Though this is still incomplete and has some missing features such as
exclusive login and event notification, it may be enough for someone
who wants to play with it.
This driver is supposed to work with firewire(4), targ(4) of CAM(4)
and scsi_target(8) which can be found in /usr/share/example/scsi_target.
This driver doesn't require sbp(4) which implements initiator mode.
Sample configuration:
Kernel: (you can use modules as well)
device firewire
device scbus
device targ
device sbp_targ
After reboot:
# mdconfig -a -t malloc -s 10m
md0
# scsi_target 0:0:0 /dev/md0
(Assuming sbp_targ0 on scbus0)
You should find the 10MB HDD on FreeBSD/MacOS X/WinXP or whatever connected
to the target using FireWire.
Manpage is not finished yet.
been widely deploy and that's causing us a lot of pain. Back out the
last commit for a few weeks so that we can lessen the support load in
current@ asking why they can't build kernels anymore. Instructions in
UPDATING have been updated, but this should be more effective.
Revert the reverting: November 1st, 2003
avoid problems with some Pentium 4 cpus and some older PPro/Pentium2
cpus. There are several problems, some documented in Intel errata.
This patch:
1) moves the kernel to the second page in the PSE case. There is an
errata that says that you Must Not point a 4MB page at physical
address zero on older cpus. We avoided bugs here due to sheer luck.
2) sets up PSE page tables right from the start in locore, rather than
trying to switch from 4K to 4M (or 2M) pages part way through the boot
sequence at the same time that we're messing with PG_G.
For some reason, the pmap work over the last 18 months seems to tickle
the problems, and the PAE infrastructure changes disturb the cpu
bugs even more.
A couple of people have reported a problem with APM bios calls during
boot. I'll work with people to get this resolved.
Obtained from: bmilekic
do exactly the same as vop_nopoll() for consistency and put a
comment in the two pointing at each other.
Retire seltrue() in favour of no_poll().
Create private default functions in kern_conf.c instead of public
ones.
Change default strategy to return the bio with ENODEV instead of
doing nothing which would lead the bio stranded.
Retire public nullopen() and nullclose() as well as the entire band
of public no{read,write,ioctl,mmap,kqfilter,strategy,poll,dump}
funtions, they are the default actions now.
Move the final two trivial functions from subr_xxx.c to kern_conf.c
and retire the now empty subr_xxx.c
functions reference UMA internals from <vm/uma_int.h>, which makes
them highly unwanted in non-UMA specific files.
While here, prune the includes in pmap.c and use __FBSDID(). Move
the includes above the descriptive comment.
The copyright of uma_machdep.c is assigned to the project and can
be reassigned to the foundation if and when when such is preferrable.
Second (PPS) timing interface. The support is non-optional and by
default uses the DCD line signal as the pulse input. A compile-time
option (UART_PPS_ON_CTS) can be used to have uart(4) use the CTS line
signal.
Include <sys/timepps.h> in uart_bus.h to avoid having to add the
inclusion of that header in all source files.
Reviewed by: phk
ethernet chips. This driver is pretty simple, however it contains
special DSP initialization code which is needed in order to get
the chip to negotiate a gigE link. (This special initialization
may not be needed in subsequent chip revs.) Also:
- Fix typo in if_rlreg.h (RL_GMEDIASTAT_1000MPS -> RL_GMEDIASTAT_1000MBPS)
- Deal with shared interrupts in re_intr(): if interface isn't up,
return.
- Fix another bug in re_gmii_writereg() (properly apply data field mask)
- Allow PHY driver to read the RL_GMEDIASTAT register via the
re_gmii_readreg() register (this is register needed to determine
real time link/media status).
written by Stuart Walsh and Duncan Barclay (with some kibbitzing by
me). I'm checking it in on Stuart's behalf.
