Use the same scheme implemented to manage credentials.
Code needing to look at process's credentials (as opposed to thred's) is
provided with *_proc variants of relevant functions.
Places which possibly had to take the proc lock anyway still use the proc
pointer to access limits.
Thread credentials are maintained as follows: each thread has a pointer to
creds and a reference on them. The pointer is compared with proc's creds on
userspace<->kernel boundary and updated if needed.
This patch introduces a counter which can be compared instead, so that more
structures can use this scheme without adding more comparisons on the boundary.
Remove unneeded NULL checks in trap_fatal().
Since td_name is an array member of struct thread, it can never be NULL,
so the check can be removed. In addition, curproc can never be NULL,
so remove the if statement, and splice the two printfs() together.
While here, remove the u_long cast, and use the correct printf format
specifier for curproc->p_pid.
Requested by: jhb
MFC after: 3 days
rev. 55. The modern CPUs cache and TLB descriptions looked quite
questionable without the update, e.g. Haswell i7 4770S reported:
Data TLB: 4 KB pages, 4-way set associative, 64 entries
L2 cache: 256 kbytes, 8-way associative, 64 bytes/line
After the update, the report is:
Data TLB: 1 GByte pages, 4-way set associative, 4 entries
Data TLB: 4 KB pages, 4-way set associative, 64 entries
Instruction TLB: 2M/4M pages, fully associative, 8 entries
Instruction TLB: 4KByte pages, 8-way set associative, 64 entries
64-Byte prefetching
Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries
L2 cache: 256 kbytes, 8-way associative, 64 bytes/line
Some tags were apparently removed from the table 3-21, Vol. 2A. Keep
them around, but add a comment stating the removal.
Update the format line for cpu_stdext_feature according to the bits
from the SDM rev.55. It appears that Haswells do not store %cs and
%ds values in the FPU save area.
Store content of the %ecx register from the CPUID leaf 0x7
subleaf 0 as cpu_stdext_feature2 and print defined bits from it,
again acording to SDM rev. 55.
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
Native ABI do not need signal conversion, only emulators may want this. Usually
emulators implements its own sv_sendsig method. For now only ibcs2 emulator does
not have own sv_sendsig implementation and depends on native sendsig() method.
So, remove any extra attempts to convert signal numbers from native sendsig()
methods except from i386 where ibsc2 is living.
1. Linux sigset always 64 bit on all platforms. In order to move Linux
sigset code to the linux_common module define it as 64 bit int. Move
Linux sigset manipulation routines to the MI path.
2. Move Linux signal number definitions to the MI path. In general, they
are the same on all platforms except for a few signals.
3. Map Linux RT signals to the FreeBSD RT signals and hide signal conversion
tables to avoid conversion errors.
4. Emulate Linux SIGPWR signal via FreeBSD SIGRTMIN signal which is outside
of allowed on Linux signal numbers.
PR: 197216
argument is not a null pointer, and the ss_flags member pointed to by ss
contains flags other than SS_DISABLE. However, in fact, Linux also
allows SS_ONSTACK flag which is simply ignored.
For buggy apps (at least mono) ignore other than SS_DISABLE
flags as a Linux do.
While here move MI part of sigaltstack code to the appropriate place.
Reported by: abi at abinet dot ru
around kqueue() to implement epoll subset of functionality.
The kqueue user data are 32bit on i386 which is not enough for
epoll user data, so we keep user data in the proc emuldata.
Initial patch developed by rdivacky@ in 2007, then extended
by Yuri Victorovich @ r255672 and finished by me
in collaboration with mjg@ and jillies@.
Differential Revision: https://reviews.freebsd.org/D1092
to determine the kernel version (this saves one uname call).
Temporarily disable the export of a note.Linux section until I figured
out how to change the kernel version in the note.Linux on the fly.
Differential Revision: https://reviews.freebsd.org/D1081
Reviewed by: trasz
The AT_EACCESS and AT_SYMLINK_NOFOLLOW flags are actually implemented
within the glibc wrapper function for faccessat(). If either of these
flags are specified, then the wrapper function employs fstatat() to
determine access permissions.
Differential Revision: https://reviews.freebsd.org/D1078
Reviewed by: trasz
following primary purposes:
1. Remove the dependency of linsysfs and linprocfs modules from linux.ko,
which will be architecture specific on amd64.
