understand exactly what it is about SMPng that tickles this bug. What I
do know is that the foo_init() routine in most drivers is often called
twice when an interface is brought up. One time is due to the ifconfig(8)
command calling the SIOCSIFFLAGS ioctl to set the IFF_UP flag, and another
is probably due to the kernel calling ifp->if_init at some point. In any
case, the SMPng changes seem to affect the timing of these two events in
such a way that there is a significant delay before any packets are sent
onto the wire after the interface is first brought up. This manifested
itself locally as an SMPng test machine which failed to obtain an address
via DHCP when booting up.
It looks like the second call to fxp_init() is happening faster now than
it did before, and I think it catches the chip while it's in the process
of dealing with the configuration command from the first call. Whatever
the case, a FXP_CSR_SCB_CNA interrupt event is now generated shortly after
the second fxp_init() call. (This interrupt is apparently never generated
by a non-SMPng kernel, so nobody noticed.)
There are two problems with this: first, fxp_intr() does not handle the
FXP_CSR_SCB_CNA interrupt event (it never tests for it or does anything
to deal with it), and second, the meaning of FXP_CSR_SCB_CNA is not
documented in the driver. (Apparently it means "command unit not active.")
Bad coder. No biscuit.
The fix is to have the FXP_CSR_SCB_CNA interrupt handled just like the
FXP_SCB_STATACK_CXTNO interrupt. This prevents the state machine for
the configuration/RX filter programming stuff from getting wedged for
several seconds and preventing packet transmission.
Noticed by: jhb
if you kldload this driver, all the subordinate devices are probed/attached
as expected. But this is not the case when the driver is statically compiled
into the kernel. Since I do most of my testing with modules, I failed to
notice this. I'm not sure if it's intended behavior or not. I think it may
be, but it seems a little counter-intuitive.
with LEDs on some cards being stomped on when clearing the "jabber disable"
bit. Using DC_SETBIT() has an unwanted side effect of setting a write enable
bit in the watchdog timer register which we really want to be cleared when
we do a write.
This is in fact an Intel Orion chipset (82454KX/GX) which has been used
in HP NetServer's LS4 range.
HP Probably relabeled the DID. That's the only explanation I can find
plausible to this `mystery'.
the 12.4.11 firmware with a few changes to the link handling code merged
in from the 12.4.13 release. I'm doing this because the 12.4.13 firmware
doesn't seem to handle 10/100 link settings properly on 1000baseT cards.
Note that the revision codes still identify the firmware as 12.4.13
because both ti_fw2.h and ti_fw.h have to have the same revision values,
and I wanted to keep the 12.4.13 firmware for Tigon 1 cards.
It's nice to have firmware source.
cards. This basically involves switching to the 12.4.13 firmware, plus
a couple of minor tweaks to the driver.
Also changed the jumbo buffer allocation scheme just a little to avoid
'failed to allocate jumbo buffer' conditions in certain cases.
lock up under moderate to heavy load.
The status & command fields share a 32-bit longword. The programming
API of the eepro apparently requires that you update the command field
of a transmit slot that you've already given to the card. This means
the card could be updating the status field of the same longword at
the same time. Since alphas can only operate on 32-bit chunks of
memory, both the status & command fields are loaded from memory &
operated on in registers when the following line of C is executed:
sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
The race is caused by the card DMA'ing up the status at just the wrong
time -- after it has been loaded into a register & before it has been
written back. The old value of the status is written back, clobbering
the status the card just DMA'ed up. The fact that the card has sent
this frame is missed & the transmit engine appears to hang.
Luckily, as numerous people on the freebsd-alpha list pointed out, the
load-locked/store-conditional instructions used by the atomic
functions work with respect changes in memory due to I/O devices. We
now use them to safely update the command field.
Tested by: Bernd Walter <ticso@mail.cicely.de>
3.3volt PCI/cardbus chipsets similar to the 98715 (and they have
512-bit hash tables). Also update the man page to mention the 98727/98732
and the SOHOware SFA110A Rev B4 card with the 98715AEC-C chip.
which differ slightly from the Macronix MX98715AEC chip on the sample
adapter that I have in that the multicast hash table is only 128 bits
wide instead of 512. New adapters are popping up with this chip, and
due to improper handling of the smaller hash table, broadcast packets
were not being received correctly.
ether_ifdetach().
The former consolidates the operations of if_attach(), ng_ether_attach(),
and bpfattach(). The latter consolidates the corresponding detach operations.
Reviewed by: julian, freebsd-net
associated patch to XFree86 allows the X server to work with this chipset
on FreeBSD. Additional work will include porting the Linux 3D driver.
Submitted by: Ruslan Ermilov <ru@FreeBSD.org>
controller chip. This chip is currently being used on the NetGear
FA312-TX adapter, which I guess is a replacement for the FA310-TX
(PNIC-based).
I added support for this chip by modifying the sis driver since
the SiS 900 and the NS DP83815 have almost the same programming
interface (the RX filter programming and PHY access methods are
different, but the general configuration, DMA scheme and register
layout are identical).
I would have had this done a lot sooner, but getting the damn MAC
address out of the EEPROM proved to be more complicated than expected.
the message to indicate that it could also be a disconnected cable, and
return okay from wx_hw_intialize *anyway*. This allows us to contineu to
set the station address and when we do get link up, we're ready to roll.
Force alphas to prefer mem mapping as the default.
Basically, we have a pointer to a function which we can call which will
return us a pointer to firmware for the card we have. We call this function
(if it's non-NULL) with the address of our mdvec f/w pointer.
The way this works is that if ispfw (as a module or a static) is loaded,
it initializes the pointer in isp_pci, so we can call into to it to fetch
a pointer to a f/w set.
If ispfw is MOD_UNLOADed, it's retained a pointer to our mdvec f/w pointers,
which then get zeroed out so we don't have any references to data that's
now gone from kernel memory. Removing the f/w saves ~360KBytes.
Alas, there is no autounload mechanism that works for is here.
tested on Intel BX chipsets only. The other agp minidrivers are totally
untested.
The programming api is a subset of the Linux api and is only intended to
be enough for the X server to use. There is also an in-kernel api for the
use of other kernel modules such as the 3D DRI.
21143 chips, I accidentally removed the DC_MII_REDUCED_POLL flag
for all 21143 cards. This caused problems with timer-instigated
TCP retransmits, which happened to occur at the same time as an
MII poll tick on MII-based cards (e.g. D-Link DFE-570TX). Fixed this,
plus made some other cleanups. The autoneg fixes for the non-MII
cards still work. Also tested the PNIC II now that I have one again.
after autoneg so we make sure to set the link state and duplex mode
correctly.
- Make sure to set the 'ignore pause frames' bit on the XMAC.
- Small linewrap fix.
workalike chips (Macronix 98713A/98715 and PNIC II). Timing is somewhat
critical: you need to bring the link as soon as possible after NWAY
is done, and the old one second polling interval was too long. Now
we poll every 10th of a second until NWAY completes (at which point
we return to the 1 second interval again to keep an eye on the link
state).
I tested all the other cards I had on hand to make sure I didn't bust
any of them and they seem to work (including the MII-based 21143 card).
This should fix some autoneg problems with DE500-BA cards and the
built-in 10/100 ethernet on some alpha systems.
(Now before anyone asks why I never noticed this before, the old code
worked just find with the Intel swich I used for testing back in NY.
Apparently not all switches are as picky about the timing.)
"options COMPAT_OLDPCI". This option already existed, but now also tidies
up the declarations in #include <pci/pci*.h>. It is amazing how much stuff
was using the old pre-FreeBSD 3.x names and going silently undetected.