- Add constants for the rest of the fields in the PCI-express device
capability and control registers.
- Tweak some of the recently added PCI-e capability constants (always
use hex for offsets in config space, and include a shortened
version of the relevant register in the name of field constants).
MFC after: 1 week
I'm not sure where in the deep, distant past I found the AR_PHY_MODE
registers for half/quarter rate mode, but unfortunately that doesn't
seem to work "right" for non-AR9280 chips.
Specifically:
* don't touch AR_PHY_MODE
* set the PLL bits when configuring half/quarter rate
I've verified this on the AR9280 (5ghz fast clock) and the AR5416.
The AR9280 works in both half/quarter rate; the AR5416 unfortunately
only currently works at half rate. It fails to calibrate on quarter rate.
No, this isn't HT/5 and HT/10 support. This is the 11a half/quarter
rate support primarily used by the 4.9GHz and GSM band regulatory
domains.
This is definitely a work in progress.
TODO:
* everything in the last commit;
* lots more interoperability testing with the AR5212 half/quarter rate
support for the relevant chips;
* Do some interop testing on half/quarter rate support between _all_
the 11n chips - AR5416, AR9160, AR9280 (and AR9285/AR9287 when 2GHz
half/quarter rate support is coded up.)
used when running the chips in half/quarter rate.
This sets up some default parameters which are then overridden by the
driver (which manually configures things like slot timing at interface
start time.)
Although this is a copy-and-modify from the AR5212 HAL, I did peek
at the reference HAL and the ath9k driver to see what they did.
Ath9k in particular doesn't hard-code this - instead, their version
of ar5416InitUserSettings() does all of the relevant math.
TODO:
* do the math, not hard code things!
* fix the mac clock calculation for the AR9287; since it runs the
MAC clock at a higher rate, requiring all the duration calculations
to change;
* Do a whole lot more validation for half/quarter rates.
Obtained from: Qualcomm Atheros, Linux ath9k
Some of the math is a little wrong thanks to clocks in 11a mode running
at 44MHz when in fast clock mode (rather than 40MHz, which the chips
before AR9280 ran 11a in). That'll have to be addressed in a future commit.
This fixes the incorrect slot (and likely ACK/RTS timeout) values
which I see when enabling half/quarter rate support on the AR9280.
The resulting math matches the expected calculated default values.
of the DWC OTG is very simple in PIO mode, and we need to re-transmit
data when NAK is received among other things. We probably will need
to implement some kind of rate limitation on the NAK-ing.
drivers:
- Remove scsi_low_pisa.*, they were unused.
- Remove <compat/netbsd/physio_proc.h> and calls to the stubs in that
header. They were empty nops.
- Retire sl_xname and use device_get_nameunit() and device_printf() with
the underlying device_t instead.
- Remove unused {ct,ncv,nsp,stg}print() functions.
- Remove empty SOFT_INTR_REQUIRED() macro and the unused sl_irq member.
(1022) in HPET. But according to report they still haven't fixed problem
with level-triggered interrupts.
Make workaround used for earlier chipsets apply to this new ID also.
PR: amd64/171355
MFC after: 3 days
The DWC OTG host mode support should still be considered
experimental. Isochronous support for DWC OTG is not
fully implemented. Some code added derives from
Aleksandr Rybalko's dotg.c driver.
ath_buf and when forming a non-aggregate frame.
The non-11n setds function is called when TXing aggregate frames (and
yes, I should fix this!) and the non-11n TX aggregation code doesn't clear
the delimiter field. I figure it's nicer to do that.
This had the side effect of clearing HAL_TXDESC_CLRDMASK for a bunch of
frames, meaning they'd end up being potentially filtered if there were
an error. This is fine in the previous world as they'd just be
software retried but now that I'm working on filtered frames, these
descriptors would be endlessly retried until another valid frame would
come along that had CLRDMASK set.
do a BUS_DMASYNC_POSTWRITE over the DMA map. The way it currently is would
only do POSTREAD for read transactions.
Submitted by: Sascha Wildner
MFC after: 1 month
with the correct configuration.
Occasionally an aggregate TX would fail and the first frame would be
retransmitted as a non-AMPDU frame. Since bfs_aggr=1 and bfs_nframes > 1
(from the previous AMPDU attempt), the aggr completion function would be
called and be very confused about what's going on.
Noticed by: Kim <w8hdkim@gmail.com>
PR: kern/171394
NetBSD/pc98 was never merged into the main NetBSD tree and is no longer
developed. Adding locking to these drivers would have made the compat
shims hard to impossible to maintain, so remove the shims to ease
future changes.
These changes were verified by md5. Some additional shims can be removed
that do affect the compiled results that I will probably do in another
round.
Approved by: nyan (tentatively)
have been chosen based on the bit names in the PCI Express Base
Specification 3.0, and to match the predominant style of the existing
bit definitions.
MFC after: 1 week
twe_start() to simulate the behavior on 4.x where the driver dropped
spl to allow interrupts to run to free up space in the command
queue. Be careful to only poll if we are going to make at least
one more attempt to queue the current command. Also, when polling,
be careful to not call twe_startio() to queue more commands to avoid
recursion.
- Move the buffer for formatting AEN messages into the softc instead of
using a single driver-wide static buffer.
Requested by: scottl (1)
Tested by: Mike Tancsa @ Sentex
generator, found on IvyBridge and supposedly later CPUs, accessible
with RDRAND instruction.
From the Intel whitepapers and articles about Bull Mountain, it seems
that we do not need to perform post-processing of RDRAND results, like
AES-encryption of the data with random IV and keys, which was done for
Padlock. Intel claims that sanitization is performed in hardware.
Make both Padlock and Bull Mountain random generators support code
covered by kernel config options, for the benefit of people who prefer
minimal kernels. Also add the tunables to disable hardware generator
even if detected.
Reviewed by: markm, secteam (simon)
Tested by: bapt, Michael Moll <kvedulv@kvedulv.de>
MFC after: 3 weeks