The BCM4401 is built into several x86 laptop and desktop systems. For the
moment, I have only enabled it in the x86 kernel config because although
it's a PCI device, I haven't heard of any standalone NICs that use it. If
somebody knows of one, we can easily add it to the other arches.
This driver uses register/structure data gleaned from the Linux
driver released by Broadcom, but does not contain any of the code
from the Linux driver itself. It uses busdma.
rl(4) driver and put it in a new re(4) driver. The re(4) driver shares
the if_rlreg.h file with rl(4) but is a separate module. (Ultimately
I may change this. For now, it's convenient.)
rl(4) has been modified so that it will never attach to an 8139C+
chip, leaving it to re(4) instead. Only re(4) has the PCI IDs to
match the 8169/8169S/8110S gigE chips. if_re.c contains the same
basic code that was originally bolted onto if_rl.c, with the
following updates:
- Added support for jumbo frames. Currently, there seems to be
a limit of approximately 6200 bytes for jumbo frames on transmit.
(This was determined via experimentation.) The 8169S/8110S chips
apparently are limited to 7.5K frames on transmit. This may require
some more work, though the framework to handle jumbo frames on RX
is in place: the re_rxeof() routine will gather up frames than span
multiple 2K clusters into a single mbuf list.
- Fixed bug in re_txeof(): if we reap some of the TX buffers,
but there are still some pending, re-arm the timer before exiting
re_txeof() so that another timeout interrupt will be generated, just
in case re_start() doesn't do it for us.
- Handle the 'link state changed' interrupt
- Fix a detach bug. If re(4) is loaded as a module, and you do
tcpdump -i re0, then you do 'kldunload if_re,' the system will
panic after a few seconds. This happens because ether_ifdetach()
ends up calling the BPF detach code, which notices the interface
is in promiscuous mode and tries to switch promisc mode off while
detaching the BPF listner. This ultimately results in a call
to re_ioctl() (due to SIOCSIFFLAGS), which in turn calls re_init()
to handle the IFF_PROMISC flag change. Unfortunately, calling re_init()
here turns the chip back on and restarts the 1-second timeout loop
that drives re_tick(). By the time the timeout fires, if_re.ko
has been unloaded, which results in a call to invalid code and
blows up the system.
To fix this, I cleared the IFF_UP flag before calling ether_ifdetach(),
which stops the ioctl routine from trying to reset the chip.
- Modified comments in re_rxeof() relating to the difference in
RX descriptor status bit layout between the 8139C+ and the gigE
chips. The layout is different because the frame length field
was expanded from 12 bits to 13, and they got rid of one of the
status bits to make room.
- Add diagnostic code (re_diag()) to test for the case where a user
has installed a broken 32-bit 8169 PCI NIC in a 64-bit slot. Some
NICs have the REQ64# and ACK64# lines connected even though the
board is 32-bit only (in this case, they should be pulled high).
This fools the chip into doing 64-bit DMA transfers even though
there is no 64-bit data path. To detect this, re_diag() puts the
chip into digital loopback mode and sets the receiver to promiscuous
mode, then initiates a single 64-byte packet transmission. The
frame is echoed back to the host, and if the frame contents are
intact, we know DMA is working correctly, otherwise we complain
loudly on the console and abort the device attach. (At the moment,
I don't know of any way to work around the problem other than
physically modifying the board, so until/unless I can think of a
software workaround, this will have do to.)
- Created re(4) man page
- Modified rlphy.c to allow re(4) to attach as well as rl(4).
Note that this code works for the sample 8169/Marvell 88E1000 NIC
that I have, but probably won't work for the 8169S/8110S chips.
RealTek has sent me some sample NICs, but they haven't arrived yet.
I will probably need to add an rlgphy driver to handle the on-board
PHY in the 8169S/8110S (it needs special DSP initialization).
FIDs to be 128-bits wide and adds support for realms.
Add a new CODA_COMPAT_5 option, which requests support for the old
Coda 5.x interface instead of the new one.
