in FreeBSD 5.x to allow network device drivers to run with Giant
despite the network stack being Giant-free. This significantly
simplifies calls into ioctl() on network interfaces, especially
in the multicast code, as well as eliminates deferred invocation
of interface if_start routines.
Disable the build on device drivers still depending on
IFF_NEEDSGIANT as they no longer compile. They will be removed
in a few weeks if they haven't been made MPSAFE in that time.
Disabled drivers:
if_ar
if_axe
if_aue
if_cdce
if_cue
if_kue
if_ray
if_rue
if_rum
if_sr
if_udav
if_ural
if_zyd
Drivers that were already disabled because of tty changes:
if_ppp
if_sl
Discussed on: arch@
Tested on an HD3850 (RV670) on loan from Warren Block.
Currently, you need one of the following for this to be useful:
x11-drivers/xf86-video-radeonhd-devel (not tested)
xf86-video-ati from git (EXA works, xv is too fast)
xf86-video-radeonhd from git (EXA works, xv works)
There is no 3d support available from dri just yet.
MFC after: 2 weeks
o implement URB_FUNCTION_ABORT_PIPE handling.
o remove unused code related with canceling the timer list for USB
drivers.
o whitespace cleanup and style(9)
Obtained from: hps's original patch
checked whether this applies to builds in /sys/*/compile/* as well):
- Create empty opt_*.h files were missing
- Hook up svr4 to the build. It compiles fine here, so no reason to
disconnect it in the Makefile. were missing
- Hook up svr4 to the build. It compiles fine here, so no reason to
disconnect it in the Makefile.
found inside extended partitions and used to create logical partitions.
At this time write/modify support is not (yet) present.
The EBR and MBR schemes both check the parent scheme. The MBR will
back-off when nested under another MBR, whereas the EBR only nests
under a MBR.
Initial version of ATMEGA USB device controller
driver. Has not been tested on real hardware yet.
The driver is based upon the AT91DCI driver.
Submitted by: Hans Petter Selasky
module. These files cause manual interaction when building
ports/audio/aureal-kmod which provides a usable i386-only driver (it requires
linking against some linux object files distributed by vendor which bankrupted
back in 2000).
MFC after: 1 week
src/lib/libusb20/libusb20_desc.c
Make "libusb20_desc_foreach()" more readable.
src/sys/dev/usb2/controller/*.[ch]
src/sys/dev/usb2/core/*.[ch]
Implement support for USB power save for all HC's.
Implement support for Big-endian EHCI.
Move Huawei quirks back into "u3g" driver.
Improve device enumeration.
src/sys/dev/usb2/ethernet/*[ch]
Patches for supporting new AXE Gigabit chipset.
src/sys/dev/usb2/serial/*[ch]
Fix IOCTL return code.
src/sys/dev/usb2/wlan/*[ch]
Sync with old USB stack.
Submitted by: hps
Now the NDISulator supports NDIS USB drivers that it've tested with
devices as follows:
- Anygate XM-142 (Conexant)
- Netgear WG111v2 (Realtek)
- U-Khan UW-2054u (Marvell)
- Shuttle XPC Accessory PN20 (Realtek)
- ipTIME G054U2 (Ralink)
- UNiCORN WL-54G (ZyDAS)
- ZyXEL G-200v2 (ZyDAS)
All of them succeeded to attach and worked though there are still some
problems that it's expected to be solved.
To use NDIS USB support, you should rebuild and install ndiscvt(8) and
if you encounter a problem to attach please set `hw.ndisusb.halt' to
0 then retry.
I expect no changes of the NDIS code for PCI, PCMCIA devices.
Obtained from: //depot/projects/ndisusb/...
1. separating L2 tables (ARP, NDP) from the L3 routing tables
2. removing as much locking dependencies among these layers as
possible to allow for some parallelism in the search operations
3. simplify the logic in the routing code,
The most notable end result is the obsolescent of the route
cloning (RTF_CLONING) concept, which translated into code reduction
in both IPv4 ARP and IPv6 NDP related modules, and size reduction in
struct rtentry{}. The change in design obsoletes the semantics of
RTF_CLONING, RTF_WASCLONE and RTF_LLINFO routing flags. The userland
applications such as "arp" and "ndp" have been modified to reflect
those changes. The output from "netstat -r" shows only the routing
entries.
