There have still been intermittent problems with apparent TX
hangs for some customers. These have been problematic to reproduce
but I believe these changes will address them. Testing on a number
of fronts have been positive.
EM: there is an important 'chicken bit' fix for 82574 in the shared
code this is supported in the core here.
- The TX path has been tightened up to improve performance. In
particular UDP with jumbo frames was having problems, and the
changes here have improved that.
- OACTIVE has been used more carefully on the theory that some
hangs may be due to a problem in this interaction
- Problems with the RX init code, the "lazy" allocation and
ring initialization has been found to cause problems in some
newer client systems, and as it really is not that big a win
(its not in a hot path) it seems best to remove it.
- HWTSO was broken when VLAN HWTAGGING or HWFILTER is used, I
found this was due to an error in setting up the descriptors
in em_xmit.
IGB:
- TX is also improved here. With multiqueue I realized its very
important to handle OACTIVE only under the CORE lock so there
are no races between the queues.
- Flow Control handling was broken in a couple ways, I have changed
and I hope improved that in this delta.
- UDP also had a problem in the TX path here, it was change to
improve that.
- On some hardware, with the driver static, a weird stray interrupt
seems to sometimes fire and cause a panic in the RX mbuf refresh
code. This is addressed by setting interrupts late in the init
path, and also to set all interrupts bits off at the start of that.
support of new deltas for both em and igb drivers.
Note that I am not able to track all the bugs fixed in
this code, I am a consumer of it as a component of my
core drivers. It is important to keep the FreeBSD drivers
up to date with it however.
One important note is there is a key fix for 82574 in this
update. Also, there are lots of white space changes, I am
not happy about them but have no control over it :)
control. Controller does not automatically generate pause frames
based on number of available RX buffers so it's very hard to
know when driver should generate XON frame in time. The only
mechanism driver can detect low number of RX buffer condition is
ET_INTR_RXRING0_LOW or ET_INTR_RXRING1_LOW interrupt. This
interrupt is generated whenever controller notices the number of
available RX buffers are lower than pre-programmed value(
ET_RX_RING0_MINCNT and ET_RX_RING1_MINCNT register). This scheme
does not provide a way to detect when controller sees enough number
of RX buffers again such that efficient generation of XON/XOFF
frame is not easy.
While here, add more flow control related register definition.
interrupt is ours. Note, interrupts are automatically ACKed when
the status register is read.
Add RX/TX DMA error to interrupt handler and do full controller
reset if driver happen to encounter these errors. There is no way
to recover from these DMA errors without controller reset.
Rename local variable name intrs with status to enhance
readability.
While I'm here, rename ET_INTR_TXEOF and ET_INTR_RXEOF to
ET_INTR_TXDMA and ET_INTR_RXDMA respectively. These interrupts
indicate that a frame is successfully DMAed to controller's
internal FIFO and they have nothing to do with EOF(end of frame).
Driver does not need to wait actual end of TX/RX of a frame(e.g.
no need to wait the end signal of TX which is generated when a
frame in TX FIFO is emptied by MAC). Previous names were somewhat
confusing.
suspend state. This will save more power.
On resume, make sure to enable all clocks. While I'm here, if
controller is not fast ethernet, enable gigabit PHY.
Don't blindly re-initialize controller whenever MTU is changed.
Now, reinitializing is done only when driver is running.
While here, remove unnecessary assignment of error value since it
was already initialized to 0.
o Do not report link status if driver is not running.
o TX/RX MAC configuration should be done with resolved speed,
duplex and flow control after establishing a link so it can't
be done in driver initialization routine.
Move the configuration to miibus_statchg callback which will be
called whenever any link state change is detected.
At this moment, flow-control is not enabled yet mainly because
I was not able to set correct flow control parameters to
generate TX pause frames.
o Now TX/RX MAC is enabled only when a valid link is detected.
