and geom_uncompress(4):
1. mkuzip(8):
- Proper support for eliminating all-zero blocks when compressing an
image. This feature is already supported by the geom_uzip(4) module
and CLOOP format in general, so it's just a matter of making mkuzip(8)
match. It should be noted, however that this feature while it sounds
great, results in very slight improvement in the overall compression
ratio, since compressing default 16k all-zero block produces only 39
bytes compressed output block, which is 99.8% compression ratio. With
typical average compression ratio of amd64 binaries and data being
around 60-70% the difference between 99.8% and 100.0% is not that
great further diluted by the ratio of number of zero blocks in the
uncompressed image to the overall number of blocks being less than
0.5 (typically). However, this may be important from performance
standpoint, so that kernel are not spinning its wheels decompressing
those empty blocks every time this zero region is read. It could also
be important when you create huge image mostly filled with zero
blocks for testing purposes.
- New feature allowing to de-duplicate output image. It turns out that
if you twist CLOOP format a bit you can do that as well. And unlike
zero-blocks elimination, this gives a noticeable improvement in the
overall compression ratio, reducing output image by something like
3-4% on my test UFS2 3GB image consisting of full FreeBSD base system
plus some of the packages (openjdk, apache etc), about 2.3GB worth of
file data (800+MB compressed). The only caveat is that images created
with this feature "on" would not work on older versions of FeeBSDxi
kernel, hence it's turned off by default.
- provide options to control both features and document them in manual
page.
- merge in all relevant LZMA compression support from the mkulzma(8),
add new option to select between both.
- switch license from ad-hoc beerware into standard 2-clause BSD.
2. geom_uzip(4):
- implement support for de-duplicated images;
- optimize some code paths to handle "all-zero" blocks without reading
any compressed data;
- beef up manual page to explain that geom_uzip(4) is not limited only
to md(4) images. The compressed data can be written to the block
device and accessed directly via magic of GEOM(4) and devfs(4),
including to mount root fs from a compressed drive.
- convert debug log code from being compiled in conditionally into
being present all the time and provide two sysctls to turn it on or
off. Due to intended use of the module, it can be used in
environments where there may not be a luxury to put new kernel with
debug code enabled. Having those options handy allows debug issues
without as much problem by just having access to serial console or
network shell access to a box/appliance. The resulting additional
CPU cycles are just few int comparisons and branches, and those are
minuscule when compared to data decompression which is the main
feature of the module.
- hopefully improve robustness and resiliency of the geom_uzip(4) by
performing some of the data validation / range checking on the TOC
entries and rejecting to attach to an image if those checks fail.
- merge in all relevant LZMA decompression support from the
geom_uncompress(4), enable automatically when appropriate format is
indicated in the header.
- move compilation work into its own worker thread so that it does not
clog g_up. This allows multiple instances work in parallel utilizing
smp cores.
- document new knobs in the manual page.
Reviewed by: adrian
MFC after: 1 month
Differential Revision: https://reviews.freebsd.org/D5333
- Add URTWN_WITHOUT_UCODE option (will disable any firmware specific code
when set).
- Do not exclude the driver from build when MK_SOURCELESS_UCODE is set
(URTWN_WITHOUT_UCODE will be enforced unconditionally).
- Do not abort initialization when firmware cannot be loaded;
behave like the URTWN_WITHOUT_UCODE option was set.
- Drop some unused variables from urtwn_softc structure.
Tested with RTL8188EU and RTL8188CUS in HOSTAP and STA modes.
Reviewed by: kevlo
Approved by: adrian (mentor)
Differential Revision: https://reviews.freebsd.org/D4849
Extract common code from PowerPC's ofw_pci
Import portions of the PowerPC OF PCI implementation into
new file "ofw_pci.c", common for other platforms. The files ofw_pci.c and
ofw_pci.h from sys/powerpc/ofw no longer exist. All required declarations
are moved to sys/dev/ofw/ofw_pci.h.
This creates a new ofw_pci_write_ivar() function and modifies
ofw_pci_nranges(), ofw_pci_read_ivar(), ofw_pci_route_interrupt()
methods.
Most functions contain existing ppc implementations in the majority
unchanged. Now there is no need to have multiple identical copies
of methods for various architectures.
