden by auto-sizing.
Update the nearby comments to reflect the kmem submap being replaced by the
kmem arena. Stop duplicating the auto-sizing formula in every machine-
dependent vmparam.h and place it in kmeminit() where auto-sizing takes
place.
Reviewed by: kib (an earlier version)
Sponsored by: EMC / Isilon Storage Division
end, make pmap_invalidate_all() global and have it only handle the
local CPU -- i.e. no rendezvous. We do not use pmap_invalidate_all
other than during initialization.
Note that the BSP already purges its TC -- it was missing for APs
only. Nonetheless, this so far seems to eliminate random problems.
sf_buf_alloc()/sf_buf_free() inlines, to save two calls to an absolutely
empty functions.
Reviewed by: alc, kib, scottl
Sponsored by: Nginx, Inc.
Sponsored by: Netflix
Issues were noted by Bruce Evans and are present on all architectures.
On i386, a counter fetch should use atomic read of 64bit value,
otherwise carry from the increment on other CPU could be lost for the
given fetch, making error of 2^32. If 64bit read (cmpxchg8b) is not
available on the machine, it cannot be SMP and it is enough to disable
preemption around read to avoid the split read.
On x86 the counter increment is not atomic on purpose, which makes it
possible for the store of the incremented result to override just
zeroed per-cpu slot. The effect would be a counter going off by
arbitrary value after zeroing. Perform the counter zeroing on the
same processor which does the increments, making the operations
mutually exclusive. On i386, same as for the fetching, if the
cmpxchg8b is not available, machine is not SMP and we disable
preemption for zeroing.
PowerPC64 is treated the same as amd64.
For other architectures, the changes made to allow the compilation to
succeed, without fixing the issues with zeroing or fetching. It
should be possible to handle them by using the 64bit loads and stores
atomic WRT preemption (assuming the architectures also converted from
using critical sections to proper asm). If architecture does not
provide the facility, using global (spin) mutex would be non-optimal
but working solution.
Noted by: bde
Sponsored by: The FreeBSD Foundation
order to match the MAXCPU concept. The change should also be useful
for consolidation and consistency.
Sponsored by: EMC / Isilon storage division
Obtained from: jeff
Reviewed by: alc
Introduce counter(9) API, that implements fast and raceless counters,
provided (but not limited to) for gathering of statistical data.
See http://lists.freebsd.org/pipermail/freebsd-arch/2013-April/014204.html
for more details.
In collaboration with: kib
Reviewed by: luigi
Tested by: ae, ray
Sponsored by: Nginx, Inc.
introduction of the PBVM, this stopped being the case. Redefine the
VM parameters so that the PBVM is included in the kernel map. In
particular this introduces VM_INIT_KERNEL_ADDRESS to point to the base
of region 5 now that VM_MIN_KERNEL_ADDRESS points to the base of
region 4 to include the PBVM.
While here define KERNBASE to the actual link address of the kernel as
is intended.
PR: 169926
advantages. First, PV entries are roughly half the size. Second, this
allocator doesn't access the paging queues, and thus it allows for the
removal of the page queues lock from this pmap.
Replace all uses of the page queues lock by a R/W lock that is private
to this pmap.
Tested by: marcel
before VM has been initialized. This includes:
1. Replacing pmap_steal_memory(),
2. Replace the handcrafted logic to allocate a naturally aligned VHPT,
3. Properly allocate the DPCPU for the BSP.
Ad 3: Appending the DPCPU to kernend worked as long as we wouldn't
cross into the next PBVM page. If we were to cross into the next
page, then there wouldn't be a PTE entry on the page table for it
and we would end up with a MCA following a page fault. As such,
this commit fixes MCAs occasionally seen.
correctly. We now iterate the EFI memory descriptors once and collect all
the information in a single pass. This includes:
1. The I/O port base address,
2. The PAL memory region. Have the physmem API track this.
3. Memory descriptors of memory we can't use, like bad memory, runtime
services code & data, etc. Have the physmem API track these.
4. memory descriptors of memory we can use or re-use, such as free
memory, boot time services code & data, loader code & data, etc.
These are added by the physmem API.
Since the PBVM page table and pages are in memory described as loader
data, inform the physmem API of chunks that need to be delated from the
available physical memory.
While here, remove Maxmem and replace it with the better named paddr_max.
Maxmem was defined as physmem, which is generally wrong. Now, paddr_max
is properly defined as the largesty physical address.
The upshot of all this is that:
1. We properly determine realmem.
2. We maximize physmem by re-using memory where possible.
3. We remove complexity from ia64_init() in machdep.c.
4. Remove confusion about realmem, physmem & Maxmem.
The new ia64_physmem_alloc() is to replace pmap_steal_memory() in pmap.c,
as well as replace the handcrafted allocation of the VHPT for the BSP in
pmap_bootstrap() in pmap.c. This is step 2 and addresses the manipulation
of phys_avail after it is being created.
This is required for ARM EABI. Section 7.1.1 of the Procedure Call for the
ARM Architecture (AAPCS) defines wchar_t as either an unsigned int or an
unsigned short with the former preferred.