Rearragnge hardware initialization routine a bit to leave
enabling MAC to miibus_statchg callback. In order to that,
TX/RX DMA engine is enabled in et_init_locked().
o Introduce ET_FLAG_LINK flag to track current link state.
o Introduce ET_FLAG_FASTETHER flag to mark whether controller is
fast ethernet. This flag is checked in miibus_statchg callback
to know whether PHY established a valid link.
o In et_stop(), TX/RX MAC is explicitly disabled instead of
relying on et_reset(). And move et_reset() from et_stop() to
controller initialization. Controler reset is not required here
and it would also clear critial registers(i.e station address,
RX filter configuration, WOL etc) that are required to make WOL
work.
o Switching to current media is done in et_init_locked() after
setting IFF_DRV_RUNNING flag. This should ensure reliable
auto-negotiation/manual link establishment.
o In et_start_locked(), check whether driver got a valid link
before trying to send frames.
o Remove checking a link in et_tick() as this is done by
miibus_statchg callback.
manipulation of interrupt register access is done through
CSR_WRITE_4 macro. Also add disabling interrupt into et_reset()
because we want interrupt disabled state after controller reset.
While I'm here slightly change interrupt handler to be more
readable one.
send a single TX command after setting up all TX frames. This
removes unnecessary register accesses and bus_dmamap_sync(9) calls.
et(4) uses TX interrupt moderation so it's possible to have TX
buffers that were already transmitted but waiting for TX completion
interrupt. If the number of available TX descriptor is less then
1/3 of total TX descriptor, try reclaiming first to get enough free
TX descriptors before setting up TX descriptors.
After r228325, et_txeof() no longer tries to send frames after
reclaiming TX buffers. That change was made to give more chance
to transmit frames in main interrupt handler since we can still
send frames in interrupt handler with RX interrupt. So right
before exiting interrupt hander, after enabling interrupt, try to
send more frames. This gives slightly better performance numbers.
While I'm here reduce number of spare TX descriptors from 8 to 4.
Controller does not require reserved TX descriptors, it was just to
reduce TX overhead. After r228325, driver has much lower TX
overhead so it does not make sense to reserve 8 TX descriptors.
change should make et(4) work on any architectures.
o Remove m_getl inline function and replace it with stanard mbuf
interfaces. Previous code tried to minimize code duplication
but this came from incorrect use of common DMA tag.
Driver may be still use a common RX allocation handler with
additional structure changes but I don't see much point to do
that it would make it hard to understand the code.
o Remove DragonflyBSD specific constant EVL_ENCAPLEN, use
ETHER_VLAN_ENCAP_LEN instead.
o Add bunch of new RX status definition. It seems controller
supports RX checksum offloading but I was not able to make the
feature work yet. Currently driver checks whether recevied
frame is good one or not.
o Avoid a typedef ending in '_t' as style(9) says.
o Controller has no restriction on DMA address space, so there
is no reason to limit the DMA address to 32bit. Descriptor
rings, status blocks and TX/RX buffers now use full 64bit DMA
addressing.
o Allocate DMA memory shared between host and controller as
coherent.
o Create 3 separate DMA tags to be used as TX, mini RX ring and
stanard RX ring. Previously it created a single DMA tag and it
was used to all three rings.
o et(4) does not support jumbo frame at this moment and I still
don't quite understand how jumbo frame works on this controller
so use two RX rings to handle small sized frame and normal sized
frame respectively. The mini RX ring will be used to receive
frames that are less than or equal to 127 bytes. The second RX
ring is used to receive frames that are not handled by the first
RX ring.
If jumbo frame support is implemented, driver may have to choose
better RX scheme by letting the second RX ring handle jumbo
frames. This scheme will mimic Broadcom's efficient jumbo frame
handling feature. However RAM buffer size(16KB) of the
controller is too small to hold 2 jumbo frames, if 9KB
jumbo frame is used, I'm not sure how good performance would it
have.
o In et_rxeof(), make sure to check whether controller received
good frame or not. Passing corrupted frame to upper layer is
bad idea.
o If driver receives a bad frame or driver fails to allocate RX
buffer due to resource shortage condition, reuse previously
loaded DMA map for RX buffer instead of unloading/loading RX
buffer again.
o et_init_tx_ring() never fails so change return type to void.
o In watchdog handler, show TX DMA write back status of errored
frame which could be used as a clue to debug watchdog timeout.
o Add missing bus_dmamap_sync() in various places such that et(4)
should work with bounce buffers(e.g. PAE).
o TX side bus_dmamap_load_mbuf_sg(9) support.
o RX side bus_dmamap_load_mbuf_sg(9) support.
o Controller has no DMA alignment limit in RX buffer so use
m_adj(9) in RX buffer allocation to make IP header align on 2
bytes boundary. Otherwise it would trigger unaligned access
error in upper layer on strict alignment architectures.
