Passing a count of zero on i386 and amd64 for [I386|AMD64]_BUS_SPACE_MEM
causes a crash/hang since the 'loop' instruction decrements the counter
before checking if it's zero.
PR: kern/80980
Discussed with: jhb
DEBUG_MEMGUARD panics early in kmeminit() with the message
"kmem_suballoc: bad status return of 1" because of zero "size" argument
passed to kmem_suballoc() due to "vm_kmem_size_max" being zero.
The problem also exists on ia64.
creation of large page mappings in the pmap, it can provide modest
performance benefits. In particular, for a "buildworld" on a 2x 1GHz
Ultrasparc IIIi it reduced the wall clock time by 2.2% and the system
time by 12.6%.
Tested by: marius@
contents of the ones that were not empty were stale and unused.
- Now that <machine/mutex.h> no longer exists, there is no need to allow it
to override various helper macros in <sys/mutex.h>.
- Rename various helper macros for low-level operations on mutexes to live
in the _mtx_* or __mtx_* namespaces. While here, change the names to more
closely match the real API functions they are backing.
- Drop support for including <sys/mutex.h> in assembly source files.
Suggested by: bde (1, 2)
work properly with single-stepping in a kernel debugger. Specifically,
these routines have always disabled interrupts before increasing the nesting
count and restored the prior state of interrupts after decreasing the nesting
count to avoid problems with a nested interrupt not disabling interrupts
when acquiring a spin lock. However, trap interrupts for single-stepping
can still occur even when interrupts are disabled. Now the saved state of
interrupts is not saved in the thread until after interrupts have been
disabled and the nesting count has been increased. Similarly, the saved
state from the thread cannot be read once the nesting count has been
decreased to zero. To fix this, use temporary variables to store interrupt
state and shuffle it between the thread's MD area and the appropriate
registers.
In cooperation with: bde
MFC after: 1 month
need locking as otherwise we may race against the other parts of the
MD code which expects a consistent state of these. While at it move
the resetting of the pmap before entering it in the TSB.
- Spell a 0 as TLB_CTX_KERNEL.
introduce function pointers once set up to the respective implementation
for reading the (S)TICK and writing the (S)STICK_COMPARE registers as a
compromise between duplicating code and selecting between different
implementations during execution over and over again, similar to what is
done elsewhere in the MD in order to support different CPU models that
won't ever change at runtime.
- In the remaining tick interrupt handler further push down disabling of
interrupts to the periodic case as it isn't necessary here in one-shot
mode at all.
a critical section as apparently required by both. I don't think either
belongs in the event timer front-ends but the callback should handle
this as necessary instead just like for example intr_event_handle()
does but this is how the other architectures currently handle it, either
explicitly or implicitly.
- Further rename and reword references to hardclock as this front-end no
longer has a notion of actually calling it.
drift in order to achieve a more stable clock as the tick intervals may
vary in the first place. In fact I haven't seen this code kick in when
in oneshot-mode so just skip it in that case.
- There's no need to explicitly stop the (S)TICK counter in oneshot-mode
with every tick as it just won't trigger again with the (S)TICK compare
register set to a value in the past (with a wrap-around once every ~195
years of uptime at 1.5 GHz this isn't something we have to worry about
in practice).
- Given that we'll disable interrupts completely anyway there's no
need to enter critical sections.
what is done on other platforms. Unlike as with the sched_throw(NULL)
called on BSPs during their startup apparently there's nothing which will
reliably lower it on APs. I'm unsure why this only came up on V215 though,
breaking these with r207248. My best guess is that these are the only
supported ones so far fast enough to loose some race.
PR: 151404
MFC after: 3 days
to the expected type so they work like the corresponding __bswapN_var()
functions and the compiler doesn't complain when arguments of different
width are passed.
The check for alignment should be made against the physical address and not
the virtual address that maps it.
Sponsored by: NetApp
Submitted by: Will McGovern (will at netapp dot com)
Reviewed by: mjacob, jhb
the location, apply elf_relocaddr to the symbol value to have right
values for the symbols from dpcpu segment.
PR: kern/147769
Discussed with: avg
Tested by: marius
MFC after: 2 weeks
additionally takes advantage of the prefetch cache of these CPUs.
Unlike the uncommitted US-III version, which provide no measurable
speedup or even resulted in a slight slowdown on certain CPUs models
compared to using the US-I version with these, the SPARC64 version
actually results in a slight improvement.
- make dflt_lock() always panic,
- add kludge to use contigmalloc() when the alignment is larger than the size
and print a diagnostic when we didn't satisfy the alignment.
unlikely that support for these ever will be implemented on sparc64 as
the IOMMUs are able to translate to up to the maximum physical address
supported by the respective machine, bypassing the IOMMU is affected
by hardware errata and being able to support DMA engines which cannot
do at least 32-bit DMA does not justify the costs.
- The page zeroing in uma_small_alloc() may use the VIS-based block zero
function so take advantage of it.
of small maxsize and "large" (including BUS_SPACE_UNRESTRICTED) nsegments
parameters. Generally using a presz of 0 (which indeed might indicate the
use of bogus parameters for DMA tag creation) is not fatal, it just means
that no additional DVMA space will be preallocated.
The main goal of this is to generate timer interrupts only when there is
some work to do. When CPU is busy interrupts are generating at full rate
of hz + stathz to fullfill scheduler and timekeeping requirements. But
when CPU is idle, only minimum set of interrupts (down to 8 interrupts per
second per CPU now), needed to handle scheduled callouts is executed.
This allows significantly increase idle CPU sleep time, increasing effect
of static power-saving technologies. Also it should reduce host CPU load
on virtualized systems, when guest system is idle.
