possible future I-cache coherency operation can succeed. On ARM
for example the L1 cache can be (is) virtually mapped, which
means that any I/O that uses temporary mappings will not see the
I-cache made coherent. On ia64 a similar behaviour has been
observed. By flushing the D-cache, execution of binaries backed
by md(4) and/or NFS work reliably.
For Book-E (powerpc), execution over NFS exhibits SIGILL once in
a while as well, though cpu_flush_dcache() hasn't been implemented
yet.
Doing an explicit D-cache flush as part of the non-DMA based I/O
read operation eliminates the need to do it as part of the
I-cache coherency operation itself and as such avoids pessimizing
the DMA-based I/O read operations for which D-cache are already
flushed/invalidated. It also allows future optimizations whereby
the bcopy() followed by the D-cache flush can be integrated in a
single operation, which could be implemented using on-chips DMA
engines, by-passing the D-cache altogether.
- make mftb() shared, rewrite in C, provide complementary mttb()
- adjust SMP startup per the above, additional comments, minor naming
changes
- eliminate redundant TB defines, other minor cosmetics
Reviewed by: marcel, nwhitehorn
Obtained from: Freescale, Semihalf
new platform module. These are probed in early boot, and have the
responsibility of determining the layout of physical memory, determining
the CPU timebase frequency, and handling the zoo of SMP mechanisms
found on PowerPC.
Reviewed by: marcel, raj
Book-E parts by: raj
When memory is not zero'ed by firmware, uninitialized PCB can have bogus
contents, which appear as a saved onfault condition, Altivec context to
restore etc. and lead to corruption/crashes. This commit fixes such issues.
Submitted by: Michal Mazur arg ! semihalf dot com
Tested by: Andreas Tobler andreast-list ! fgznet dot ch
replace magic numbers with constants to keep this from happening again.
Without this fix, some programs would occasionally get SIGTRAP instead
of SIGILL on an illegal instruction. This affected Altivec detection
in pixman, and possibly other software.
Reported by: Andreas Tobler
MFC after: 1 week
CPUs known to use 128 byte cache lines and defaulting to 32, use the dcbz
instruction to measure it. Also make dcbz behave the way you would
expect on PPC 970.
but do not actually invoke KDB. This includes recoverable machine checks
encountered in kernel mode.
This patch causes machines with Grackle host-PCI bridges to be able to
correctly enumerate them again.
MFC after: 3 days
being switched out may hold a reservation. The stwcx. will
clear the reservation. This is architecturally recommended.
The scenario this addresses is as follows:
1. Thread 1 performs a lwarx and as such holds a reservation.
2. Thread 1 gets switched out (before doing the matching
stwcx.) and thread 2 is switched in.
3. Thread 2 performs a stwcx. to the same reservation granule.
This will succeed because the processor has the reservation
even though thread 2 didn't do the lwarx.
Note that on some processors the address given the stwcx. is
not checked. On these processors the mere condition of having
a reservation would cause the stwcx. to succeed, irrespective
of whether the addresses are the same. The dummy stwcx. is
especially important for those processors.
provided, for example, on the PowerPC 970 (G5), as well as on related CPUs
like the POWER3 and POWER4.
This also adds support for various built-in hardware found on Apple G5
hardware (e.g. the IBM CPC925 northbridge).
Reviewed by: grehan
the unmanaged flag set in the PVO attributes. Without doing this,
pmap_remove() could try to remove fictitious pages (like those created
by mmap of physical memory) from the wrong UMA zone, causing a panic.
Reported by: Justin Hibbits
MFC after: 1 week
of OFW access semantics, in order to allow future support for real-mode
OF access and flattened device frees. OF client interface modules are
implemented using KOBJ, in a similar way to the PPC PMAP modules.
Because we need Open Firmware to be available before mutexes can be used on
sparc64, changes are also included to allow KOBJ to be used very early in
the boot process by only using the mutex once we know it has been initialized.
Reviewed by: marius, grehan
simplifies certain device attachments (Kauai ATA, for instance), and makes
possible others on new hardware.
On G5 systems, there are several otherwise standard PCI devices
(Serverworks SATA) that will not allow their interrupt properties to be
written, so this information must be supplied directly from Open Firmware.
Obtained from: sparc64
make it memory-coherency enforced (PTE_M). This is required for SMP
to work.
o Serialize tlbie operations and implement the tlbie operation in a
function called tlbie(). Hardware can end up in a live-lock if
between the tlbsync and subsequent sync on one processor another
processor executes a tlbie or tlbsync.
o Eliminate the following defines:
TLBIE, TLBSYNC, SYNC and EIEIO
Use either inline assembly statements or inline functions defined
in <machine/cpufunc.h>
caches if not yet enabed. This is required for coherency and
atomic operations to work, not to mention performance. We use the
L2 and L3 cache settings of the BSP to configure the APs caches.
Can't be bad.
Program NAP and not DOZE. DOZE is present only on earlier CPUs
and the bit is reserved on the MPC7441 & MPC7451. NAP will do
bus snooping to keep caches coherent.
Program the PIR with the cpuid. This may not be necessary...
We're only returning a 32-bit counter.
o In decr_intr(), manually perform LICM, so that we don't test
a loop invariant condition inside a loop.
o Include <machine/smp.h>
common PowerPC code when all we want to achieve is to enable
external interrupts. We can set PSL_RI at any time before we
allow interrupts and/or exceptions, so move it to the AIM
specific initialization and do it when we also set PSL_ME
(machine check enable).
from idle over the next tick.