One of down side of controller is it provides limited set of RX
buffer length like most Intel controllers. This is not problem
at this moment because driver does not support jumbo frame yet
but it may require alignment fixup code to support jumbo frame
on strict alignment architectures.
o In et_txeof(), don't zero TX descriptors for transmitted frames.
TX descriptors don't need write access after transmission.
Driver sets IFF_DRV_OACTIVE when the number of available TX
descriptors are less than or equal to ET_NSEG_SPARE. Make sure
to clear IFF_DRV_OACTIVE only when the number of available TX
descriptor is greater than ET_NSEG_SPARE.
c162516
Remove vtblk_sector_size
c162515
Wrap long license lines
c162514
Remove vtblk_unit
c162513
Wrap long lines in the license.
c162512
Remove verbose messages when link goes up/down.
A similar message is printed elsewhere as a result of
if_link_state_change().
c162511
Explicity compare pointer to NULL
c162510
Allocate the mac filter table at attach time.
c162509
Add real BSD licenses to the header files copied from Linux.
The chases upstream changes made in Linux awhile ago.
c162508
Only notify if we actually dequeued something.
c162507
Change a couple of if () { KASSERT(...) } to just KASSERTs.
In non-debug kernels, the if() { } probably get optomized
away, but I guess this is clearer.
c162506
Remove VIRTIO_BLK_F_TOPOLOGY fields in the config.
TOPOLOGY has since been removed from the spec, and the FreeBSD
didn't really do anything with the fields anyways.
c162505
Move vtblk_enqueue_request() outside the locks when getting the ident.
c162504
Remove soon to be uneeded trylock during dump [1].
http://lists.freebsd.org/pipermail/freebsd-current/2011-November/029226.html
c162503
Remove emtpy line
c162502
Drop frame if cannot allocate a vtnet_tx_header.
If we don't, we set OACTIVE, but if there are no
other frames in flight, vtnet_txeof() will never
be called to unset OACTIVE. The interface would
have to be down/up'ed in order to become usable.
We could be cuter here and only do this if the
virtqueue is emtpy, but its probably not worth
the complication.
c162501
Start mbuf replacement loop at 1 for clarity
Obtained from: Bryan Venteicher bryanv at daemoninthecloset dot org
driver that has high precedence for the controller override et(4).
Add missing callout_drain(9) in device detach and rework detach
routine. While I'm here use rman_get_rid(9) instead of using
cached resource id because bus methods are free to change the
id.
While I'm here remove initializing if_mtu, it is set by
ether_ifattach(9). Also move callout_init_mtx(9) to the right below
driver lock initialization.
descriptors before trying to send frames. If we're not able to
send a frame, make sure to prepend it to if_snd queue such that
alt(4) should work.
While I'm here prefer ETHER_BPF_MTAP to BPF_MTAP. ETHER_BPF_MTAP
should be used for controllers that support VLAN hardware tag
insertion. The controller supports VLAN tag insertion but lacks
VLAN tag stripping in RX path though.
before calling bus_enumerate_hinted_children(9) (which is the minimum for
this to work) instead of fully probing it so later on we can just call
bus_generic_attach(9) on the parent of the miibus(4) instance. The latter
is necessary in order to work around what seems to be a bzzarre race in
newbus affecting a few machines since r227687, causing no driver being
probed for the newly added miibus(4) instance. Presumably this is the
same race that was the motivation for the work around done in r215348.
Reported and tested by: yongari
- Revert the removal of a static in r221913 in order to help compilers to
produce more optimal code.
On my hardware, "em" in netmap mode does about 1.388 Mpps
on one card (on an Asus motherboard), and 1.1 Mpps on another
card (PCIe bus). Both seem to be NIC-limited, because
i have the same rate even with the CPU running at 150 MHz.
On the "re" driver the tx throughput is around 420-450 Kpps
on various (8111C and the like) chipsets. On the Rx side
performance seems much better, and i can receive the full
load generated by the "em" cards.
"igb" is untested as i don't have the hardware.
A link reset now is completely transparent for the netmap client:
even if the NIC resets its own ring (e.g. restarting from 0),
the client will not see any change in the current rx/tx positions,
because the driver will keep track of the offset between the two.
2. make the device-specific code more uniform across different drivers
There were some inconsistencies in the implementation of the netmap
support routines, now drivers have been aligned to a common
code structure.