2. Incorporate into linux_common.ko general code for platforms on which
we'll support two Linuxulator modules (for both instruction set - 32 & 64 bit).
3. Move malloc(9) declaration to linux_common.ko, to enable getting memory
usage statistics properly.
Currently linux_common.ko incorporates a code from linux_mib.c and linux_util.c
and linprocfs, linsysfs and linux kernel modules depend on linux_common.ko.
Temporarily remove dtrace garbage from linux_mib.c and linux_util.c
Differential Revision: https://reviews.freebsd.org/D1072
In collaboration with: Vassilis Laganakos.
Reviewed by: trasz
Move struct ipc_perm definition to the MD path as it differs for 64 and
32 bit platform.
Differential Revision: https://reviews.freebsd.org/D1068
Reviewed by: trasz
exposes functions from kernel with proper DWARF CFI information so that
it becomes easier to unwind through them.
Using vdso is a mandatory for a thread cancelation && cleanup
on a modern glibc.
Differential Revision: https://reviews.freebsd.org/D1060
Use it in linux_wait4() system call and move linux_wait4() to the MI path.
While here add a prototype for the static bsd_to_linux_rusage().
Differential Revision: https://reviews.freebsd.org/D2138
Reviewed by: trasz
The reasons:
1. Get rid of the stubs/quirks with process dethreading,
process reparent when the process group leader exits and close
to this problems on wait(), waitpid(), etc.
2. Reuse our kernel code instead of writing excessive thread
managment routines in Linuxulator.
Implementation details:
1. The thread is created via kern_thr_new() in the clone() call with
the CLONE_THREAD parameter. Thus, everything else is a process.
2. The test that the process has a threads is done via P_HADTHREADS
bit p_flag of struct proc.
3. Per thread emulator state data structure is now located in the
struct thread and freed in the thread_dtor() hook.
Mandatory holdig of the p_mtx required when referencing emuldata
from the other threads.
4. PID mangling has changed. Now Linux pid is the native tid
and Linux tgid is the native pid, with the exception of the first
thread in the process where tid and pid are one and the same.
Ugliness:
In case when the Linux thread is the initial thread in the thread
group thread id is equal to the process id. Glibc depends on this
magic (assert in pthread_getattr_np.c). So for system calls that
take thread id as a parameter we should use the special method
to reference struct thread.
Differential Revision: https://reviews.freebsd.org/D1039
threads introduce linux_exit() stub instead of sys_exit() call
(which terminates process).
In the new linuxulator exit() system call terminates the calling
thread (not a whole process).
Differential Revision: https://reviews.freebsd.org/D1027
Reviewed by: trasz
years for head. However, it is continuously misused as the mpsafe argument
for callout_init(9). Deprecate the flag and clean up callout_init() calls
to make them more consistent.
Differential Revision: https://reviews.freebsd.org/D2613
Reviewed by: jhb
MFC after: 2 weeks
The replacement started at r283088 was necessarily incomplete without
replacing boolean_t with bool. This also involved cleaning some type
mismatches and ansifying old C function declarations.
Pointed out by: bde
Discussed with: bde, ian, jhb
needs to be enabled by adding "kern.racct.enable=1" to /boot/loader.conf.
Differential Revision: https://reviews.freebsd.org/D2407
Reviewed by: emaste@, wblock@
MFC after: 1 month
Relnotes: yes
Sponsored by: The FreeBSD Foundation
allocated from exec_map. If many threads try to perform execve(2) in
parallel, the exec map is exhausted and some threads sleep
uninterruptible waiting for the map space. Then, the thread which won
the race for the space allocation, cannot single-thread the process,
causing deadlock.
Reported and tested by: pho (previous version)
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
interacts with interrupts, query ACPI and use MWAIT for entrance into
Cx sleep states. Support C1 "I/O then halt" mode. See Intel'
document 302223-007 "Intelб╝ Processor Vendor-Specific ACPI Interface
Specification" for description.
Move the acpi_cpu_c1() function into x86/cpu_machdep.c and use
it instead of inlining "sti; hlt" sequence in several places.
In the acpi(4) man page, besides documenting the dev.cpu.N.cx_methods
sysctl, correct the names for dev.cpu.N.{cx_usage,cx_lowest,cx_supported}
sysctls.