Quite a few developers have contributed to this project in the
past: Glebius Smirnoff, Luigi Rizzo, Alessandro Cerri, and
Andre Oppermann. And most recently:
- Kip Macy revised the locking code completely, thus completing
the last piece of the puzzle, Kip has also been conducting
active functional testing
- Sam Leffler has helped me improving/refactoring the code, and
provided valuable reviews
- Julian Elischer setup the perforce tree for me and has helped
me maintaining that branch before the svn conversion
src into the tree. The old split was balanced on module dependencies
and symbol exposure that no longer exists. Users that want a module
setup with rate control algorithm other than sample must override
ATH_RATE in the ath module Makefile.
Reviewed by: imp
aio code and are registered via the recently added SYSCALL32_*() helpers.
- Since the aio code likes to invoke fuword and suword a lot down in the
"bowels" of system calls, add a structure holding a set of operations for
things like storing errors, copying in the aiocb structure, storing
status, etc. The 32-bit system calls use a separate operations vector to
handle fuword32 vs fuword, etc. Also, the oldsigevent handling is now
done by having seperate operation vectors with different aiocb copyin
routines.
- Split out kern_foo() functions for the various AIO system calls so the
32-bit front ends can manage things like copying in and converting
timespec structures, etc.
- For both the native and 32-bit aio_suspend() and lio_listio() calls,
just use copyin() to read the array of aiocb pointers instead of using
a for loop that iterated over fuword/fuword32. The error handling in
the old case was incomplete (lio_listio() just ignored any aiocb's that
it got an EFAULT trying to read rather than reporting an error), and
possibly slower.
MFC after: 1 month
directly include only the header files needed. This reduces the
unneeded spamming of various headers into lots of files.
For now, this leaves us with very few modules including vnet.h
and thus needing to depend on opt_route.h.
Reviewed by: brooks, gnn, des, zec, imp
Sponsored by: The FreeBSD Foundation
module; the ath module now brings in the hal support. Kernel
config files are almost backwards compatible; supplying
device ath_hal
gives you the same chip support that the binary hal did but you
must also include
options AH_SUPPORT_AR5416
to enable the extended format descriptors used by 11n parts.
It is now possible to control the chip support included in a
build by specifying exactly which chips are to be supported
in the config file; consult ath_hal(4) for information.
In file included from /src/sys/modules/powermac_nvram/../../dev/powermac_nvram/powermac_nvram.c:38:
@/dev/ofw/ofw_bus.h:36:24: error: ofw_bus_if.h: No such file or directory
I am not sure for how long this had not worked and if it was just the
latest vimage commit that had revealed this or if nobody had built
universe successfully in a while. Btw, the tinderbox did not complain
either so that is probably the reason noone had noticed.
and Core Duo), models 0xF (Core2), model 0x17 (Core2Extreme) and
model 0x1C (Atom).
In these CPUs, the actual numbers, kinds and widths of PMCs present
need to queried at run time. Support for specific "architectural"
events also needs to be queried at run time.
Model 0xE CPUs support programmable PMCs, subsequent CPUs
additionally support "fixed-function" counters.
- Use event names that are close to vendor documentation, taking in
account that:
- events with identical semantics on two or more CPUs in this family
can have differing names in vendor documentation,
- identical vendor event names may map to differing events across
CPUs,
- each type of CPU supports a different subset of measurable
events.
Fixed-function and programmable counters both use the same vendor
names for events. The use of a class name prefix ("iaf-" or
"iap-" respectively) permits these to be distinguished.
- In libpmc, refactor pmc_name_of_event() into a public interface
and an internal helper function, for use by log handling code.
- Minor code tweaks: staticize a global, freshen a few comments.
Tested by: gnn
Fix some issues about re-scanning of the devices.
src/lib/libusb20/libusb20_ugen20.c
Fix issue about libusb20 having to release the
USB transfers before doing a SET_CONFIG, else
the kernel will kill the file handle.
src/sys/dev/usb2/core/usb2_device.
src/sys/dev/usb2/core/usb2_generic.c
src/sys/dev/usb2/core/usb2_generic.h
Add support for U3G devices.
Improve and cleanup FIFO free handling.
Improve device re-enumeration.
src/sys/dev/usb2/core/usb2_msctest.c
src/sys/dev/usb2/core/usb2_msctest.h
Fix some problems in the USB Mass Storage Test.