3. import netmap support for ixgbe . This is implemented as a very
small patch for ixgbe.c (233 lines, 11 chunks, mostly comments:
in total the patch has only 54 lines of new code) , as most of
the code is in an external file sys/dev/netmap/ixgbe_netmap.h ,
following some initial comments from Jack Vogel about making
changes less intrusive.
(Note, i have emailed Jack multiple times asking if he had
comments on this structure of the code; i got no reply so
i assume he is fine with it).
Support for other drivers (em, lem, re, igb) will come later.
"ixgbe" is now the reference driver for netmap support. Both the
external file (sys/dev/netmap/ixgbe_netmap.h) and the device-specific
patches (in sys/dev/ixgbe/ixgbe.c) are heavily commented and should
serve as a reference for other device drivers.
Tested on i386 and amd64 with the pkt-gen program in tools/tools/netmap,
the sender does 14.88 Mpps at 1050 Mhz and 14.2 Mpps at 900 MHz
on an i7-860 with 4 cores and 82599 card. Haven't tried yet more
aggressive optimizations such as adding 'prefetch' instructions
in the time-critical parts of the code.
pins, rather than defaulting to 0 and 1.
This way the pin order can be reversed. It is reversed with the
TP-Link TL-WR1043nd.
Submitted by: Stefan Bethke <stb@lassitu.de>
These realtek switch PHYs speak a variant of i2c with some slightly
modified handling.
From the submitter, slightly modified now that some further digging
has been done:
The I2C framework makes a assumption that the read/not-write bit of the first
byte (the address) indicates whether reads or writes are to follow.
The RTL8366 family uses the bus: after sending the address+read/not-write byte,
two register address bytes are sent, then the 16-bit register value is sent
or received. While the register write access can be performed as a 4-byte
write, the read access requires the read bit to be set, but the first two bytes
for the register address then need to be transmitted.
This patch maintains the i2c protocol behaviour but allows it to be relaxed
(for these kinds of switch PHYs, and whatever else Realtek may do with this
almost-but-not-quite i2c bus) - by setting the "strict" hint to 0.
The "strict" hint defaults to 1.
Submitted by: Stefan Bethke <stb@lassitu.de>
It appears this device fails if sent a SYNCHRONIZE_CACHE command, so add
quirk to avoid sending it.
I will follow up with Micron on this issue, and will adjust the quirk if
necessary based on their feedback.
Reviewed by: hselasky@
According to the open firmware standard, finddevice call has to return
a phandle with value of -1 in case of error.
This commit is to:
- Fix the FDT implementation of this interface (ofw_fdt_finddevice) to
return (phandle_t)-1 in case of error, instead of 0 as it does now.
- Fix up the callers of OF_finddevice() to compare the return value with
-1 instead of 0 to check for errors.
- Since phandle_t is unsigned, the return value of OF_finddevice should
be checked with '== -1' rather than '<= 0' or '> 0', fix up these cases
as well.
Reported by: nwhitehorn
Reviewed by: raj
Approved by: raj, nwhitehorn
to known AHCI-capable chips (AMD/NVIDIA), configured for legacy emulation.
Enabled by default to get additional performance and functionality of AHCI
when it can't be enabled by BIOS. Can be disabled to honor BIOS settings if
needed for some reason.
MFC after: 1 month
control for all vr(4) controllers that support it. It's known that
old vr(4) controllers(Rhine II) does not support TX pause but Rhine
III supports both TX and RX pause.
Make TX pause really work on Rhine III by letting controller know
available RX buffers.
While here, adjust XON/XOFF parameters to get better performance
with flow control.
using member variables in softc.
While I'm here change media after setting IFF_DRV_RUNNING. This
will remove unnecessary link state handling in vr_tick() if
controller established a link immediately.
transfer statemachine. This work is about using a single
state variable instead of multiple state bits as input
for the USB statemachine to determine what to do in the
various parts of the code. No APIs towards USB device
drivers or USB host controller drivers will be changed.
MFC after: 1 month
put into suspend/shutdown. Old PCI controllers performed that
operation in firmware but for RTL8111C or newer controllers, it's
responsibility of driver. It's not clear whether the firmware of
RTL8111B still downgrades its speed to 10/100Mbps so leave it as it
was.
issues probably needing workarounds in bge(4) when brgphy(4) handles this
PHY. Letting ukphy(4) handle it instead results in a working configuration,
although likely with performance penalties.