using the direct-mapping of physmem to force PTE data structures
to be physically addressable so the interrupt-time real-mode
DSI trap handler could perform PTE spills. However, the memory
may have been > 256Mb, which would have caused a BAT spill and
double-interrupt.
The new trap code no longer handles PTE spills, so the requirement
that these pages be direct-mapped no longer applies. The irony is
UMA_MD_SMALL_ALLOC will return direct mappings for these structs :-)
- remove unused 601 and tlb exception code
- remove interrupt-time PTE spill code. The pmap code
will now take care of pinning kernel PTEs, and there
are no longer issues about physical mapping of PTE
data structures
- All segment registers are switched on kernel entry/exit,
allowing the kernel to have more virtual space and for
user virtual space to extend to 4G.
- The temporary register save area has been shifted from
unused exception vector space to the per-cpu data area.
This allows interrupts to be delivered to multiple CPUs
- ISI traps no longer spill to BAT tables. It is assumed
that all of kernel instruction memory is pinned.
- shift from 'ldmw/stmw' instructions to individual register
loads/stores when saving context. All PPC manuals indicate
this should be much faster.
- use '%r' for register names throughout.
TODO: need to test if DSI traps were the result of kernel stack
guard-page hits.
Reworked from: NetBSD
for direct-mapped addresses. Assume that any address less than KVA
is one of these and return it. Also assert that an address is KVA
does have a valid mapping - callers of pmap_kextract don't check
the return value, since they assume that they have a valid virtual
address.
addressing of memory. Makes a substantial improvement for apps that
stress the limited amount of KVM on PPC (e.g. untarring the ports tree).
uma_machdep.c stolen from amd64/ia64.
the MacIO chip and PSIM's IOBus. Bus-specific drivers should
use the identify method to attach themselves to nexus so
interrupt can be allocated before the h/w is probed. The
'early attach' routine in openpic is used for this stage
of boot. When h/w is probed, the openpic can be attached
properly. It will enable interrupts allocated prior to
this.
and add_child entry point to allow devices to use the identify
method to add themselves if need be (e.g. openpic, syscons).
Export interrupt-controller-add routine for extern int cntlr drivers.
Eliminate recursive OFW device-tree walk and only iterate the
top-level ala sparc64. Allow child devices to set the device
type with write_ivars.
Step 1 of many in removing the hard-dependency on OpenFirmware.
is useless for threaded programs, multiple threads can not share same
stack.
The alternative signal stack is private for thread, no lock is needed,
the orignal P_ALTSTACK is now moved into td_pflags and renamed to
TDP_ALTSTACK.
For single thread or Linux clone() based threaded program, there is no
semantic changed, because those programs only have one kernel thread
in every process.
Reviewed by: deischen, dfr
correctly, resulting in the dreaded "vm_pageout_flush: partially
invalid page" panic. The caching issue will be revisited in the
future, but opt for safety over performance in the meantime.
Tested by: gallatin
- OpenFirmware returns overlapping memory regions. Use a simple
brute force algorithm to merge these into non-overlapping
regions. This fixes bugs in reporting of available memory
and also prevents pages from being added twice in the VM system.
reboot, as calling OF_exit() just hangs a mac.
FreeBSD on my G4 800Mhz mac behaves identically to OSX for halt
and reboot now.
Reviewed by: grehan (who also supplied the concept and sample code)
very early (SI_SUB_TUNABLES - 1) and is responsible for setting mp_maxid.
cpu_mp_probe() is now called at SI_SUB_CPU and determines if SMP is
actually present and sets mp_ncpus and all_cpus. Splitting these up
allows an architecture to probe CPUs later than SI_SUB_TUNABLES by just
setting mp_maxid to MAXCPU in cpu_mp_setmaxid(). This could allow the
CPU probing code to live in a module, for example, since modules
sysinit's in modules cannot be invoked prior to SI_SUB_KLD. This is
needed to re-enable the ACPI module on i386.
- For the alpha SMP probing code, use LOCATE_PCS() instead of duplicating
its contents in a few places. Also, add a smp_cpu_enabled() function
to avoid duplicating some code. There is room for further code
reduction later since much of this code is also present in cpu_mp_start().
- All archs besides i386 still set mp_maxid to the same values they set it
to before this change. i386 now sets mp_maxid to MAXCPU.
Tested on: alpha, amd64, i386, ia64, sparc64
Approved by: re (scottl)
physical mapping.
- Move the sf_buf API to its own header file; make struct sf_buf's
definition machine dependent. In this commit, we remove an
unnecessary field from struct sf_buf on the alpha, amd64, and ia64.
Ultimately, we may eliminate struct sf_buf on those architecures
except as an opaque pointer that references a vm page.
Since all callers either passed 0 or 1 for clear_ret, define bit 0 in
the flags for use as clear_ret. Reserve bits 1, 2 and 3 for use by MI
code for possible (but unlikely) future use. The remaining bits are for
use by MD code.
This change is triggered by a need on ia64 to have another knob for
get_mcontext().
A small helper function pmap_is_prefaultable() is added. This function
encapsulate the few lines of pmap_prefault() that actually vary from
machine to machine. Note: pmap_is_prefaultable() and pmap_mincore() have
much in common. Going forward, it's worth considering their merger.
systems where the data/stack/etc limits are too big for a 32 bit process.
Move the 5 or so identical instances of ELF_RTLD_ADDR() into imgact_elf.c.
Supply an ia32_fixlimits function. Export the clip/default values to
sysctl under the compat.ia32 heirarchy.
Have mmap(0, ...) respect the current p->p_limits[RLIMIT_DATA].rlim_max
value rather than the sysctl tweakable variable. This allows mmap to
place mappings at sensible locations when limits have been reduced.
Have the imgact_elf.c ld-elf.so.1 placement algorithm use the same
method as mmap(0, ...) now does.
Note that we cannot remove all references to the sysctl tweakable
maxdsiz etc variables because /etc/login.conf specifies a datasize
of 'unlimited'. And that causes exec etc to fail since it can no
longer find space to mmap things.
sockets into machine-dependent files. The rationale for this
migration is illustrated by the modified amd64 allocator. It uses the
amd64's direct map to avoid emphemeral mappings in the kernel's
address space. On an SMP, the emphemeral mappings result in an IPI
for TLB shootdown for each transmitted page. Yuck.
Maintainers of other 64-bit platforms with direct maps should be able
to use the amd64 allocator as a reference implementation.