Both jkim and avg have some other patches implementing the mwait
functionality; this work is unrelated. Linux does not rely on the
ACPI to provide correct tables describing Cx modes. Instead, the
driver has pre-defined knowledge of the CPU models, it was supplied by
Intel.
Tested by: pho (previous versions)
Sponsored by: The FreeBSD Foundation
remains. Xen is planning to phase out support for PV upstream since it
is harder to maintain and has more overhead. Modern x86 CPUs include
virtualization extensions that support HVM guests instead of PV guests.
In addition, the PV code was i386 only and not as well maintained recently
as the HVM code.
- Remove the i386-only NATIVE option that was used to disable certain
components for PV kernels. These components are now standard as they
are on amd64.
- Remove !XENHVM bits from PV drivers.
- Remove various shims required for XEN (e.g. PT_UPDATES_FLUSH, LOAD_CR3,
etc.)
- Remove duplicate copy of <xen/features.h>.
- Remove unused, i386-only xenstored.h.
Differential Revision: https://reviews.freebsd.org/D2362
Reviewed by: royger
Tested by: royger (i386/amd64 HVM domU and amd64 PVH dom0)
Relnotes: yes
- Vmbus multi channel support.
- Vector interrupt support.
- Signal optimization.
- Storvsc driver performance improvement.
- Scatter and gather support for storvsc driver.
- Minor bug fix for KVP driver.
Thanks royger, jhb and delphij from FreeBSD community for the reviews
and comments. Also thanks Hovy Xu from NetApp for the contributions to
the storvsc driver.
PR: 195238
Submitted by: whu
Reviewed by: royger, jhb, delphij
Approved by: royger
MFC after: 2 weeks
Relnotes: yes
Sponsored by: Microsoft OSTC
sys/amd64/amd64/mp_machdep.c, to the new common x86 source
sys/x86/x86/mp_x86.c.
Proposed and reviewed by: jhb
Review: https://reviews.freebsd.org/D2347
Sponsored by: The FreeBSD Foundation
sys/i386/i386/machdep.c to new file sys/x86/x86/cpu_machdep.c. Most
of the code is related to the idle handling.
Discussed with: pluknet
Sponsored by: The FreeBSD Foundation
shows no difference with the code removed.
On both amd64 and i386, assert that a released pmap is not active.
Proposed and reviewed by: alc
Discussed with: Svatopluk Kraus <onwahe@gmail.com>, peter
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
use PAE format for the page tables, but does not incur other
consequences of the full PAE config. In particular, vm_paddr_t and
bus_addr_t are left 32bit, and max supported memory is still limited
by 4GB.
The option allows to have nx permissions for memory mappings on i386
kernel, while keeping the usual i386 KBI and avoiding the kernel data
sizing problems typical for the PAE config.
Intel documented that the PAE format for page tables is available
starting with the Pentium Pro, but it is possible that the plain
Pentium CPUs have the required support (Appendix H). The goal is to
enable the option and non-exec mappings on i386 for the GENERIC
kernel. Anybody wanting a useful system on 486, have to reconfigure
the modern i386 kernel anyway.
Discussed with: alc, jhb
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
memory itself. Provide the formula to calculate the number of
required page tables. Correct the size of the struct vm_page for
non-PAE case.
Reviewed by: alc, jhb (previous version)
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
A couple of internal functions used by malloc(9) and uma truncated
a size_t down to an int. This could cause any number of issues
(e.g. indefinite sleeps, memory corruption) if any kernel
subsystem tried to allocate 2GB or more through malloc. zfs would
attempt such an allocation when run on a system with 2TB or more
of RAM.
Note to self: When this is MFCed, sparc64 needs the same fix.
Differential revision: https://reviews.freebsd.org/D2106
Reviewed by: kib
Reported by: Michael Fuckner <michael@fuckner.net>
Tested by: Michael Fuckner <michael@fuckner.net>
MFC after: 2 weeks
rather than 20. The MP 1.4 specification states in Appendix B.2:
"A period of 20 microseconds should be sufficient for IPI dispatch to
complete under normal operating conditions".
(Note that this appears to be separate from the 10 millisecond (INIT) and
200 microsecond (STARTUP) waits after the IPIs are dispatched.) The
Intel SDM is silent on this issue as far as I can tell.
