versions of the x87 tags. The conversion is naive, used abridged tag
is converted to valid unabridged, without additional checks for zero
and special values.
Noted by: bde
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
restore the FPU state from the format of machine FSAVE area. The
intended use is for ABI emulators to provide FSAVE-formatted FPU state
to usermode requiring it, while kernel could use FXSAVE due to
XMM/XSAVE.
The core functionality to convert from/to FXSAVE format is shared with
the fill_fpregs_xmm() and set_fpregs_xmm(). Move the later functions
to npx.c and rename them to npx_fill_fpregs_xmm() and
npx_set_fpregs_xmm(). They differ from nptx_get/set_fsave(9) since
our mcontext contains padding to be zeroed or ignored.
fill_fpregs() and set_fpregs() could be converted to use the new
interface, but there are small differences to handle.
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
remains. Xen is planning to phase out support for PV upstream since it
is harder to maintain and has more overhead. Modern x86 CPUs include
virtualization extensions that support HVM guests instead of PV guests.
In addition, the PV code was i386 only and not as well maintained recently
as the HVM code.
- Remove the i386-only NATIVE option that was used to disable certain
components for PV kernels. These components are now standard as they
are on amd64.
- Remove !XENHVM bits from PV drivers.
- Remove various shims required for XEN (e.g. PT_UPDATES_FLUSH, LOAD_CR3,
etc.)
- Remove duplicate copy of <xen/features.h>.
- Remove unused, i386-only xenstored.h.
Differential Revision: https://reviews.freebsd.org/D2362
Reviewed by: royger
Tested by: royger (i386/amd64 HVM domU and amd64 PVH dom0)
Relnotes: yes
- Dump an NT_X86_XSTATE note if XSAVE is in use. This note is designed
to match what Linux does in that 1) it dumps the entire XSAVE area
including the fxsave state, and 2) it stashes a copy of the current
xsave mask in the unused padding between the fxsave state and the
xstate header at the same location used by Linux.
- Teach readelf() to recognize NT_X86_XSTATE notes.
- Change PT_GET/SETXSTATE to take the entire XSAVE state instead of
only the extra portion. This avoids having to always make two
ptrace() calls to get or set the full XSAVE state.
- Add a PT_GET_XSTATE_INFO which returns the length of the current
XSTATE save area (so the size of the buffer needed for PT_GETXSTATE)
and the current XSAVE mask (%xcr0).
Differential Revision: https://reviews.freebsd.org/D1193
Reviewed by: kib
MFC after: 2 weeks
support for AVX on i386.
- Similar to amd64, move the FPU save area out of the PCB and instead
store saved FPU state in a variable-sized buffer after the PCB on the
stack.
- To support the variable PCB location, alter the locore code to only use
the bottom-most page of proc0stack for init386(). init386() returns
the correct stack pointer to locore which adjusts the stack for thread0
before calling mi_startup().
- Don't bother setting cr3 in thread0's pcb in locore before calling
init386(). It wasn't used (init386() overwrote it at the end) and
it doesn't work with the variable-sized FPU save area.
- Remove the new-bus attachment from npx. This was only ever useful for
external co-processors using IRQ13, but those have not been supported
for several years. npxinit() is now called much earlier during boot
(init386()) similar to amd64.
- Implement PT_{GET,SET}XSTATE and I386_GET_XFPUSTATE.
- npxsave() is now only called from context switch contexts so it can
use XSAVEOPT.
Differential Revision: https://reviews.freebsd.org/D1058
Reviewed by: kib
Tested on: FreeBSD/i386 VM under bhyve on Intel i5-2520
of this patch, resumectx() called npxresume() directly, but that doesn't
work because resumectx() runs with a non-standard %cs selector. Instead,
all of the FPU suspend/resume handling is done in C.
MFC after: 1 week
context into memory for the kernel threads which called
fpu_kern_thread(9). This allows the fpu_kern_enter() callers to not
check for is_fpu_kern_thread() to get the optimization.
Apply the flag to padlock(4) and aesni(4). In aesni_cipher_process(),
do not leak FPU context state on error.
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
Re-structure Xen HVM support so that:
- Xen is detected and hypercalls can be performed very
early in system startup.
- Xen interrupt services are implemented using FreeBSD's native
interrupt delivery infrastructure.
- the Xen interrupt service implementation is shared between PV
and HVM guests.