- Add a new MD routine, cpu_wake_idle() to wakeup idle threads who are
suspended in cpu specific states. This function can fail and cause the
scheduler to fall back to another mechanism (ipi).
- Implement support for mwait in cpu_idle() on i386/amd64 machines that
support it. mwait is a higher performance way to synchronize cpus
as compared to hlt & ipis.
- Allow selecting the idle routine by name via sysctl machdep.idle. This
replaces machdep.cpu_idle_hlt. Only idle routines supported by the
current machine are permitted.
Sponsored by: Nokia
for better structure.
Much of this is related to <sys/clock.h>, which should really have
been called <sys/calendar.h>, but unless and until we need the name,
the repocopy can wait.
In general the kernel does not know about minutes, hours, days,
timezones, daylight savings time, leap-years and such. All that
is theoretically a matter for userland only.
Parts of kernel code does however care: badly designed filesystems
store timestamps in local time and RTC chips almost universally
track time in a YY-MM-DD HH:MM:SS format, and sometimes in local
timezone instead of UTC. For this we have <sys/clock.h>
<sys/time.h> on the other hand, deals with time_t, timeval, timespec
and so on. These know only seconds and fractions thereof.
Move inittodr() and resettodr() prototypes to <sys/time.h>.
Retain the names as it is one of the few surviving PDP/VAX references.
Move startrtclock() to <machine/clock.h> on relevant platforms, it
is a MD call between machdep.c/clock.c. Remove references to it
elsewhere.
Remove a lot of unnecessary <sys/clock.h> includes.
Move the machdep.disable_rtc_set sysctl to subr_rtc.c where it belongs.
XXX: should be kern.disable_rtc_set really, it's not MD.
the fact that we have a 1:1 mapping by virtue of the BATs.
Eliminate the now unused moea_rkva_alloc(), moea_pa_map() and
moea_pa_unmap() functions.
Pointed out by: grehan.
these days, so de-generalize the acquire_timer/release_timer api
to just deal with speakers.
The new (optional) MD functions are:
timer_spkr_acquire()
timer_spkr_release()
and
timer_spkr_setfreq()
the last of which configures the timer to generate a tone of a given
frequency, in Hz instead of 1/1193182th of seconds.
Drop entirely timer2 on pc98, it is not used anywhere at all.
Move sysbeep() to kern/tty_cons.c and use the timer_spkr*() if
they exist, and do nothing otherwise.
Remove prototypes and empty acquire-/release-timer() and sysbeep()
functions from the non-beeping archs.
This eliminate the need for the speaker driver to know about
i8254frequency at all. In theory this makes the speaker driver MI,
contingent on the timer_spkr_*() functions existing but the driver
does not know this yet and still attaches to the ISA bus.
Syscons is more tricky, in one function, sc_tone(), it knows the hz
and things are just fine.
In the other function, sc_bell() it seems to get the period from
the KDMKTONE ioctl in terms if 1/1193182th second, so we hardcode
the 1193182 and leave it at that. It's probably not important.
Change a few other sysbeep() uses which obviously knew that the
argument was in terms of i8254 frequency, and leave alone those
that look like people thought sysbeep() took frequency in hertz.
This eliminates the knowledge of i8254_freq from all but the actual
clock.c code and the prof_machdep.c on amd64 and i386, where I think
it would be smart to ask for help from the timecounters anyway [TBD].
after each SYSINIT() macro invocation. This makes a number of
lightweight C parsers much happier with the FreeBSD kernel
source, including cflow's prcc and lxr.
MFC after: 1 month
Discussed with: imp, rink
While the KSE project was quite successful in bringing threading to
FreeBSD, the M:N approach taken by the kse library was never developed
to its full potential. Backwards compatibility will be provided via
libmap.conf for dynamically linked binaries and static binaries will
be broken.
variable is set. On my Mac Mini this puts the CPU in NAP mode when
the kernel is idle and, any technical or environmental reasons
aside, avoids that I have to listen to the fan all day :-)
Rework of this area is a pre-requirement for importing e500 support (and
other PowerPC core variations in the future). Mainly the following
headers are refactored so that we can cover for low-level differences between
various machines within PowerPC architecture:
<machine/pcpu.h>
<machine/pcb.h>
<machine/kdb.h>
<machine/hid.h>
<machine/frame.h>
Areas which use the above are adjusted and cleaned up.
Credits for this rework go to marcel@
Approved by: cognet (mentor)
MFp4: e500
for that argument. This will allow DDB to detect the broad category of
reason why the debugger has been entered, which it can use for the
purposes of deciding which DDB script to run.
Assign approximate why values to all current consumers of the
kdb_enter() interface.
a pointer to struct bus_space. The structure contains function
pointers that do the actual bus space access.
The reason for this change is that previously all bus space
accesses were little endian (i.e. had an explicit byte-swap
for multi-byte accesses), because all busses on Macs are little
endian.
The upcoming support for Book E, and in particular the E500
core, requires support for big-endian busses because all
embedded peripherals are in the native byte-order.
With this change, there's no distinction between I/O port
space and memory mapped I/O. PowerPC doesn't have I/O port
space. Busses assign tags based on the byte-order only.
For that purpose, two global structures exist (bs_be_tag and
bs_le_tag), of which the address can be taken to get a valid
tag.
Obtained from: Juniper, Semihalf