division by zero later if event timer's minimal period is above one second.
For now it is just a theoretical possibility.
Found by: Clang Static Analyzer
Fix an issue related to old periodic timers. The code in kern_clocksource.c
uses interrupt to keep track of time, and this time may not match with
binuptime(). In order to address such incoherency, switch periodic timers
to binuptime().
Except further calloutng it is needed for already present cyclic subsystem.
hardclock() tick should be run on every active CPU, or on only one.
On my tests, avoiding extra interrupts because of this on 8-CPU Core i7
system with HZ=10000 saves about 2% of performance. At this moment option
implemented only for global timers, as reprogramming per-CPU timers is
too expensive now to be compensated by this benefit, especially since we
still have to regularly run hardclock() on at least one active CPU to
update system uptime. For global timer it is quite trivial: timer runs
always, but we just skip IPIs to other CPUs when possible.
Option is enabled by default now, keeping previous behavior, as periodic
hardclock() calls are still used at least to implement setitimer(2) with
ITIMER_VIRTUAL and ITIMER_PROF arguments. But since default schedulers don't
depend on it since r232917, we are much more free to experiment with it.
MFC after: 1 month
- Pass number of events to the statclock() and profclock() functions
same as to hardclock() before to not call them many times in a loop.
- Rename them into statclock_cnt() and profclock_cnt().
- Turn statclock() and profclock() into compatibility wrappers,
still needed for arm.
- Rename hardclock_anycpu() into hardclock_cnt() for unification.
MFC after: 1 week
processors unless the invariant TSC bit of CPUID is set. Intel processors
may stop incrementing TSC when DPSLP# pin is asserted, according to Intel
processor manuals, i. e., TSC timecounter is useless if the processor can
enter deep sleep state (C3/C4). This problem was accidentally uncovered by
r222869, which increased timecounter quality of P-state invariant TSC, e.g.,
for Core2 Duo T5870 (Family 6, Model f) and Atom N270 (Family 6, Model 1c).
Reported by: Fabian Keil (freebsd-listen at fabiankeil dot de)
Ian FREISLICH (ianf at clue dot co dot za)
Tested by: Fabian Keil (freebsd-listen at fabiankeil dot de)
- Core2 Duo T5870 (C3 state available/enabled)
jkim - Xeon X5150 (C3 state unavailable)
Now in the case when one-shot timers are used cyclic events should fire
closer to theier scheduled times. As the cyclic is currently used only
to drive DTrace profile provider, this is the area where the change
makes a difference.
Reviewed by: mav (earlier version, a while ago)
X-MFC after: clocksource/eventtimer subsystem
Xen timer and time counter to provide one-shot and periodic time events.
On my tests this reduces idle interruts rate down to about 30Hz, and accor-
ding to Xen VM Manager reduces host CPU load by three times comparing to
the previous periodic 100Hz clock. Also now, when needed, it is possible to
increase HZ rate without useless CPU burning during idle periods.
Now only ia64 and some ARMs left not migrated to the new event timers.
DPCPU_DEFINE and VNET_DEFINE macros, as these cause problems for various
people working on the affected files. A better long-term solution is
still being considered. This reversal may give some modules empty
set_pcpu or set_vnet sections, but these are harmless.
Changes reverted:
------------------------------------------------------------------------
r215318 | dim | 2010-11-14 21:40:55 +0100 (Sun, 14 Nov 2010) | 4 lines
Instead of unconditionally emitting .globl's for the __start_set_xxx and
__stop_set_xxx symbols, only emit them when the set_vnet or set_pcpu
sections are actually defined.
------------------------------------------------------------------------
r215317 | dim | 2010-11-14 21:38:11 +0100 (Sun, 14 Nov 2010) | 3 lines
Apply the STATIC_VNET_DEFINE and STATIC_DPCPU_DEFINE macros throughout
the tree.
------------------------------------------------------------------------
r215316 | dim | 2010-11-14 21:23:02 +0100 (Sun, 14 Nov 2010) | 2 lines
Add macros to define static instances of VNET_DEFINE and DPCPU_DEFINE.
If timer capabilities forcing us to change periodicity mode, try to restore
it back later, as soon as new choosen timer capable to do it. Without this,
timer change like HPET->RTC->HPET always results in enabling periodic mode.
sending IPI to other CPUs. Otherwise, other CPUs will try to honor stale
value, programming timer for zero interval. If timer is fast enough,
it caused extra interrupt before timer correctly reprogrammed by BSP.
to handle current timecounter wraps. Make kern_clocksource.c to honor that
requirement, scheduling sleeps on first CPU for no more then specified
period. Allow other CPUs to sleep up to 1/4 second (for any case).
The main goal of this is to generate timer interrupts only when there is
some work to do. When CPU is busy interrupts are generating at full rate
of hz + stathz to fullfill scheduler and timekeeping requirements. But
when CPU is idle, only minimum set of interrupts (down to 8 interrupts per
second per CPU now), needed to handle scheduled callouts is executed.
This allows significantly increase idle CPU sleep time, increasing effect
of static power-saving technologies. Also it should reduce host CPU load
on virtualized systems, when guest system is idle.
There is set of tunables, also available as writable sysctls, allowing to
control wanted event timer subsystem behavior:
kern.eventtimer.timer - allows to choose event timer hardware to use.
On x86 there is up to 4 different kinds of timers. Depending on whether
chosen timer is per-CPU, behavior of other options slightly differs.
kern.eventtimer.periodic - allows to choose periodic and one-shot
operation mode. In periodic mode, current timer hardware taken as the only
source of time for time events. This mode is quite alike to previous kernel
behavior. One-shot mode instead uses currently selected time counter
hardware to schedule all needed events one by one and program timer to
generate interrupt exactly in specified time. Default value depends of
chosen timer capabilities, but one-shot mode is preferred, until other is
forced by user or hardware.
kern.eventtimer.singlemul - in periodic mode specifies how much times
higher timer frequency should be, to not strictly alias hardclock() and
statclock() events. Default values are 2 and 4, but could be reduced to 1
if extra interrupts are unwanted.
kern.eventtimer.idletick - makes each CPU to receive every timer interrupt
independently of whether they busy or not. By default this options is
disabled. If chosen timer is per-CPU and runs in periodic mode, this option
has no effect - all interrupts are generating.
As soon as this patch modifies cpu_idle() on some platforms, I have also
refactored one on x86. Now it makes use of MONITOR/MWAIT instrunctions
(if supported) under high sleep/wakeup rate, as fast alternative to other
methods. It allows SMP scheduler to wake up sleeping CPUs much faster
without using IPI, significantly increasing performance on some highly
task-switching loads.
Tested by: many (on i386, amd64, sparc64 and powerc)
H/W donated by: Gheorghe Ardelean
Sponsored by: iXsystems, Inc.
lengths. Make MI wrapper code to validate periods in request. Make kernel
clock management code to honor these hardware limitations while choosing hz,
stathz and profhz values.