- Xen interrupt handlers can optionally use a filter handler
in order to avoid the overhead of dispatch to an interrupt
thread.
- interrupt load can be distributed among all available CPUs.
- the overhead of accessing the emulated local and I/O apics
on HVM is removed for event channel port events.
- a similar optimization can eventually, and fairly easily,
be used to optimize MSI.
Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure,
and misc Xen cleanups:
Sponsored by: Spectra Logic Corporation
Unification of PV & HVM interrupt infrastructure, bug fixes,
and misc Xen cleanups:
Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D
sys/x86/x86/local_apic.c:
sys/amd64/include/apicvar.h:
sys/i386/include/apicvar.h:
sys/amd64/amd64/apic_vector.S:
sys/i386/i386/apic_vector.s:
sys/amd64/amd64/machdep.c:
sys/i386/i386/machdep.c:
sys/i386/xen/exception.s:
sys/x86/include/segments.h:
Reserve IDT vector 0x93 for the Xen event channel upcall
interrupt handler. On Hypervisors that support the direct
vector callback feature, we can request that this vector be
called directly by an injected HVM interrupt event, instead
of a simulated PCI interrupt on the Xen platform PCI device.
This avoids all of the overhead of dealing with the emulated
I/O APIC and local APIC. It also means that the Hypervisor
can inject these events on any CPU, allowing upcalls for
different ports to be handled in parallel.
sys/amd64/amd64/mp_machdep.c:
sys/i386/i386/mp_machdep.c:
Map Xen per-vcpu area during AP startup.
sys/amd64/include/intr_machdep.h:
sys/i386/include/intr_machdep.h:
Increase the FreeBSD IRQ vector table to include space
for event channel interrupt sources.
sys/amd64/include/pcpu.h:
sys/i386/include/pcpu.h:
Remove Xen HVM per-cpu variable data. These fields are now
allocated via the dynamic per-cpu scheme. See xen_intr.c
for details.
sys/amd64/include/xen/hypercall.h:
sys/dev/xen/blkback/blkback.c:
sys/i386/include/xen/xenvar.h:
sys/i386/xen/clock.c:
sys/i386/xen/xen_machdep.c:
sys/xen/gnttab.c:
Prefer FreeBSD primatives to Linux ones in Xen support code.
sys/amd64/include/xen/xen-os.h:
sys/i386/include/xen/xen-os.h:
sys/xen/xen-os.h:
sys/dev/xen/balloon/balloon.c:
sys/dev/xen/blkback/blkback.c:
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/console/xencons_ring.c:
sys/dev/xen/control/control.c:
sys/dev/xen/netback/netback.c:
sys/dev/xen/netfront/netfront.c:
sys/dev/xen/xenpci/xenpci.c:
sys/i386/i386/machdep.c:
sys/i386/include/pmap.h:
sys/i386/include/xen/xenfunc.h:
sys/i386/isa/npx.c:
sys/i386/xen/clock.c:
sys/i386/xen/mp_machdep.c:
sys/i386/xen/mptable.c:
sys/i386/xen/xen_clock_util.c:
sys/i386/xen/xen_machdep.c:
sys/i386/xen/xen_rtc.c:
sys/xen/evtchn/evtchn_dev.c:
sys/xen/features.c:
sys/xen/gnttab.c:
sys/xen/gnttab.h:
sys/xen/hvm.h:
sys/xen/xenbus/xenbus.c:
sys/xen/xenbus/xenbus_if.m:
sys/xen/xenbus/xenbusb_front.c:
sys/xen/xenbus/xenbusvar.h:
sys/xen/xenstore/xenstore.c:
sys/xen/xenstore/xenstore_dev.c:
sys/xen/xenstore/xenstorevar.h:
Pull common Xen OS support functions/settings into xen/xen-os.h.
sys/amd64/include/xen/xen-os.h:
sys/i386/include/xen/xen-os.h:
sys/xen/xen-os.h:
Remove constants, macros, and functions unused in FreeBSD's Xen
support.
sys/xen/xen-os.h:
sys/i386/xen/xen_machdep.c:
sys/x86/xen/hvm.c:
Introduce new functions xen_domain(), xen_pv_domain(), and
xen_hvm_domain(). These are used in favor of #ifdefs so that
FreeBSD can dynamically detect and adapt to the presence of
a hypervisor. The goal is to have an HVM optimized GENERIC,
but more is necessary before this is possible.
sys/amd64/amd64/machdep.c:
sys/dev/xen/xenpci/xenpcivar.h:
sys/dev/xen/xenpci/xenpci.c:
sys/x86/xen/hvm.c:
sys/sys/kernel.h:
Refactor magic ioport, Hypercall table and Hypervisor shared
information page setup, and move it to a dedicated HVM support
module.