Create a new coda5.ko module that supports the 5.x interface, and make
the existing coda.ko module use the new 6.x interface. These modules
cannot both be loaded at the same time.
Obtained from: Jan Harkes & the coda-6.0.2 distribution,
NetBSD (drochner) (CODA_COMPAT_5 option).
of what uart(4) is and/or is not see the initial commit log of one
of the files in sys/dev/uart (or see share/man/man4/uart.4).
Note that currently pc98 shares the MD file with i386. This needs
to change when pc98 support is fleshed-out to properly support the
various UARTs. A good example is sparc64 in this respect.
We build uart(4) as a module on all platforms. This may break
the ppc port. That depends on whether they do actually build
modules.
To use uart(4) on alpha, one must use the NO_SIO option.
o Introduce PUC_PORT_TYPE_UART so that we can attach to uart(4),
o Introduce port sub-types (eg PUC_PORT_UART_NS8250, PUC_PORT_UART_Z8530)
to handle different hardware and determine resource sizes.
o Introduce two new IVARs: PUC_IVAR_SUBTYPE and PUC_IVAR_REGSHFT. Both
are used by uart(4) to get sufficient information to talk to the HW.
o Introduce PUC_FLAGS_ALTRES to tell puc(4) to try memory mapped I/O
if I/O port space cannot be allocated, or vice versa.
o Have ports of type PUC_PORT_TYPE_COM attach to uart(1) if attaching
to sio(4) fails (due to not having the sio driver).
o Put struct puc_device_description in struct puc_softc instead of
having a pointer to a device description in the softc. This allows
us to create device descriptions on the fly without having to use
malloc() or otherwise have them staticly defined.
o Move puc_find_description() from puc.c to puc_pci.c as it's specific
to PCI.
o Add EBUS and SBUS frontends for use on sparc64. Note that the P in
puc stands for PCI, so we kinda mess things up here. It's too soon
to worry about it though. We'll know what to do about it in time.
NOTE: This commit changes the behaviour of puc(4) to not quieten the
device probe and attach for child devices. The uart(4) driver provides
additional device description that is valuable to have.
we can switch to 64M-sized identity mappings and not having to map the
first 64M. This is especially important because the first 1M contains
the VGA frame buffer and is otherwise a legacy memory range. Best to
make as little assumptions about it as possible. Switching to 64M-sized
mappings is important to avoid creating overlapping translations, which
have the side-effect of triggering machine checks. This is currently
what's preventing us to boot on an Intel Tiger 4.
Note that since we currently use 256M-sized identity mappings, we
would reduce the size of the mappings and consequently increase the
TLB pressure. The performance implications of this are minimal if
measurable at all because identify mappings are not our primary
means for memory management.
Also note that there's no guarantee that physical memory exists at
64M. Then again, we didn't had the guarantee when we were loading at
5M. We'll deal with this when it's a problem.
Discussed with: arun@
change also disables interrupts around non-S4 suspends whereas before we
did not do this. Our version of AcpiEnterSleepStateS4bios was almost
identical to the ACPICA version.
Without this option it is not possible to omit the driver from the
configuration file and successfully build a kernel.
This option is specific to alpha.
Restructure the way ATA/ATAPI commands are processed, use a common
ata_request structure for both. This centralises the way requests
are handled so locking is much easier to handle.
The driver is now layered much more cleanly to seperate the lowlevel
HW access so it can be tailored to specific controllers without touching
the upper layers. This is needed to support some of the newer
semi-intelligent ATA controllers showing up.
The top level drivers (disk, ATAPI devices) are more or less still
the same with just corrections to use the new interface.
Pull ATA out from under Gaint now that locking can be done in a sane way.
Add support for a the National Geode SC1100. Thanks to Soekris engineering
for sponsoring a Soekris 4801 to make this support.
Fixed alot of small bugs in the chipset code for various chips now
we are around in that corner anyways.