This fixes the incorrect slot (and likely ACK/RTS timeout) values
which I see when enabling half/quarter rate support on the AR9280.
The resulting math matches the expected calculated default values.
Fix the strong signal diversity capability setting - I had totally
messed up the indentation.
Set the default values to match what's in the .ini for now, rather than
what values I had previously gleaned from places. This seems to work
quite well for the early AR5212 NICs I have. Of course, later NICs
have different PHYs and the radar configuration is very card/board
dependent..
Tested:
* ath1: AR5212 mac 5.3 RF5111 phy 4.1
ath1: 2GHz radio: 0x0023; 5GHz radio: 0x0017
This detects 1, 5, 25, 50, 75, 100uS pulses reliably (with no interference.)
However, 10uS pulses don't detect reliably. That may be around the
transition between short and long pulses so some further tuning may
improve things.
up on (at least) the AR5413.
The 30 second summary - if a CRC error frame comes in during PHY error
processing, that CRC bit will be set for all subsequent frames until
a non-CRC error frame is processed.
So to allow for accurate PHY error processing (Radar, and ANI on the AR5212
HAL chips) just tag the frame as being both CRC and PHY - let the driver
decide what to do with it.
PR: kern/169362
some HAL definitions rather than local definitions.
The original source (ath9k) pulled this stuff from the QCA driver and
removed the HAL_* prefix. I'm just restoring the correct order of things.
Obtained from: Qualcomm Atheros
This is a re-implementation based on the reference carrier code
for the AR5413.
Tested:
* Pulse detection for AR5212 and AR5413, to ensure the
correct behaviour for both chips
PR: kern/170904
Obtained from: Qualcomm Atheros
The comparison assumes maxFirstepLevel is a count, rather than a maximum
value. The array is 3 entries in size however 'maxFirstepLevel' is 2.
This bug also exists in the AR5212 HAL.
* mfp support;
* 4.9ghz support in the HAL;
* device type - specifically, the bus type and whether it's a HB63
NIC (which requires some subtle chainmask handling differences
in the AR5416 HAL.)
Obtained from: Qualcomm Atheros
EDMA code.
* create a new TX EDMA descriptor struct to represent TX EDMA descriptors
when doing debugging;
* implement an EDMA printing function which:
+ hardcodes the TX map size to 4 for now;
+ correctly prints out the number of segments - there's one descriptor
for up to 4 buffers (segments), not one for each segment;
+ print out 4 DS buffer and len pointers;
+ print out the correct number of DWORDs in the TX descriptor.
TODO:
* Remove all of the hard-coded stuff. Ew.
array, similar to what filltxdesc() uses.
This removes the last reference to ds_data in the TX path outside of
debugging statements. These need to be adjusted/fixed.
Tested:
* AR9280 STA/AP with iperf TCP traffic
The existing API only exposes 'seglen' (the current buffer (segment) length)
with the data buffer pointer set in 'ds_data'. This is fine for the legacy
DMA engine but it won't work for the EDMA engines.
The EDMA engine has a significantly different TX descriptor layout.
* The legacy DMA engine had a ds_data pointer at the same offset in the
descriptor for both TX and RX buffers;
* The EDMA engine has no ds_data for RX - the data is DMAed after the
descriptor;
* The EDMA engine has support for 4 TX buffer/segment pairs in the TX
DMA descriptor;
* The EDMA TX completion is in a different FIFO, and the driver will
'link' the status completion entry to a QCU by a "QCU ID".
I don't know why it's just not filled in by the hardware, alas.
So given that, here are the changes:
* Instead of directly fondling 'ds_data' in ath_desc, change the
ath_hal_filltxdesc() to take an array of buffer pointers as well
as segment len pointers;
* The EDMA TX completion status wants a descriptor and queue id.
This (for now) uses bf_state.bfs_txq and will extract the hardware QCU
ID from that.
* .. and this is ugly and wasteful; it should change to just store
the QCU in the bf_state and save 3/7 bytes in the process.
Now, the weird crap:
* The aggregate TX path was using bf_state->bfs_txq for the TXQ, rather than
taking a function argument. I've tidied that up.
* The multicast queue frames get put on a software TXQ and then that is
appended to the hardware CABQ when appropriate. So for now, make sure
that bf_state->bfs_txq points at the CABQ when adding frames to the
multicast queue.
* .. but the multicast queue TX path for now doesn't use the software
queue and instead
(a) directly sets up the descriptor contents at that point;
(b) the frames on the vap->avp_mcastq are then just appended wholesale
to the CABQ.
So for now, I don't have to worry about making the multicast path
work with aggregation or the per-TID software queue. Phew.
What's left to do:
* I need to modify the 11n ath_hal_chaintxdesc() API to do the same.
I'll do that in a subsequent commit.
* Remove bf_state.bfs_txq entirely and store the QCU as appropriate.
* .. then do the runtime "is this going on the right HWQ?" checks using
that, rather than comparing pointer values.
Tested on:
* AR9280 STA/AP
* AR5416 STA/AP
The existing method for testing for MRR is to call the "SetupXTXDesc"
HAL method and see if it returns AH_TRUE or AH_FALSE. This capability
explicitly lists what number of multi-rate attempts are possible.
"1" means "one rate attempt supported".
* shuffle things around so things fall on natural padding boundaries;
* add a couple of new flags to specify LDPC and whether to switch to the
low power RX chain configuration after this TX has completed.
Obtained from: Qualcomm Atheros
Specifically, however:
* AR9280 and later support 1-stream STBC RX;
* AR9280 and AR9287 support 1-stream STBC TX.
The STBC support isn't announced (yet) via net80211 and it isn't at all
chosen by the rate control code, so there's no real consumer of this
yet.
Obtained from: Qualcomm Atheros
(future) TPC support in the AR9300 HAL.
This is effectively a no-op for the moment as (a) TPC isn't really
supported, (b) the AR9300 HAL isn't yet public, and (c) the existing
HAL code doesn't use these fields.
Obtained from: Qualcomm Atheros
The DMA FIFO chips (AR93xx and later) differ slightly to th elegacy
chips:
* The RX DMA descriptors don't have a ds_link field;
* The TX DMA descriptors have a ds_link field however at a different
offset.
This is a reimplementation based on what the reference driver and ath9k
does.
A subsequent commit will enable it in the TX and beacon paths.
Obtained from: Linux ath9k, Qualcomm Atheros
* Add a couple of RX errors;
* Add the spectral scan PHY error code;
* extend the RX flags to be a 16 bit field, rather than an 8 bit field;
* Add a new RX flag.
Obtained from: Qualcomm Atheros