HVM mode initialization is now triggered during the
SI_SUB_HYPERVISOR phase of system startup. This currently
occurs just after the kernel VM is fully setup which is
just enough infrastructure to allow the hypercall table
and shared info page to be properly mapped.
sys/xen/hvm.h:
sys/x86/xen/hvm.c:
Add definitions and a method for configuring Hypervisor event
delievery via a direct vector callback.
sys/amd64/include/xen/xen-os.h:
sys/x86/xen/hvm.c:
sys/conf/files:
sys/conf/files.amd64:
sys/conf/files.i386:
Adjust kernel build to reflect the refactoring of early
Xen startup code and Xen interrupt services.
sys/dev/xen/blkback/blkback.c:
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/blkfront/block.h:
sys/dev/xen/control/control.c:
sys/dev/xen/evtchn/evtchn_dev.c:
sys/dev/xen/netback/netback.c:
sys/dev/xen/netfront/netfront.c:
sys/xen/xenstore/xenstore.c:
sys/xen/evtchn/evtchn_dev.c:
sys/dev/xen/console/console.c:
sys/dev/xen/console/xencons_ring.c
Adjust drivers to use new xen_intr_*() API.
sys/dev/xen/blkback/blkback.c:
Since blkback defers all event handling to a taskqueue,
convert this task queue to a "fast" taskqueue, and schedule
it via an interrupt filter. This avoids an unnecessary
ithread context switch.
sys/xen/xenstore/xenstore.c:
The xenstore driver is MPSAFE. Indicate as much when
registering its interrupt handler.
sys/xen/xenbus/xenbus.c:
sys/xen/xenbus/xenbusvar.h:
Remove unused event channel APIs.
sys/xen/evtchn.h:
Remove all kernel Xen interrupt service API definitions
from this file. It is now only used for structure and
ioctl definitions related to the event channel userland
device driver.
Update the definitions in this file to match those from
NetBSD. Implementing this interface will be necessary for
Dom0 support.
sys/xen/evtchn/evtchnvar.h:
Add a header file for implemenation internal APIs related
to managing event channels event delivery. This is used
to allow, for example, the event channel userland device
driver to access low-level routines that typical kernel
consumers of event channel services should never access.
sys/xen/interface/event_channel.h:
sys/xen/xen_intr.h:
Standardize on the evtchn_port_t type for referring to
an event channel port id. In order to prevent low-level
event channel APIs from leaking to kernel consumers who
should not have access to this data, the type is defined
twice: Once in the Xen provided event_channel.h, and again
in xen/xen_intr.h. The double declaration is protected by
__XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared
twice within a given compilation unit.
sys/xen/xen_intr.h:
sys/xen/evtchn/evtchn.c:
sys/x86/xen/xen_intr.c:
sys/dev/xen/xenpci/evtchn.c:
sys/dev/xen/xenpci/xenpcivar.h:
New implementation of Xen interrupt services. This is
similar in many respects to the i386 PV implementation with
the exception that events for bound to event channel ports
(i.e. not IPI, virtual IRQ, or physical IRQ) are further
optimized to avoid mask/unmask operations that aren't
necessary for these edge triggered events.
Stubs exist for supporting physical IRQ binding, but will
need additional work before this implementation can be
fully shared between PV and HVM.
sys/amd64/amd64/mp_machdep.c:
sys/i386/i386/mp_machdep.c:
sys/i386/xen/mp_machdep.c
sys/x86/xen/hvm.c:
Add support for placing vcpu_info into an arbritary memory
page instead of using HYPERVISOR_shared_info->vcpu_info.
This allows the creation of domains with more than 32 vcpus.
sys/i386/i386/machdep.c:
sys/i386/xen/clock.c:
sys/i386/xen/xen_machdep.c:
sys/i386/xen/exception.s:
Add support for new event channle implementation.
on x86 and use that to implement stop_emulating() in the fpu/npx code.