Add Huawei vendor specific quirks.
src/sys/dev/usb2/core/usb2_request.c
Improve device re-enumeration.
src/sys/dev/usb2/ethernet/if_aue2.c
src/sys/dev/usb2/include/usb2_devid.h
src/sys/dev/usb2/include/usb2_devtable.h
src/sys/dev/usb2/quirk/usb2_quirk.c
Integrate changes from the old USB driver.
src/sys/dev/usb2/include/usb2_standard.h
Add definition of USB3.0 structures from USB.org.
src/sys/dev/usb2/serial/u3g2.c
src/sys/dev/usb2/serial/ugensa2.c
src/sys/modules/usb2/Makefile
src/sys/modules/usb2/serial_3g/Makefile
Import U3G driver.
Submitted by: Hans Petter Selasky (usb4bsd)
This bring huge amount of changes, I'll enumerate only user-visible changes:
- Delegated Administration
Allows regular users to perform ZFS operations, like file system
creation, snapshot creation, etc.
- L2ARC
Level 2 cache for ZFS - allows to use additional disks for cache.
Huge performance improvements mostly for random read of mostly
static content.
- slog
Allow to use additional disks for ZFS Intent Log to speed up
operations like fsync(2).
- vfs.zfs.super_owner
Allows regular users to perform privileged operations on files stored
on ZFS file systems owned by him. Very careful with this one.
- chflags(2)
Not all the flags are supported. This still needs work.
- ZFSBoot
Support to boot off of ZFS pool. Not finished, AFAIK.
Submitted by: dfr
- Snapshot properties
- New failure modes
Before if write requested failed, system paniced. Now one
can select from one of three failure modes:
- panic - panic on write error
- wait - wait for disk to reappear
- continue - serve read requests if possible, block write requests
- Refquota, refreservation properties
Just quota and reservation properties, but don't count space consumed
by children file systems, clones and snapshots.
- Sparse volumes
ZVOLs that don't reserve space in the pool.
- External attributes
Compatible with extattr(2).
- NFSv4-ACLs
Not sure about the status, might not be complete yet.
Submitted by: trasz
- Creation-time properties
- Regression tests for zpool(8) command.
Obtained from: OpenSolaris
controller. The controller is also known as L1E(AR8121) and
L2E(AR8113/AR8114). Unlike its predecessor Attansic L1,
AR8121/AR8113/AR8114 uses completely different Rx logic such that
it requires separate driver. Datasheet for AR81xx is not available
to open source driver writers but it shares large part of Tx and
PHY logic of L1. I still don't understand some part of register
meaning and some MAC statistics counters but the driver seems to
have no critical issues for performance and stability.
The AR81xx requires copy operation to pass received frames to upper
stack such that ale(4) consumes a lot of CPU cycles than that of
other controller. A couple of silicon bugs also adds more CPU
cycles to address the known hardware bug. However, if you have fast
CPU you can still saturate the link.
Currently ale(4) supports the following hardware features.
- MSI.
- TCP Segmentation offload.
- Hardware VLAN tag insertion/stripping with checksum offload.
- Tx TCP/UDP checksum offload and Rx IP/TCP/UDP checksum offload.
- Tx/Rx interrupt moderation.
- Hardware statistics counters.
- Jumbo frame.
- WOL.
AR81xx PCIe ethernet controllers are mainly found on ASUS EeePC or
P5Q series of ASUS motherboards. Special thanks to Jeremy Chadwick
who sent the hardware to me. Without his donation writing a driver
for AR81xx would never have been possible. Big thanks to all people
who reported feedback or tested patches.
HW donated by: koitsu
Tested by: bsam, Joao Barros <joao.barros <> gmail DOT com >
Jan Henrik Sylvester <me <> janh DOT de >
Ivan Brawley < ivan <> brawley DOT id DOT au >,
CURRENT ML
dependencies. A 'struct pmc_classdep' structure describes operations
on PMCs; 'struct pmc_mdep' contains one or more 'struct pmc_classdep'
structures depending on the CPU in question.
Inside PMC class dependent code, row indices are relative to the
PMCs supported by the PMC class; MI code in "hwpmc_mod.c" translates
global row indices before invoking class dependent operations.
- Augment the OP_GETCPUINFO request with the number of PMCs present
in a PMC class.
- Move code common to Intel CPUs to file "hwpmc_intel.c".
- Move TSC handling to file "hwpmc_tsc.c".