all the ancient Intel/VIA/SIS/etc chipsets on amd64 systems. Even the
newer intel stuff won't need this since we use acpi by default and we
don't have all their magic programming information. Just use a generic
"Host to PCI bridge" name if we ever hit this code.
- This is heavily derived from John Baldwin's apic/pci cleanup on i386.
- I have completely rewritten or drastically cleaned up some other parts.
(in particular, bootstrap)
- This is still a WIP. It seems that there are some highly bogus bioses
on nVidia nForce3-150 boards. I can't stress how broken these boards
are. I have a workaround in mind, but right now the Asus SK8N is broken.
The Gigabyte K8NPro (nVidia based) is also mind-numbingly hosed.
- Most of my testing has been with SCHED_ULE. SCHED_4BSD works.
- the apic and acpi components are 'standard'.
- If you have an nVidia nForce3-150 board, you are stuck with 'device
atpic' in addition, because they somehow managed to forget to connect the
8254 timer to the apic, even though its in the same silicon! ARGH!
This directly violates the ACPI spec.
- Add a new PCIM_HDRTYPE constant for the field in PCIR_HDRTYPE that holds
the header type.
- Replace several magic numbers with appropriate constants for the header
type register and a couple of PCI_FUNCMAX.
- Merge to amd64 the fix to the i386 bridge code to skip devices with
unknown header types.
Requested by: imp (1, 2)
a heavily stripped down FreeBSD/i386 (brutally stripped down actually) to
attempt to get a stable base to start from. There is a lot missing still.
Worth noting:
- The kernel runs at 1GB in order to cheat with the pmap code. pmap uses
a variation of the PAE code in order to avoid having to worry about 4
levels of page tables yet.
- It boots in 64 bit "long mode" with a tiny trampoline embedded in the
i386 loader. This simplifies locore.s greatly.
- There are still quite a few fragments of i386-specific code that have
not been translated yet, and some that I cheated and wrote dumb C
versions of (bcopy etc).
- It has both int 0x80 for syscalls (but using registers for argument
passing, as is native on the amd64 ABI), and the 'syscall' instruction
for syscalls. int 0x80 preserves all registers, 'syscall' does not.
- I have tried to minimize looking at the NetBSD code, except in a couple
of places (eg: to find which register they use to replace the trashed
%rcx register in the syscall instruction). As a result, there is not a
lot of similarity. I did look at NetBSD a few times while debugging to
get some ideas about what I might have done wrong in my first attempt.
#if'ed out for a while. Complete the deed and tidy up some other bits.
We need to be able to call this stuff from outer edges of interrupt
handlers for devices that have the ISR bits in pci config space. Making
the bios code mpsafe was just too hairy. We had also stubbed it out some
time ago due to there simply being too much brokenness in too many systems.
This adds a leaf lock so that it is safe to use pci_read_config() and
pci_write_config() from interrupt handlers. We still will use pcibios
to do interrupt routing if there is no acpi.. [yes, I tested this]
Briefly glanced at by: imp
These are still unknown name but these are working as well
as the other ServerWorks chipset.
Description strings should be corrected when the chipsets
are known.
MFC after: 1 week
route interrupts if the child bus is described in the PCIBIOS interrupt
routing table. For child busses that are in the routing table, they do
not necessarily use a 'swizzle' on their pins on the parent bus to route
interrupts for child devices. If the child bus is an embedded device then
the pins on the child devices can be (and usually are) directly connected
either to a PIC or to a Interrupt Router. This fixes PCIBIOS interrupt
routing across PCI-PCI bridges for embedded devices.
IRQ for an entry in a PCIBIOS interrupt routing ($PIR) table.
- Change pci_cfgintr() to except the current IRQ of a device as a fourth
argument and to use that IRQ for the device if it is valid.
- If an intpin entry in a $PIR entry has a link of 0, it means that that
intpin isn't connected to anything that can trigger an interrupt. Thus,
test the link against 0 to find invalid entries in the table instead of
implicitly relying on the irqs field to be zero. In the machines I have
looked at, intpin entries with a link of 0 often have the bits for all
possible interrupts for PCI devices set.
identify this gadget on the CPUID result alone, so I intend to activate
the necessary magic (i8254 frequency for instance) for it based on the
precense of the on-chip host to PCI bridge.
some bios vendors took it apon themselves to "censor" the
host->pci bridges from PCIBIOS callers, even when the caller
explicitly asks for them. This includes certain Compaq machines
(eg: DL360) and some laptops.
If we detect this, shut down pcibios and revert to using IO
port bashing.
Under -current, apcica does a better job anyway.
- Move PCI core code to dev/pci.
- Split bridge code out into separate modules.
- Remove the descriptive strings from the bridge drivers. If you
want to know what a device is, use pciconf. Add support for
broadly identifying devices based on class/subclass, and for
parsing a preloaded device identification database so that if
you want to waste the memory, you can identify *anything* we know
about.
- Remove machine-dependant code from the core PCI code. APIC interrupt
mapping is performed by shadowing the intline register in machine-
dependant code.
- Bring interrupt routing support to the Alpha
(although many platforms don't yet support routing or mapping
interrupts entirely correctly). This resulted in spamming
<sys/bus.h> into more places than it really should have gone.
- Put sys/dev on the kernel/modules include path. This avoids
having to change *all* the pci*.h includes.
systems.
From the PR:
When 'probe.slot' is PCI_SLOTMAX (== 31) and 'probe.func' is 7,
call to 'pci_cfgread()' here and machine suddenly hangs up.
I don't know why... (or 450GX chipset's bug?)
PR: i386/20379
Submitted by: Masayuki FUKUI <fukui@sonic.nm.fujitsu.co.jp>
i386/isa/pcibus.c. This gets -current running again on multiple host->pci
machines after the most recent nexus commits. I had discussed this with
Mike Smith, but ended up doing it slightly differently to what we
discussed as it turned out cleaner this way. Mike was suggesting creating
a new resource (SYS_RES_PCIBUS) or something and using *_[gs]et_resource(),
but IMHO that wasn't ideal as SYS_RES_* is meant to be a global platform
property, not a quirk of a given implementation. This does use the ivar
methods but does so properly. It also now prints the physical pci bus that
a host->pci bridge (pcib) corresponds to.
Some have dual host->PCI bridges for the same logical pci bus (!), eg:
some of the RCC chipsets. This is a 32/64 bit 33/66MHz and dual pci
voltage motherboard so persumably there are electical or signalling
differences but they are otherwise the same logical bus.
The new PCI probe code however was getting somewhat upset about it and
ended up creating two pci bridges to the same logical bus, which caused
devices on that logical bus to appear and be probed twice.
The ACPI data on this box correctly identifies this stuff, so bring on
ACPI! :-)
pcib_set_bus() cannot be used on the new child because it is
meant to be used on the *pci* device (it looks at the parent internally)
not the pcib being added. Bite the bullet and use ivars for the bus
number to avoid any doubts about whether the softc is consistant between
probe and attach. This should not break the Alpha code.
the drivers.
* Remove legacy inx/outx support from chipset and replace with macros
which call busspace.
* Rework pci config accesses to route through the pcib device instead of
calling a MD function directly.
With these changes it is possible to cleanly support machines which have
more than one independantly numbered PCI busses. As a bonus, the new
busspace implementation should be measurably faster than the old one.
the PnP probe is merely a stub as we make assumptions about some of this
hardware before we have probed it.
Since these devices (with the exception of the speaker) are 'standard',
suppress output in the !bootverbose case to clean up the probe messages
somewhat.