Submitted by: Marcin Mazurek <mma@semihalf.com>
Obtained from: Semihalf
Sponsored by: Annapurna Labs
Reviewed by: jhibbits, mmel
Differential Revision: https://reviews.freebsd.org/D4879
This needs to return to the drawing board as it breaks both
PowerPC and Sparc64 build.
Pointed out by: jhibbits
This will speed up some tree-walks with FAST_DEPEND which otherwise
would include length(SRCS) .depend files.
This also uses a trick suggested by sjg@ to still read them in when
specifying _V_READ_DEPEND=1 in the env/make args.
Sponsored by: EMC / Isilon Storage Division
Import portions of the PowerPC OF PCI implementation into
new file "ofw_pci.c", common for other platforms. The files ofw_pci.c and
ofw_pci.h from sys/powerpc/ofw no longer exist. All required declarations
are moved to sys/dev/ofw/ofw_pci.h.
This creates a new ofw_pci_write_ivar() function and modifies
ofw_pci_nranges(), ofw_pci_read_ivar(), ofw_pci_route_interrupt() methods.
Most functions contain existing ppc implementations in the majority
unchanged. Now there is no need to have multiple identical copies
of methods for various architectures.
Submitted by: Marcin Mazurek <mma@semihalf.com>
Obtained from: Semihalf
Sponsored by: Annapurna Labs
Reviewed by: jhibbits, mmel
Differential Revision: https://reviews.freebsd.org/D4879
configuration from the FDT data, then set the pins into the requested
state. As part of this the gpio controller now reports the correct number
of pins instead of returning the number of bank * 32.
To allow for a future consolidated kernel we add the SOC_ALLWINNER_A10 and
SOC_ALLWINNER_A20 kernel options. These need to be set as appropriate for
the SoC the kernel will boot on.
Submitted by: Emmanuel Vadot <manu@bidouilliste.com>
Differential Revision: https://reviews.freebsd.org/D5177
Some chip revisions don't have their external PCIe buses
behind the internal bridge. Add support for FDT-configurable
PEMs but keep ability for PCIe enumeration.
Reviewed by: andrew, wma
Obtained from: Semihalf
Sponsored by: Cavium
Differential Revision: https://reviews.freebsd.org/D5285
This was originall done by kan@.
Submitted by: Stanislav Galabov <sgalabov@gmail.com>
Reviewed by: kan
Differential Revision: https://reviews.freebsd.org/D5184
This allows skipping 'make depend' or running 'make clean all' without
getting a flip-flopping dependency due to the exists() just below.
Otherwise an error is encountered, such as:
fatal error: 'machine/endian.h' file not found.
Sponsored by: EMC / Isilon Storage Division
a mips big-endian board.
This is (hopefully! ish!) a temporary change until a slightly better way
can be found to express this without a config option.
Tested:
* BUFFALO WZR-HP-G300NH 1stGen (by submitter)
Submitted by: Mori Hiroki <yamori813@yahoo.co.jp>
This revision does the following renames:
CPU_MIPS24KC -> CPU_MIPS24K
CPU_MIPS74KC -> CPU_MIPS74K
CPU_MIPS1004KC -> CPU_MIPS1004K
It also adds the following new CPU_MIPSxxx options:
CPU_MIPS24KE, CPU_MIPS34K, CPU_MIPS1074K, CPU_INTERAPTIV, CPU_PROAPTIV
CPU_MIPSxxxxKC is limiting and possibly misleading as it implies the
MIPSxxxxK CPU has no FPU.
It would be better if the CPUs are named after their standard functionalities
only and the presence or absence of FPU can then be controlled via the
CPU_HAVEFPU option.
I will send out another dependent revision that moves MIPS 32 r2 and r3
CPUs to use the EHB instruction for clearing hazards instead of NOP/SSNOP.
Submitted by: Stanislav Galabov <sgalabov@gmail.com>
Reviewed by: imp
Differential Revision: https://reviews.freebsd.org/D5077
MD_ROOT_SIZE and embed_mfs.sh were basically retired as part of
https://reviews.freebsd.org/D2903 .
However, when building a kernel with 'options MD_ROOT_SIZE' specified, this
results in a non-working MFS, as within sys/dev/md/md.c we fall within the
wrong # ifdef.
