Disable "cache line streaming" for aic7890/91 Rev A chips. I
have never seen these chips fail using this feature, but
some of Adaptec's regression tests have.
Explicitly set "cache line streaming" to on for aic7896/97
chips. This was happening before, but this documents the
fact that these chips will not function correctly without
CACHETHEEN set.
aic7xxx.h:
Add new bug types.
Fix a typo in a comment.
aic7xxx.reg:
Add a definition for the SHVALID bit in SSTAT3 for Ultra2/3
chips. This bit inicates whether the bottom most (current)
element in the S/G fifo has exhausted its data count.
aic7xxx.seq:
Be more careful in how we turn off the secondary DMA channel.
Being less careful may hang the PCI bus arbitor that negotiates
between the two DMA engines.
Remove an unecessary and incorrect flag set operation in
the overrun case.
On Ultra2/3 controllers, clear the dma FIFO before starting
to handle an overrun. We don't want any residual bytes from
the beginning of the overrun to cause the code that shuts
down the DMA engine from hanging because the FIFO is not
(and never will be) empty.
If the data fifo is empty by the time we notice that a
read transaction has completed, there is no need to
hit the flush bit on aic7890/91 hardware that will not
perform an auto-flush. Skip some cycles by short circuiting
the manual flush code in this case.
When transitioning out of data phase, make sure that we
have the next S/G element loaded for the following
reconnect if there is more work to do. The code
would do this in most cases before, but there was
a small window where the current S/G element could
be exhausted before our fetch of the next S/G element
completed. Since the S/G fetch is already initiated
at this point, it makes sense to just wait for the
segment to arrive instead of incuring even more latency
by canceling the fetch and initiating it later.
Fast path the end of data phase handling for the last
S/G segment. In the general case, we might have
worked ahead a bit by stuffing the S/G FIFO with
additional segments. If we stop before using them
all, we need to fixup our location in the S/G stream.
Since we can't work past the last S/G segment, no
fixups are ever required if we stop somewhere in
that final segment.
Fix a little buglet in the target mode dma bug handler.
We were employing the workaround in all cases instead
of only for the chips that require it.
Fix the cause of SCB timeouts and possible "lost data"
during read operations on the aic7890. When sending
a data on any Ultra2/3 controller, the final segment
must be marked as such so the FIFO will be flushed and
cleaned up correctly when the transfer is ended. We
failed to do this for the CDB transfer and so, if
the target immediately transfered from command to data
phase without an intervening disconnection, the first
segment transferred would be any residual bytes from
the cdb transfer. The Ultra160 controllers for some
reason were not affected by this problem.
Many Thanks to Tor Egge for bringing the aic7890 problem
to my attention, providing analysis, as well as a mechanism
to reproduce the problem.
stored at a different location in the PCI space, so adjust accordingly.
Also, when using more than two smart controllers in one machine, the
disks were assigned the wrong drive number; fix this as well.
the 12.4.11 firmware with a few changes to the link handling code merged
in from the 12.4.13 release. I'm doing this because the 12.4.13 firmware
doesn't seem to handle 10/100 link settings properly on 1000baseT cards.
Note that the revision codes still identify the firmware as 12.4.13
because both ti_fw2.h and ti_fw.h have to have the same revision values,
and I wanted to keep the 12.4.13 firmware for Tigon 1 cards.
It's nice to have firmware source.
wrong bytes.
o Improve the public interface; use void* instead of char* or u_int64_t
to pass arbitrary data around.
Submitted by: kris ("horrible bug")
didn't bother to send a saved data pointers after the last transfer,
is not recorded in sgptr. This was only a problem if the target
reported non-zero status as we always check the residual in that case.
Correct the BUILD_TCL macro. It was placing the target id
in the wrong bits. This was only an issue for adapters that
do not perform SCB paging (aha-3940AUW for instance).
Don't bother inlining ahc_index_busy_tcl. It is never
used in a performance critical path and is a bit chunky.
Correct ahc_index_busy_tcl to deal with "busy target tables"
embedded in the latter half of 64byte SCBs.
Don't initialize the busy target table to its empty state
until after we have finished extracting configuration
information from chip SRAM. In the common case of using
16 bytes of chip SRAM to do untagged target lookups,
we were trashing the last 8 targets configuration data.
(actually only target 8 because of the bug in the
BUILD_TCL macro).
