to create it. A small number of options are not marshalled as they are things
it would be dumb to spit out, as they are used by internal computations, and
newfs may change them, or they may not be directly apparent.
the old 8-bit fs_old_flags to the new location the first time that the
filesystem is mounted by a new kernel. One of the unused flags in
fs_old_flags is used to indicate that the flags have been moved.
Leave the fs_old_flags word intact so that it will work properly if
used on an old kernel.
Change the fs_sblockloc superblock location field to be in units
of bytes instead of in units of filesystem fragments. The old units
did not work properly when the fragment size exceeeded the superblock
size (8192). Update old fs_sblockloc values at the same time that
the flags are moved.
Suggested by: BOUWSMA Barry <freebsd-misuser@netscum.dyndns.dk>
Sponsored by: DARPA & NAI Labs.
filesystem expands the inode to 256 bytes to make space for 64-bit
block pointers. It also adds a file-creation time field, an ability
to use jumbo blocks per inode to allow extent like pointer density,
and space for extended attributes (up to twice the filesystem block
size worth of attributes, e.g., on a 16K filesystem, there is space
for 32K of attributes). UFS2 fully supports and runs existing UFS1
filesystems. New filesystems built using newfs can be built in either
UFS1 or UFS2 format using the -O option. In this commit UFS1 is
the default format, so if you want to build UFS2 format filesystems,
you must specify -O 2. This default will be changed to UFS2 when
UFS2 proves itself to be stable. In this commit the boot code for
reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c)
as there is insufficient space in the boot block. Once the size of the
boot block is increased, this code can be defined.
Things to note: the definition of SBSIZE has changed to SBLOCKSIZE.
The header file <ufs/ufs/dinode.h> must be included before
<ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and
ufs_lbn_t.
Still TODO:
Verify that the first level bootstraps work for all the architectures.
Convert the utility ffsinfo to understand UFS2 and test growfs.
Add support for the extended attribute storage. Update soft updates
to ensure integrity of extended attribute storage. Switch the
current extended attribute interfaces to use the extended attribute
storage. Add the extent like functionality (framework is there,
but is currently never used).
Sponsored by: DARPA & NAI Labs.
Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
It does not help modern compilers, and some may take some hit from it.
(I also found several functions that listed *every* of its 10 local vars with
"register" -- just how many free registers do people think machines have?)
in-core pointers to summary information. An array in this region
(fs_csp) could overflow on filesystems with a very large number of
cylinder groups (~16000 on i386 with 8k blocks). When this happens,
other fields in the superblock get corrupted, and fsck refuses to
check the filesystem.
Solve this problem by replacing the fs_csp array in 'struct fs'
with a single pointer, and add padding to keep the length of the
128-byte region fixed. Update the kernel and userland utilities
to use just this single pointer.
With this change, the kernel no longer makes use of the superblock
fields 'fs_csshift' and 'fs_csmask'. Add a comment to newfs/mkfs.c
to indicate that these fields must be calculated for compatibility
with older kernels.
Reviewed by: mckusick