Reimplement start_emulating() in the non-XEN case by using load_cr0() and
rcr0() instead of the 'lmsw' and 'smsw' instructions. Intel explicitly
discourages the use of 'lmsw' and 'smsw' on 80386 and later processors in
the description of these instructions in Volume 2 of the ADM.
Reviewed by: kib
MFC after: 1 month
64bit and 32bit ABIs. As a side-effect, it enables AVX on capable
CPUs.
In particular:
- Query the CPU support for XSAVE, list of the supported extensions
and the required size of FPU save area. The hw.use_xsave tunable is
provided for disabling XSAVE, and hw.xsave_mask may be used to
select the enabled extensions.
- Remove the FPU save area from PCB and dynamically allocate the
(run-time sized) user save area on the top of the kernel stack,
right above the PCB. Reorganize the thread0 PCB initialization to
postpone it after BSP is queried for save area size.
- The dumppcb, stoppcbs and susppcbs now do not carry the FPU state as
well. FPU state is only useful for suspend, where it is saved in
dynamically allocated suspfpusave area.
- Use XSAVE and XRSTOR to save/restore FPU state, if supported and
enabled.
- Define new mcontext_t flag _MC_HASFPXSTATE, indicating that
mcontext_t has a valid pointer to out-of-struct extended FPU
state. Signal handlers are supplied with stack-allocated fpu
state. The sigreturn(2) and setcontext(2) syscall honour the flag,
allowing the signal handlers to inspect and manipilate extended
state in the interrupted context.
- The getcontext(2) never returns extended state, since there is no
place in the fixed-sized mcontext_t to place variable-sized save
area. And, since mcontext_t is embedded into ucontext_t, makes it
impossible to fix in a reasonable way. Instead of extending
getcontext(2) syscall, provide a sysarch(2) facility to query
extended FPU state.
- Add ptrace(2) support for getting and setting extended state; while
there, implement missed PT_I386_{GET,SET}XMMREGS for 32bit binaries.
- Change fpu_kern KPI to not expose struct fpu_kern_ctx layout to
consumers, making it opaque. Internally, struct fpu_kern_ctx now
contains a space for the extended state. Convert in-kernel consumers
of fpu_kern KPI both on i386 and amd64.
First version of the support for AVX was submitted by Tim Bird
<tim.bird am sony com> on behalf of Sony. This version was written
from scratch.
Tested by: pho (previous version), Yamagi Burmeister <lists yamagi org>
MFC after: 1 month
mark user FPU context initialized, if current context is user context.
It was reversed in r215865, by inadequate change of this code fragment
to a call to fpuuserinited()/npxuserinited().
The issue is only relevant for in-kernel users of FPU.
Reported by: Jan Henrik Sylvester <me janh de>, Mike Tancsa <mike sentex net>
Tested by: Mike Tancsa
MFC after: 3 days
functions, they are unused. Remove 'user' from npxgetuserregs()
etc. names.
For {npx,fpu}{get,set}regs(), always use pcb->pcb_user_save for FPU
context storage. This eliminates the need for ugly copying with
overwrite of the newly added and reserved fields in ucontext on i386
to satisfy alignment requirements for fpusave() and fpurstor().
pc98 version was copied from i386.
Suggested and reviewed by: bde
Tested by: pho (i386 and amd64)
MFC after: 1 week
silently converts 'fld' to 'flds', without taking the actual variable
type into account (!), but clang's integrated assembler rightfully
complains about it.
Discussed with: cperciva
removal, MFi386 r209198:
Use critical sections instead of disabling local interrupts to ensure
the consistency between PCPU fpcurthread and the state of FPU.
Reviewed by: bde
Tested by: pho
believed that all 486-class CPUs FreeBSD is capable to run on, either
have no FPU and cannot use external coprocessor, or have FPU on the
package and can use #MF.
Reviewed by: bde
Tested by: pho (previous version)
FPU registers for copying. Remove the switch table and jumps from
bcopy/bzero/... to the actual implementation.
As a side-effect, i486-optimized bzero is removed.
Reviewed by: bde
Tested by: pho (previous version)
FPU/SSE hardware. Caller should provide a save area that is chained
into the stack of the areas; pcb save_area for usermode FPU state is
on top. The pcb now contains a pointer to the current FPU saved area,
used during FPUDNA handling and context switches. There is also a
facility to allow the kernel thread to use pcb save_area.