Because of this requirement we need to move the definition of __wchar_t to
a machine dependent header. It also cleans up the macros defining the limits
of wchar_t by defining __WCHAR_MIN and __WCHAR_MAX in the same machine
dependent header then using them to define WCHAR_MIN and WCHAR_MAX
respectively.
Discussed with: bde
usermode, using shared page. The structures and functions have vdso
prefix, to indicate the intended location of the code in some future.
The versioned per-algorithm data is exported in the format of struct
vdso_timehands, which mostly repeats the content of in-kernel struct
timehands. Usermode reading of the structure can be lockless.
Compatibility export for 32bit processes on 64bit host is also
provided. Kernel also provides usermode with indication about
currently used timecounter, so that libc can fall back to syscall if
configured timecounter is unknown to usermode code.
The shared data updates are initiated both from the tc_windup(), where
a fast task is queued to do the update, and from sysctl handlers which
change timecounter. A manual override switch
kern.timecounter.fast_gettime allows to turn off the mechanism.
Only x86 architectures export the real algorithm data, and there, only
for tsc timecounter. HPET counters page could be exported as well, but
I prefer to not further glue the kernel and libc ABI there until
proper vdso-based solution is developed.
Minimal stubs neccessary for non-x86 architectures to still compile
are provided.
Discussed with: bde
Reviewed by: jhb
Tested by: flo
MFC after: 1 month
layer, but it is read directly by the MI VM layer. This change introduces
pmap_page_is_write_mapped() in order to completely encapsulate all direct
access to PGA_WRITEABLE in the pmap layer.
Aesthetics aside, I am making this change because amd64 will likely begin
using an alternative method to track write mappings, and having
pmap_page_is_write_mapped() in place allows me to make such a change
without further modification to the MI VM layer.
As an added bonus, tidy up some nearby comments concerning page flags.
Reviewed by: kib
MFC after: 6 weeks
in_cksum.h required ip.h to be included for struct ip. To be
able to use some general checksum functions like in_addword()
in a non-IPv4 context, limit the (also exported to user space)
IPv4 specific functions to the times, when the ip.h header is
present and IPVERSION is defined (to 4).
We should consider more general checksum (updating) functions
to also allow easier incremental checksum updates in the L3/4
stack and firewalls, as well as ponder further requirements by
certain NIC drivers needing slightly different pseudo values
in offloading cases. Thinking in terms of a better "library".
Sponsored by: The FreeBSD Foundation
Sponsored by: iXsystems
Reviewed by: gnn (as part of the whole)
MFC After: 3 days
implement a deprecated FPU control interface in addition to the
standard one. To make this clearer, further deprecate ieeefp.h
by not declaring the function prototypes except on architectures
that implement them already.
Currently i386 and amd64 implement the ieeefp.h interface for
compatibility, and for fp[gs]etprec(), which doesn't exist on
most other hardware. Powerpc, sparc64, and ia64 partially implement
it and probably shouldn't, and other architectures don't implement it
at all.
From now on, default values for FreeBSD will be 64 maxiumum supported
CPUs on amd64 and ia64 and 128 for XLP. All the other architectures
seem already capped appropriately (with the exception of sparc64 which
needs further support on jalapeno flavour).
Bump __FreeBSD_version in order to reflect KBI/KPI brekage introduced
during the infrastructure cleanup for supporting MAXCPU > 32. This
covers cpumask_t retiral too.
The switch is considered completed at the present time, so for whatever
bug you may experience that is reconducible to that area, please report
immediately.
Requested by: marcel, jchandra
Tested by: pluknet, sbruno
Approved by: re (kib)
This patch is going to help in cases like mips flavours where you
want a more granular support on MAXCPU.
No MFC is previewed for this patch.
Tested by: pluknet
Approved by: re (kib)
o efi_md_find() - returns the md that covers the given address
o efi_md_last() - returns the last md in the list
o efi_md_prev() - returns the md that preceeds the given md.
distinguish between UC and WB memory so that we can map the page to
either a region 6 address (for UC) or a region 7 address (for WB).
This change is only now possible, because previously we would map
regions 6 and 7 with 256MB translations and on top of that had the
kernel mapped in region 7 using a wired translation. The introduction
of the PBVM moved the kernel into its own region and freed up region
7 and allowed us to revert to standard page-sized translations.
This commit inroduces pmap_page_to_va() that respects the attribute.
o Setting td_intr_frame to the XIVs trap frame because it's referenced
by the ET event handler.
o Signal EOI to the CPU before calling the registered XIV handlers.
This prevents lost ITC interrupts, which cause starvation in one-shot
mode.
o Adding support for IPI_HARDCLOCK with corresponding per-CPU counters.
o Have the APs call cpu_initclocks() so as to limited the scattering of
clock related initialization. cpu_initclocks() calls the <self>_bsp()
or <self>_ap() version accordingly.
o Uncomment the ET clock handling in cpu_idle().
o Update the DDB 'show pcpu' output for the new MD fields.
o Entirely rewritten ia64_ih_clock(). Note that we don't create as many
clock XIVs as we have CPUs, as is done on PowerPC. It doesn't scale.
