The ccr(4) driver supports use of the crypto accelerator engine on
Chelsio T6 NICs in "lookaside" mode via the opencrypto framework.
Currently, the driver supports AES-CBC, AES-CTR, AES-GCM, and AES-XTS
cipher algorithms as well as the SHA1-HMAC, SHA2-256-HMAC, SHA2-384-HMAC,
and SHA2-512-HMAC authentication algorithms. The driver also supports
chaining one of AES-CBC, AES-CTR, or AES-XTS with an authentication
algorithm for encrypt-then-authenticate operations.
Note that this driver is still under active development and testing and
may not yet be ready for production use. It does pass the tests in
tests/sys/opencrypto with the exception that the AES-GCM implementation
in the driver does not yet support requests with a zero byte payload.
To use this driver currently, the "uwire" configuration must be used
along with explicitly enabling support for lookaside crypto capabilities
in the cxgbe(4) driver. These can be done by setting the following
tunables before loading the cxgbe(4) driver:
hw.cxgbe.config_file=uwire
hw.cxgbe.cryptocaps_allowed=-1
MFC after: 1 month
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D10763
come up as 't6nex' nexus devices with 'cc' ports hanging off them.
The T6 firmware and configuration files will be added as soon as they
are released. For now the driver will try to work with whatever
firmware and configuration is on the card's flash.
Sponsored by: Chelsio Communications
The cxgbev/cxlv driver supports Virtual Function devices for Chelsio
T4 and T4 adapters. The VF devices share most of their code with the
existing PF4 driver (cxgbe/cxl) and as such the VF device driver
currently depends on the PF4 driver.
Similar to the cxgbe/cxl drivers, the VF driver includes a t4vf/t5vf
PCI device driver that attaches to the VF device. It then creates
child cxgbev/cxlv devices representing ports assigned to the VF.
By default, the PF driver assigns a single port to each VF.
t4vf_hw.c contains VF-specific routines from the shared code used to
fetch VF-specific parameters from the firmware.
t4_vf.c contains the VF-specific PCI device driver and includes its
own attach routine.
VF devices are required to use a different firmware request when
transmitting packets (which in turn requires a different CPL message
to encapsulate messages). This alternate firmware request does not
permit chaining multiple packets in a single message, so each packet
results in a firmware request. In addition, the different CPL message
requires more detailed information when enabling hardware checksums,
so parse_pkt() on VF devices must examine L2 and L3 headers for all
packets (not just TSO packets) for VF devices. Finally, L2 checksums
on non-UDP/non-TCP packets do not work reliably (the firmware trashes
the IPv4 fragment field), so IPv4 checksums for such packets are
calculated in software.
Most of the other changes in the non-VF-specific code are to expose
various variables and functions private to the PF driver so that they
can be used by the VF driver.
Note that a limited subset of cxgbetool functions are supported on VF
devices including register dumps, scheduler classes, and clearing of
statistics. In addition, TOE is not supported on VF devices, only for
the PF interfaces.
Reviewed by: np
MFC after: 2 months
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D7599
cards supported by cxgbe(4).
On the host side this driver interfaces with the storage stack via the
ICL (iSCSI Common Layer) in the kernel. On the wire the traffic is
standard iSCSI (SCSI over TCP as per RFC 3720/7143 etc.) that
interoperates with all other standards compliant implementations. The
driver is layered on top of the TOE driver (t4_tom) and promotes
connections being handled by t4_tom to iSCSI ULP (Upper Layer Protocol)
mode. Hardware assistance in this mode includes:
- Full TCP processing.
- iSCSI PDU identification and recovery within the TCP stream.
- Header and/or data digest insertion (tx) and verification (rx).
- Zero copy (both tx and rx).
Man page will follow in a separate commit in a couple of weeks.
Relnotes: Yes
Sponsored by: Chelsio Communications
a dependency. This ensures "ifconfig cxl<n> ..." does the right thing
even when it's run with no driver loaded.
if_cxl.ko is the tiniest module in /boot/kernel.
MFC after: 2 weeks
options into kern.opts.mk and change all the places where we use
src.opts.mk to pull in the options. Conditionally define SYSDIR and
use SYSDIR/conf/kern.opts.mk instead of a CURDIR path. Replace all
instances of CURDIR/../../etc with STSDIR, but only in the affected
files.
As a special compatibility hack, include bsd.owm.mk at the top of
kern.opts.mk to allow the bare build of sys/modules to work on older
systems. If the defaults ever change between 9.x, 10.x and current for
these options, however, you'll wind up with the host OS' defaults
rather than the -current defaults. This hack will be removed when
we no longer need to support this build scenario.
Reviewed by: jhb
Differential Revision: https://phabric.freebsd.org/D529
includes support for the NIC and TOE features of the 40G, 10G, and
1G/100M cards based on the T5.
The ASIC is mostly backward compatible with the Terminator 4 so cxgbe(4)
has been updated instead of writing a brand new driver. T5 cards will
show up as cxl (short for cxlgb) ports attached to the t5nex bus driver.
Sponsored by: Chelsio
- Stateful TCP offload drivers for Terminator 3 and 4 (T3 and T4) ASICs.
These are available as t3_tom and t4_tom modules that augment cxgb(4)
and cxgbe(4) respectively. The cxgb/cxgbe drivers continue to work as
usual with or without these extra features.
- iWARP driver for Terminator 3 ASIC (kernel verbs). T4 iWARP in the
works and will follow soon.
Build-tested with make universe.
30s overview
============
What interfaces support TCP offload? Look for TOE4 and/or TOE6 in the
capabilities of an interface:
# ifconfig -m | grep TOE
Enable/disable TCP offload on an interface (just like any other ifnet
capability):
# ifconfig cxgbe0 toe
# ifconfig cxgbe0 -toe
Which connections are offloaded? Look for toe4 and/or toe6 in the
output of netstat and sockstat:
# netstat -np tcp | grep toe
# sockstat -46c | grep toe
Reviewed by: bz, gnn
Sponsored by: Chelsio communications.
MFC after: ~3 months (after 9.1, and after ensuring MFC is feasible)
- Device configuration via plain text config file. Also able to operate
when not attached to the chip as the master driver.
- Generic "work request" queue that serves as the base for both ctrl and
ofld tx queues.
- Generic interrupt handler routine that can process any event on any
kind of ingress queue (via a dispatch table).
- A couple of new driver ioctls. cxgbetool can now install a firmware
to the card ("loadfw" command) and can read the card's memory
("memdump" and "tcb" commands).
- Lots of assorted information within dev.t4nex.X.misc.* This is
primarily for debugging and won't show up in sysctl -a.
- Code to manage the L2 tables on the chip.
- Updates to cxgbe(4) man page to go with the tunables that have changed.
- Updates to the shared code in common/
- Updates to the driver-firmware interface (now at fw 1.4.16.0)
MFC after: 1 month