Change the dreaded warnings "npxdna in kernel mode!" into the panics
when FPU usage is not registered.
KPI discussed with: fabient
Tested by: pho, fabient
Hardware provided by: Sentex Communications
MFC after: 1 month
in AMD FPUs:
- Do not clear the affected state in the case that the FPU registers for
the thread that already owns the FPU are changed via fpu_setregs(). The
only local information the thread would see is its own state in that
case.
- Fix a type mismatch for the dummy variable used in a "fld". It accepts
a float, not a double.
Reviewed by: bde
Approved by: so (cperciva)
MFC after: 1 month
ABIs:
- Store the FPU initial control word in the pcb for each thread.
- When first using the FPU, load the initial control word after restoring
the clean state if it is not the standard control word.
- Provide a correct control word for Linux/i386 binaries under
FreeBSD/amd64.
- Adjust the control word returned for fpugetregs()/npxgetregs() when a
thread hasn't used the FPU yet to reflect the real initial control
word for the current ABI.
- The Linux/i386 ABI for FreeBSD/i386 now properly sets the right control
word instead of trashing whatever the current state of the FPU is.
Reviewed by: bde
- Remove the control word parameter to npxinit(). It was always set
to __INITIAL_NPXCW__.
- Remove npx_cleanstate_ready as the cleanstate is always initalized
when it is used.
- Improve the handling of the case when the FPU isn't present. Now
the npx0 device no longer succeeds in its probe so all of npx_attach()
is skipped. Also, we allow this case with SMP (though that shouldn't
actually occur as all i386 systems that support SMP have FPUs) now.
SMP was only an issue back when we had an FPU emulator which was not
per-CPU.
- MFamd64: Clear some of the state in npx_cleanstate rather than leaving
it as garbage.
- MFamd64: When a user thread first uses the FPU, use npx_cleanstate for
the initial FPU state.
Reviewed by: bde
Log:
- merge in latest xenbus from dfr's xenhvm
- fix race condition in xs_read_reply by converting tsleep to mtx_sleep
Log:
unmask evtchn in bind_{virq, ipi}_to_irq
Log:
- remove code for handling case of not being able to sleep
- eliminate tsleep - make sleeps atomic
- Use thread_lock() rather than sched_lock for per-thread scheduling
sychronization.
- Use the per-process spinlock rather than the sched_lock for per-process
scheduling synchronization.
Tested by: kris, current@
Tested on: i386, amd64, ULE, 4BSD, libthr, libkse, PREEMPTION, etc.
Discussed with: kris, attilio, kmacy, jhb, julian, bde (small parts each)
POSIX (susv3) requires this, but it is unclear what should be inherited,
duplicating whole 387 stack for new thread seems to be unnecessary and
dangerous. Revert to previous code, force a new thread to be started with
clean FP state.
earlier in cpu_setregs().
- If we know this CPU has a FPU via cpuid, then just assume the INT16
interface and make the npx device quiet to not clutter the dmesg. This
is true for all Pentium and later CPUs and even some of the later 486dx
CPUs.
Reviewed by: bde
Tested by: ps
MFC after: 1 week
commit to atpic.c) there may not be an IRQ 13. Instead, just keep going.
If the INT16 interface doesn't work then we will eventually panic anyway.
FWIW: We could probably just axe the support for IRQ 13 altogether at this
point. The only thing we'd lose support for are 486sx systems with
external 487 FPUs.
MFC after: 1 week
as they are already default for I686_CPU for almost 3 years, and
CPU_DISABLE_SSE always disables it. On the other hand, CPU_ENABLE_SSE
does not work for I486_CPU and I586_CPU.
This commit has:
- Removed the option from conf/options.*
- Removed the option and comments from MD NOTES files
- Simplified the CPU_ENABLE_SSE ifdef's so they don't
deal with CPU_ENABLE_SSE from kernel configuration. (*)
For most users, this commit should be largely no-op. If you used to
place CPU_ENABLE_SSE into your kernel configuration for some reason,
it is time to remove it.
(*) The ifdef's of CPU_ENABLE_SSE are not removed at this point, since
we need to change it to !defined(CPU_DISABLE_SSE) && defined(I686_CPU),
not just !defined(CPU_DISABLE_SSE), if we really want to do so.
Discussed on: -arch
Approved by: re (scottl)