Cram the "bus reset delivered" message back under bootverbose.
Fix the cleanup of the SCB busy target table when aborting
commands. If the lun is wildcarded, we must loop through
all possible luns.
aic7xxx.h:
Only bother supporting 64 luns right now. It doesn't seem
like either this driver or any peripherals will be doing
information unit transfers (where the lun number is a
32 bit integer) any time soon.
aic7xxx.seq:
Fix support for the aic7895. We must flush the data
FIFO if performing a manual transfer that is not
a multiple of 8 bytes. We were doing this quite
regularly for embedded cdbs.
Manaually flush the fifo on earlier adapters when
dealing with embedded cdbs too. We were stuffing
the FIFO with 16 bytes instead, but triggering
the flush is more efficient and allows us to
remove two instructions from the "copy_to_fifo"
routine.
o Make the comments KNF-compliant.
o Use nanotime instead of getnanotime; the manpage lies about the
kern.timecounter.method - it has been removed.
o Fix the ENTROPYSOURCE const permanently.
o Make variable names more consistent.
o Make function prototypes more consistent.
Some more needs to be done; to follow.
cards. This basically involves switching to the 12.4.13 firmware, plus
a couple of minor tweaks to the driver.
Also changed the jumbo buffer allocation scheme just a little to avoid
'failed to allocate jumbo buffer' conditions in certain cases.
support for relocating the port address if the isa hints specify a
different address from the address the chipset currently has.
Submitted by: Andrew M. Miklic <miklic@ibm.net>
lock up under moderate to heavy load.
The status & command fields share a 32-bit longword. The programming
API of the eepro apparently requires that you update the command field
of a transmit slot that you've already given to the card. This means
the card could be updating the status field of the same longword at
the same time. Since alphas can only operate on 32-bit chunks of
memory, both the status & command fields are loaded from memory &
operated on in registers when the following line of C is executed:
sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
The race is caused by the card DMA'ing up the status at just the wrong
time -- after it has been loaded into a register & before it has been
written back. The old value of the status is written back, clobbering
the status the card just DMA'ed up. The fact that the card has sent
this frame is missed & the transmit engine appears to hang.
Luckily, as numerous people on the freebsd-alpha list pointed out, the
load-locked/store-conditional instructions used by the atomic
functions work with respect changes in memory due to I/O devices. We
now use them to safely update the command field.
Tested by: Bernd Walter <ticso@mail.cicely.de>
errors that plagued those cards with XFree86 4.0. They have two memory
ranges as well as an IO port range to them. Also cleaned up the three
warning messages that I got, from inb(), outb() and linuxulator. Also, I
noticed that the DRI and Glide support for the Voodoo4 and 5 has been
placed upon linux.3dfx.com, too bad they haven't released the tech docs
yet. Apparently, they are still pushing glide for all of us, so I will try
and add support once those tech docs are up.
other systems.
o Normalize copyright text.
o Clean up probe code function interfaces by passing around a single
structure of common arguments instead of passing "too many" args
in each function call.
o Add support for the AAA-131 as a SCSI adapter.
o Add support for the AHA-4944 courtesy of "Matthew N. Dodd" <winter@jurai.net
o Correct manual termination support for PCI cards. The bit definitions
for manual termination control in the SEEPROM were incorrect.
o Add support for extracting NVRAM information from SCB 2 for BIOSen
that use this mechanism to pass this data to OS drivers.
o Properly set the STPWLEVEL bit in PCI config space based on the
setting in an SEEPROM.
o Go back to useing 32byte SCBs for all controllers. The current
firmware allows us to embed 12byte cdbs on all controllers in
a 32byte SCB, and larger cdbs are rarely used, so it is a
better use of this space to offer more SCBs (32).
o Add support for U160 transfers.
o Add an idle loop executed during data transfers that prefetches
S/G segments on controllers that have a secondary DMA engine
(aic789X).
o Improve the performance of reselections by avoiding an extra
one byte DMA in the case of an SCB lookup miss for the reselecting
target. We now keep a 16byte "untagged target" array on the card
for dealing with untagged reselections. If the controller has
external SCB ram and can support 64byte SCBs, then we use an
"untagged target/lun" array to maximize concurrency. Without
external SCB ram, the controller is limited to one untagged
transaction per target, auto-request sense operations excluded.
