the cg map buffer being held when writing indirect blocks. The process ends up
in ffs_copyonwrite(), attempting to get snaplk while holding the cg map buffer
lock.
Another process might be in ffs_copyonwrite(), trying to allocate a new block
for a copy. It would hold snaplk while trying to get the cg map buffer lock.
Release the cg map buffer early and use the copy for most of the cgaccount
processing to avoid this deadlock.
skipping the call from ffs_snapremove() if the block number is zero.
Simplify snapshot locking in ffs_copyonwrite() and ffs_snapblkfree() by using
the same locking protocol for low block numbers as for larger block numbers.
This removes a lock leak that could happen if vn_lock() succeeded after
lockmgr() failed in ffs_snapblkfree().
Check if snapshot is gone before retrying a lock in ffs_copyonwrite().
reclamation. If the vnode previously was a fifo then v_op would point to
ffs_fifoops[12] instead of the expected ffs_vnodeops[12], causing a panic at
the end of ffsext_strategy.
stale flag bits left over from before the inode was recycled.
Without this change, a leftover IN_SPACECOUNTED flag could prevent
softdep_freefile() and softdep_releasefile() from incrementing
fs_pendinginodes. Because handle_workitem_freefile() unconditionally
decrements fs_pendinginodes, a negative value could be reported at
file system unmount time with a message like:
unmount pending error: blocks 0 files -3
The pending block count in fs_pendingblocks could also be negative
for similar reasons. These errors can cause the data returned by
statfs() to be slightly incorrect. Some other cleanup code in
softdep_releasefile() could also be incorrectly bypassed.
MFC after: 3 days
Add a new private thread flag to indicate that the thread should
not sleep if runningbufspace is too large.
Set this flag on the bufdaemon and syncer threads so that they skip
the waitrunningbufspace() call in bufwrite() rather than than
checking the proc pointer vs. the known proc pointers for these two
threads. A way of preventing these threads from being starved for
I/O but still placing limits on their outstanding I/O would be
desirable.
Set this flag in ffs_copyonwrite() to prevent bufwrite() calls from
blocking on the runningbufspace check while holding snaplk. This
prevents snaplk from being held for an arbitrarily long period of
time if runningbufspace is high and greatly reduces the contention
for snaplk. The disadvantage is that ffs_copyonwrite() can start
a large amount of I/O if there are a large number of snapshots,
which could cause a deadlock in other parts of the code.
Call runningbufwakeup() in ffs_copyonwrite() to decrement runningbufspace
before attempting to grab snaplk so that I/O requests waiting on
snaplk are not counted in runningbufspace as being in-progress.
Increment runningbufspace again before actually launching the
original I/O request.
Prior to the above two changes, the system could deadlock if enough
I/O requests were blocked by snaplk to prevent runningbufspace from
falling below lorunningspace and one of the bawrite() calls in
ffs_copyonwrite() blocked in waitrunningbufspace() while holding
snaplk.
See <http://www.holm.cc/stress/log/cons143.html>
the directory's inode after queuing the dirrem that will decrement
the parent directory's link count. This will force the update of
the parent directory's actual link to actually be scheduled. Without
this change the parent directory's actual link count would not be
updated until ufs_inactive() cleared the inode of the newly removed
directory, which might be deferred indefinitely. ufs_inactive()
will not be called as long as any process holds a reference to the
removed directory, and ufs_inactive() will not clear the inode if
the link count is non-zero, which could be the result of an earlier
system crash.
If a background fsck is run before the update of the parent directory's
actual link count has been performed, or at least scheduled by
putting the dirrem on the leaf directory's inodedep id_bufwait list,
fsck will corrupt the file system by decrementing the parent
directory's effective link count, which was previously correct
because it already took the removal of the leaf directory into
account, and setting the actual link count to the same value as the
effective link count after the dangling, removed, leaf directory
has been removed. This happens because fsck acts based on the
actual link count, which will be too high when fsck creates the
file system snapshot that it references.
This change has the fortunate side effect of more quickly cleaning
up the large number dirrem structures that linger for an extended
time after the removal of a large directory tree. It also fixes a
potential problem with the shutdown of the syncer thread timing out
if the system is rebooted immediately after removing a large directory
tree.
Submitted by: tegge
MFC after: 3 days
osf1_signal.c:1.41, amd64/amd64/trap.c:1.291, linux_socket.c:1.60,
svr4_fcntl.c:1.36, svr4_ioctl.c:1.23, svr4_ipc.c:1.18, svr4_misc.c:1.81,
svr4_signal.c:1.34, svr4_stat.c:1.21, svr4_stream.c:1.55,
svr4_termios.c:1.13, svr4_ttold.c:1.15, svr4_util.h:1.10,
ext2_alloc.c:1.43, i386/i386/trap.c:1.279, vm86.c:1.58,
unaligned.c:1.12, imgact_elf.c:1.164, ffs_alloc.c:1.133:
Now that Giant is acquired in uprintf() and tprintf(), the caller no
longer leads to acquire Giant unless it also holds another mutex that
would generate a lock order reversal when calling into these functions.
Specifically not backed out is the acquisition of Giant in nfs_socket.c
and rpcclnt.c, where local mutexes are held and would otherwise violate
the lock order with Giant.
This aligns this code more with the eventual locking of ttys.
Suggested by: bde
as they both interact with the tty code (!MPSAFE) and may sleep if the
tty buffer is full (per comment).