We can only have 240 XIVs and we can have more CPUs than that. There's
a single intrcnt index for the cumulative clock ticks and we keep per
CPU counts in the PCPU stats structure.
o Register the ITC by hooking SI_SUB_CONFIGURE (2nd order).
Open issues:
o Clock interrupts can still be lost. Some tweaking is still necessary.
Thanks to: mav@ for his support, feedback and explanations.
ET stats while committing:
eris% sysctl machdep.cpu | grep nclks
machdep.cpu.0.nclks: 24007
machdep.cpu.1.nclks: 22895
machdep.cpu.2.nclks: 13523
machdep.cpu.3.nclks: 9342
machdep.cpu.4.nclks: 9103
machdep.cpu.5.nclks: 9298
machdep.cpu.6.nclks: 10039
machdep.cpu.7.nclks: 9479
eris% vmstat -i | grep clock
clock 108599 50
stream of the local processor. Also explicitly invalidate
the ALAT. This is done on the other CPUs in the coherence
domain by virtue of the ptc.ga instruction, but does not
apply to the local CPU.
architectures (i386, for example) the virtual memory space may be
constrained enough that 2MB is a large chunk. Use 64K for arches
other than amd64 and ia64, with special handling for sparc64 due to
differing hardware.
Also commit the comment changes to kmem_init_zero_region() that I
missed due to not saving the file. (Darn the unfamiliar development
environment).
Arch maintainers, please feel free to adjust ZERO_REGION_SIZE as you
see fit.
Requested by: alc
MFC after: 1 week
MFC with: r221853
cpuset_t objects.
That is going to offer the underlying support for a simple bump of
MAXCPU and then support for number of cpus > 32 (as it is today).
Right now, cpumask_t is an int, 32 bits on all our supported architecture.
cpumask_t on the other side is implemented as an array of longs, and
easilly extendible by definition.
The architectures touched by this commit are the following:
- amd64
- i386
- pc98
- arm
- ia64
- XEN
while the others are still missing.
Userland is believed to be fully converted with the changes contained
here.
Some technical notes:
- This commit may be considered an ABI nop for all the architectures
different from amd64 and ia64 (and sparc64 in the future)
- per-cpu members, which are now converted to cpuset_t, needs to be
accessed avoiding migration, because the size of cpuset_t should be
considered unknown
- size of cpuset_t objects is different from kernel and userland (this is
primirally done in order to leave some more space in userland to cope
with KBI extensions). If you need to access kernel cpuset_t from the
userland please refer to example in this patch on how to do that
correctly (kgdb may be a good source, for example).
- Support for other architectures is going to be added soon
- Only MAXCPU for amd64 is bumped now
The patch has been tested by sbruno and Nicholas Esborn on opteron
4 x 12 pack CPUs. More testing on big SMP is expected to came soon.
pluknet tested the patch with his 8-ways on both amd64 and i386.
Tested by: pluknet, sbruno, gianni, Nicholas Esborn
Reviewed by: jeff, jhb, sbruno
of the 61 bits available within the region for virtual addressing. Since
there's no good way for us to map out the gap in the virtual address space,
limit KVA to the architectural minimum implemented address bits. This still
gives us 1 petabyte of KVA, so no worries.
use the PBVM. This eliminates the implied hardcoding of the
physical address at which the kernel needs to be loaded. Using the
PBVM makes it possible to load the kernel irrespective of the
physical memory organization and allows us to replicate kernel text
on NUMA machines.
While here, reduce the direct-mapped page size to the kernel's
page size so that we can support memory attributes better.
boundaries. For good measure, align all other objects to cache
lines boundaries.
Use the new arch_loadseg I/F to keep track of kernel text and
data so that we can wire as much of it as is possible. It is
the responsibility of the kernel to link critical (read IVT
related) code and data at the front of the respective segment
so that it's covered by TRs before the kernel has a chance to
add more translations.
Use a better way of determining whether we're loading a legacy
kernel or not. We can't check for the presence of the PBVM page
table, because we may have unloaded that kernel and loaded an
older (legacy) kernel after that. Simply use the latest load
address for it.
services or PAL procedures. The new implementation is based on
specific functions that are known to be called in certain scenarios
only. This in particular fixes the PAL call to obtain information
about translation registers. In general, the new implementation does
not bank on virtual addresses being direct-mapped and will work when
the kernel uses PBVM.
When new scenarios need to be supported, new functions are added if
the existing functions cannot be changed to handle the new scenario.
If a single generic implementation is possible, it will become clear
in due time.
While here, change bootinfo to a pointer type in anticipation of
future development.
1. The PBVM is in region 4, so if we want to make use of it, we
need region 4 freed up.
2. Region 4 and above cannot be represented by an off_t by virtue
of that type being signed. This is problematic for truss(1),
ktrace(1) and other such programs.