There is set of tunables, also available as writable sysctls, allowing to
control wanted event timer subsystem behavior:
kern.eventtimer.timer - allows to choose event timer hardware to use.
On x86 there is up to 4 different kinds of timers. Depending on whether
chosen timer is per-CPU, behavior of other options slightly differs.
kern.eventtimer.periodic - allows to choose periodic and one-shot
operation mode. In periodic mode, current timer hardware taken as the only
source of time for time events. This mode is quite alike to previous kernel
behavior. One-shot mode instead uses currently selected time counter
hardware to schedule all needed events one by one and program timer to
generate interrupt exactly in specified time. Default value depends of
chosen timer capabilities, but one-shot mode is preferred, until other is
forced by user or hardware.
kern.eventtimer.singlemul - in periodic mode specifies how much times
higher timer frequency should be, to not strictly alias hardclock() and
statclock() events. Default values are 2 and 4, but could be reduced to 1
if extra interrupts are unwanted.
kern.eventtimer.idletick - makes each CPU to receive every timer interrupt
independently of whether they busy or not. By default this options is
disabled. If chosen timer is per-CPU and runs in periodic mode, this option
has no effect - all interrupts are generating.
As soon as this patch modifies cpu_idle() on some platforms, I have also
refactored one on x86. Now it makes use of MONITOR/MWAIT instrunctions
(if supported) under high sleep/wakeup rate, as fast alternative to other
methods. It allows SMP scheduler to wake up sleeping CPUs much faster
without using IPI, significantly increasing performance on some highly
task-switching loads.
Tested by: many (on i386, amd64, sparc64 and powerc)
H/W donated by: Gheorghe Ardelean
Sponsored by: iXsystems, Inc.
This reflects actual type used to store and compare child device orders.
Change is mostly done via a Coccinelle (soon to be devel/coccinelle)
semantic patch.
Verified by LINT+modules kernel builds.
Followup to: r212213
MFC after: 10 days
In particular, provide pagesize and pagesizes array, the canary value
for SSP use, number of host CPUs and osreldate.
Tested by: marius (sparc64)
MFC after: 1 month
td_critnest > 1 when not already running on the desired CPU read the
TICK counter of the BSP via a direct cross trap request in that case
instead.
- Treat the STICK based timecounter the same way as the TICK based one
regarding its quality and obtaining the counter value from the BSP.
Like the TICK timers the STICK ones also are only synchronized during
their startup (which might not result in good synchronicity in the
first place) but not afterwards and might drift over time, causing
problems when the time is read from different CPUs (see r135972).
to single CPUs more efficiently with Cheetah(-class) and Jalapeno CPUs.
Besides being used to implement the ipi_cpu() introduced in r210939,
cpu_ipi_single() will also be used internally by the sparc64 MD code.
- Factor out the Jalapeno support from the Cheetah IPI send functions
in order to be able to more easily and efficiently implement support
for more than 32 target CPUs as well as a workaround for Cheetah+
erratum 25 for the latter.
IPI to a specific CPU by its cpuid. Replace calls to ipi_selected() that
constructed a mask for a single CPU with calls to ipi_cpu() instead. This
will matter more in the future when we transition from cpumask_t to
cpuset_t for CPU masks in which case building a CPU mask is more expensive.
Submitted by: peter, sbruno
Reviewed by: rookie
Obtained from: Yahoo! (x86)
MFC after: 1 month
zones for each malloc bucket size. The purpose is to isolate
different malloc types into hash classes, so that any buffer overruns
or use-after-free will usually only affect memory from malloc types in
that hash class. This is purely a debugging tool; by varying the hash
function and tracking which hash class was corrupted, the intersection
of the hash classes from each instance will point to a single malloc
type that is being misused. At this point inspection or memguard(9)
can be used to catch the offending code.
Add MALLOC_DEBUG_MAXZONES=8 to -current GENERIC configuration files.
The suggestion to have this on by default came from Kostik Belousov on
-arch.
This code is based on work by Ron Steinke at Isilon Systems.
Reviewed by: -arch (mostly silence)
Reviewed by: zml
Approved by: zml (mentor)
now it uses a very dumb first-touch allocation policy. This will change in
the future.
- Each architecture indicates the maximum number of supported memory domains
via a new VM_NDOMAIN parameter in <machine/vmparam.h>.
- Each cpu now has a PCPU_GET(domain) member to indicate the memory domain
a CPU belongs to. Domain values are dense and numbered from 0.
- When a platform supports multiple domains, the default freelist
(VM_FREELIST_DEFAULT) is split up into N freelists, one for each domain.
The MD code is required to populate an array of mem_affinity structures.
Each entry in the array defines a range of memory (start and end) and a
domain for the range. Multiple entries may be present for a single
domain. The list is terminated by an entry where all fields are zero.
This array of structures is used to split up phys_avail[] regions that
fall in VM_FREELIST_DEFAULT into per-domain freelists.
- Each memory domain has a separate lookup-array of freelists that is
used when fulfulling a physical memory allocation. Right now the
per-domain freelists are listed in a round-robin order for each domain.
In the future a table such as the ACPI SLIT table may be used to order
the per-domain lookup lists based on the penalty for each memory domain
relative to a specific domain. The lookup lists may be examined via a
new vm.phys.lookup_lists sysctl.
- The first-touch policy is implemented by using PCPU_GET(domain) to
pick a lookup list when allocating memory.
Reviewed by: alc
between determining the other CPUs and calling cpu_ipi_selected(), which
apart from generally doing the wrong thing can lead to a panic when a
CPU is told to IPI itself (which sun4u doesn't support).
Reported and tested by: Nathaniel W Filardo
- Add __unused where appropriate.
MFC after: 3 days