This patch implements the following:
* Allow kernels to be built without the MD_ROOT_SIZE option, which results
in a kernel built as per D2903.
* Allow kernels to be built with the MD_ROOT_SIZE option, which results
in a kernel built similarly to the pre-D2903 way, with the following
differences:
* The MFS is now put in a separate section within the kernel (oldmfs,
so it differs from the mfs section introduced by D2903).
* embed_mfs.sh is changed, so it looks up the oldmfs section within the
kernel, gets its size and offset, sees if the MFS will fit within the
allocated oldmfs section and only if all is well does a dd of the MFS
image into the kernel.
Submitted by: Stanislav Galabov <sgalabov@gmail.com>
Reviewed by: brooks, imp
Differential Revision: https://reviews.freebsd.org/D5093
This is the final step required allowing to compile and to run RISC-V
kernel and userland from HEAD.
RISC-V is a completely open ISA that is freely available to academia
and industry.
Thanks to all the people involved! Special thanks to Andrew Turner,
David Chisnall, Ed Maste, Konstantin Belousov, John Baldwin and
Arun Thomas for their help.
Thanks to Robert Watson for organizing this project.
This project sponsored by UK Higher Education Innovation Fund (HEIF5) and
DARPA CTSRD project at the University of Cambridge Computer Laboratory.
FreeBSD/RISC-V project home: https://wiki.freebsd.org/riscv
Reviewed by: andrew, emaste, kib
Relnotes: Yes
Sponsored by: DARPA, AFRL
Sponsored by: HEIF5
Differential Revision: https://reviews.freebsd.org/D4982
Provide an easy to use framework for ARM64 DDB disassembler.
This commit does not contain full list of instruction opcodes.
Obtained from: Semihalf
Sponsored by: Cavium
Approved by: cognet (mentor)
Reviewed by: zbb, andrew, cognet
Differential revision: https://reviews.freebsd.org/D5114
Some firmware revisions provide different DTB tree that include
odd MDIO placement in the tree.
This commit adds support for 2 new buses:
- MRML bridge (PCIB subordinate)
- MDIO nexus (MRML subordinate)
This allows for the correct MDIO attachment with both - new and old
firmware.
Obtained from: Semihalf
Sponsored by: Cavium
Differential Revision: https://reviews.freebsd.org/D5070
- Separate FDT and general PCIe driver parts
- Drop some irrelevant printfs that cannot be displayed in
FDT attach
- Move ranges parsing to FDT portion of PCIe code
Obtained from: Semihalf
Sponsored by: Cavium
Differential Revision: https://reviews.freebsd.org/D5067
Allows for using hardware watchpoints for 1, 2, 4, 8 byte long addresses.
The default configuration of watchpoint is RW but code allows to select
RO or WO and X.
Since debugging registers are per-CPU (CP14) the watchpoint is set on
the CPU that was lucky (or not) to enter DDB.
HW breakpoints are used to perform single step in KDB.
When HW breakpoint is enabled all watchpoints are temporary disabled
to avoid recursive abort on both watchpoint and breakpoint.
In case of branch, the breakpoint is set to both - next instruction
and possible branch address. This requires at least 2 breakpoints
supported in the CPU however this is a must for ARMv6/v7 CPUs.
Reviewed by: imp
Submitted by: Zbigniew Bodek <zbb@semihalf.com>
Obtained from: Semihalf
Sponsored by: Juniper Networks Inc.
Differential Revision: https://reviews.freebsd.org/D4037
support frameworks (i.e. regulators/phy/tsensors/fuses...).
It provides simple unified consumers interface for manipulations with
on-chip resets.
Reviewed by: ian, imp (paritaly)
support frameworks(i.e. reset/regulators/phy/tsensors/fuses...).
The clock framework significantly simplifies handling of complex clock
structures found in modern SoCs. It provides the unified consumers
interface, holds and manages actual clock topology, frequency and gating.
It's tested on three different ARM boards (Nvidia Tegra TK1, Inforce 6410 and
Odroid XU2) and on one MIPS board (Creator Ci20) by kan@.
The framework is still far from perfect and probably doesn't have stable
interface yet, but we want to start testing it on more real boards and
different architectures.
Reviewed by: ian, kan (earlier version)