Modify all consumers of uprintf() and tprintf() to hold Giant around
calls into these functions. In most cases, this means adding an
acquisition of Giant immediately around the function. In some cases
(nfs_timer()), it means acquiring Giant higher up in the callout.
With these changes, UFS no longer panics on SMP when either blocks are
exhausted or inodes are exhausted under load due to races in the tty
code when running without Giant.
NB: Some reduction in calls to uprintf() in the svr4 code is probably
desirable.
NB: In the case of nfs_timer(), calling uprintf() while holding a mutex,
or even in a callout at all, is a bad idea, and will generate warnings
and potential upset. This needs to be fixed, but was a problem before
this change.
NB: uprintf()/tprintf() sleeping is generally a bad ideas, as is having
non-MPSAFE tty code.
MFC after: 1 week
Don't free a struct inodedep if another process is allocating saved inode
memory for the same struct inodedep in initiate_write_inodeblock_ufs[12]().
Handle disappearing dependencies in softdep_disk_io_initiation().
Reviewed by: mckusick
make the b_iodone callback responsible for setting it if it is needed.
Previously, it was set unconditionally by bufdone() without holding
whichever lock is shared by the b_iodone callback and the corresponding
top-half function. Consequently, in a race, the top-half function could
conclude that operation was done before the b_iodone callback finished.
See, for example, aio_physwakeup() and aio_fphysio().
Note: I don't believe that the other, more widely-used b_iodone callbacks
are affected.
Discussed with: jeff
Reviewed by: phk
MFC after: 2 weeks
UFS by:
- Making the pre and post hooks for the VOP functions work even when
DEBUG_VFS_LOCKS is not defined.
- Moving the KNOTE activations into the corresponding VOP hooks.
- Creating a MNTK_NOKNOTE flag for the mnt_kern_flag field of struct
mount that permits filesystems to disable the new behavior.
- Creating a default VOP_KQFILTER function: vfs_kqfilter()
My benchmarks have not revealed any performance degradation.
Reviewed by: jeff, bde
Approved by: rwatson, jmg (kqueue changes), grehan (mentor)
are subtle differences in the read and write completion path. Instead,
grab an extra write ref so the write path can drop it when we recursively
call bufdone(). I believe this may be the source of the wrong bufobj
panics.
Reported by: pho, kkenn
export. This was happening anyway since this file manually sets DEBUG.
- Add a sysctl for the number of items on the worklist.
- Use a more canonical loop restart in softdep_fsync_mountdev, it saves
some code at the expense of a goto and makes me worry less about
modifying a variable that should be private to the TAILQ_FOREACH_SAFE
macro.
- Don't intermingle direct calls to lockmgr and indirect calls through
VOPs. This will be important in the future.
- Dont lock the devvp's interlock just to release it on the next line by
passing LK_INTERLOCK to lockmgr.
- Restructure ffs_snapshot_unmount so we don't call free() with the
devvp's interlock locked.
because it may change identities while we're sleeping on the lock.
Otherwise we may bail out of ffs_sync() early due to an error from
deadfs.
- Collapse a VOP_UNLOCK, vrele into a single vput().
two bugs.
- ffs_disk_prewrite was pulling the vp from the buf and checking for
COPYONWRITE, when really it wanted the vp from the bufobj that we're
writing to, which is the devvp. This lead to us skipping the copy on
write to all file data, which significantly broke snapshots for the
last few months.
- When the SOFTUPDATES option was not included in the kernel config we
would also skip the copy on write check, which would effectively disable
snapshots.
- Remove an invalid mp_fixme().
Debugging tips from: mckusick
Reported by: iedowse, others
Discussed with: phk
add more work are forced to process two worklist items first.
However, processing an item may generate additional work, causing the
unlucky thread to recursively process the worklist. Add a per-thread
flag to detect this situation and avoid the recursion. This should
fix the stack overflows that could occur while removing large
directory trees.
Tested by: kris
Reviewed by: mckusick
the filesystem. Check that rather than VI_XLOCK.
- Shorten ffs_reload by one step. The old check for an inactive vnode
was slightly racey, and the code which deals with still active vnodes
is not much more expensive.
Sponsored by: Isilon Systems, Inc.
very slow process, especially for large file systems that is just
recovered from a crash.
Since the summary is already re-sync'ed every 30 second, we will
not lag behind too much after a crash. With this consideration
in mind, it is more reasonable to transfer the responsibility to
background fsck, to reduce the delay after a crash.
Add a new sysctl variable, vfs.ffs.compute_summary_at_mount, to
control this behavior. When set to nonzero, we will get the
"old" behavior, that the summary is computed immediately at mount
time.
Add five new sysctl variables to adjust ndir, nbfree, nifree,
nffree and numclusters respectively. Teach fsck_ffs about these
API, however, intentionally not to check the existence, since
kernels without these sysctls must have recomputed the summary
and hence no adjustments are necessary.
This change has eliminated the usual tens of minutes of delay of
mounting large dirty volumes.
Reviewed by: mckusick
MFC After: 1 week
patch from kan@).
Pull bufobj_invalbuf() out of vinvalbuf() and make g_vfs call it on
close. This is not yet a generally safe function, but for this very
specific use it is safe. This solves the problem with buffers not
being flushed by unmount or after failed mount attempts.
invalidate pending io and dependencies. However, vinvalbuf() rightfully
does not call vnode_pager_setsize() for us. We must do this here. This
could potentially have caused numerous kinds of bugs, but it was
specifically causing msync() deadlocks because msync() was writing
flushing pages that should not have been valid.
Sponsored by: Isilon Systems, Inc.
Reported by: kkenn