o Correct the setup of the STPWEN bit in SXFRCTL1. This control
line is tri-stated until set to one, so set it to one and then
set it to the desired value.
o Add tagged queuing support to our target role implementation.
o Handle the common cases of the ignore wide residue message
in firmware.
o Add preliminary support for 39bit addressing.
o Add support for assembling on big-endian machines. Big-endian
support is not complete in the driver.
o Correctly remove SCBs in the waiting for selection queue when
freezing a device queue.
o Now that we understand more about the autoflush bug on the
aic7890, only use the workaround on devices that need it.
o Add a workaround for the "aic7890 hangs the system when you
attempt to pause it" problem. We can now pause the aic7890
safely regardless of what instruction it is executing.
allocate a short port range in some alpha configurations.
Submitted by: "Andrew M. Miklic" <miklic@udlkern.fc.hp.com>,
Mark Abene <phiber@radicalmedia.com>
when we're done reading it (makes checking things easier).
Before calling isp_notify_ack make sure we're at RUNSTATE-
elsewise we can be responding to LIPs or SCSI bus resets
before we've finished some of the wiring.
we need a function that tells the Qlogic f/w that a target mode command
is done, so increase the resource count for that lun. Add in a timeout
function to kick the putback again if we fail to do it the first time (we
may not have the request queue space for ATIO push). Split the function
isp_handle_platform_ctio into two parts so that the timeout function for
the ATIO push or isp_handle_platform_ctio can inform CAM that the requested
CTIO(s) are now done.
Clean up (cough) residual handling. What we need for Fibre Channel
is to preserve the at_datalen field from the original incoming ATIO
so we can calculate a 'true' residual. Unfortunately, we're not
guaranteed to get that back from CAM. We'll *try* to find it hiding
in the periph_priv field (layering violation)- but if an ATIO was
passed in from user land- forget it. This means that we'll probably
get residuals wrong for Fibre Channel commands we're completing
with an error. It's too late to 4.1 release to fix this- too bad.
Luckily the only device we'd really care about this occurring on
is a tape device and they're still so rare as FC attached devices
that this can be considered an untested combination anyway.
Remove all CCINCR usage (resource autoreplenish). When we've proved
to ourself that things are working properly, we can add it back
in.
Make sure we propage 'suggested' sense data from the incoming ATIO
into the created system ATIO- and set sense_len appropriately.
Correctly propagate tag values.
Fall back to the model of generating (well, the functions in isp_pci.c
do the work) multiple CTIOs based upon what we get from XPT. Instead
of being able to pair Qlogic generated ATIOs with CAM ATIOs, and then
to pair CAM CTIOs with Qlogic CTIOs, we have to take the CTIO passed
to us from XPT, and if it implies that we have to generate extra
Qlogic CTIOs, so be it. This means that we have to wait until the
last CTIO in a sequence we generated completes before calling xpt_done.
Executive summary- target mode actually now pretty much works well
enough to tell folks about.
There is a number of devices that are compliant, of which the 3Com 5605 is
has been verified to work.
The driver is not perfect yet, but should be able to get you somewhere.
The driver was originally written by Lennart Augustsson, but Mike Smith
and Mike Meyer <mwm@mired.org> did the porting.
3.3volt PCI/cardbus chipsets similar to the 98715 (and they have
512-bit hash tables). Also update the man page to mention the 98727/98732
and the SOHOware SFA110A Rev B4 card with the 98715AEC-C chip.
entropy estimation, but causes an immediate reseed after the input
(read in sizeof(u_int64_t) chunks) is "harvested".
This will be used in the reboot "reseeder", coming in another
commit. This can be used very effectively at any time you think
your randomness is compromised; something like
# (ps -gauxwww; netstat -an; dmesg; vmstat -c10 1) > /dev/random
will give the attacker something to think about.
non-disconnecting command. Interestingly enough, of the other flavors
of the 7.65 f/w (the dual-id and multi-id flavor)- the dual-id doesn't
hang (they're also supposed to be the same except for supporting dual
or multi-id capture!), but other things are questionable as well.
which differ slightly from the Macronix MX98715AEC chip on the sample
adapter that I have in that the multicast hash table is only 128 bits
wide instead of 512. New adapters are popping up with this chip, and
due to improper handling of the smaller hash table, broadcast packets
were not being received correctly.