At least some hardware requires 60 microseconds as noted in the PR, so
bump this to 100 to be on the safe side.
PR: 197756
Reported by: zaphod@berentweb.com
MFC after: 1 week
translation. In particular, despite IO-APICs only take 8bit apic id,
IR translation structures accept 32bit APIC Id, which allows x2APIC
mode to function properly. Extend msi_cpu of struct msi_intrsrc and
io_cpu of ioapic_intsrc to full int from one byte.
KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid
bringing all dmar headers into interrupt code. The non-PCI(e) devices
which generate message interrupts on FSB require special handling. The
HPET FSB interrupts are remapped, while DMAR interrupts are not.
For each msi and ioapic interrupt source, the iommu cookie is added,
which is in fact index of the IRE (interrupt remap entry) in the IR
table. Cookie is made at the source allocation time, and then used at
the map time to fill both IRE and device registers. The MSI
address/data registers and IO-APIC redirection registers are
programmed with the special values which are recognized by IR and used
to restore the IRE index, to find proper delivery mode and target.
Map all MSI interrupts in the block when msi_map() is called.
Since an interrupt source setup and dismantle code are done in the
non-sleepable context, flushing interrupt entries cache in the IR
hardware, which is done async and ideally waits for the interrupt,
requires busy-wait for queue to drain. The dmar_qi_wait_for_seq() is
modified to take a boolean argument requesting busy-wait for the
written sequence number instead of waiting for interrupt.
Some interrupts are configured before IR is initialized, e.g. ACPI
SCI. Add intr_reprogram() function to reprogram all already
configured interrupts, and call it immediately before an IR unit is
enabled. There is still a small window after the IO-APIC redirection
entry is reprogrammed with cookie but before the unit is enabled, but
to fix this properly, IR must be started much earlier.
Add workarounds for 5500 and X58 northbridges, some revisions of which
have severe flaws in handling IR. Use the same identification methods
as employed by Linux.
Review: https://reviews.freebsd.org/D1892
Reviewed by: neel
Discussed with: jhb
Tested by: glebius, pho (previous versions)
Sponsored by: The FreeBSD Foundation
MFC after: 3 weeks
Implement the interace to create SR-IOV Virtual Functions (VFs).
When a driver registers that they support SR-IOV by calling
pci_setup_iov(), the SR-IOV code creates a new node in /dev/iov
for that device. An ioctl can be invoked on that device to
create VFs and have the driver initialize them.
At this point, allocating memory I/O windows (BARs) is not
supported.
Differential Revision: https://reviews.freebsd.org/D76
Reviewed by: jhb
MFC after: 1 month
Sponsored by: Sandvine Inc.
x2APIC mode is detected and enabled. Current theory is that switching
the APIC mode while an IPI is in flight might be the issue.
Postpone switching to x2APIC mode until we are guaranteed that all
starting IPIs are already send and aknowledged. Use aps_ready signal
as an indication that the BSP is done with us.
Tested by: adrian
Sponsored by: The FreeBSD Foundation
MFC after: 2 months
FPU state to avoid passing a negative length to fpusetregs() / npxsetregs().
Differential Revision: https://reviews.freebsd.org/D1861
Reviewed by: kib, emaste
Remove unneeded disable of LAPIC in the native_lapic_xapic_mode(). We
attempt to send wakeup IPI on the resume path right after BSP wakeup,
so disabling is wrong.
Reported and tested by: glebius, "Ranjan1018 ." <214748mv@gmail.com>
Sponsored by: The FreeBSD Foundation
MFC after: 2 months
hw.x2apic_enable tunable allows disabling it from the loader prompt.
To closely repeat effects of the uncached memory ops when accessing
registers in the xAPIC mode, the x2APIC writes to MSRs are preceeded
by mfence, except for the EOI notifications. This is probably too
strict, only ICR writes to send IPI require serialization to ensure
that other CPUs see the previous actions when IPI is delivered. This
may be changed later.
In vmm justreturn IPI handler, call doreti_iret instead of doing iretd
inline, to handle corner conditions.
Note that the patch only switches LAPICs into x2APIC mode. It does not
enables FreeBSD to support > 255 CPUs, which requires parsing x2APIC
MADT entries and doing interrupts remapping, but is the required step
on the way.
Reviewed by: neel
Tested by: pho (real hardware), neel (on bhyve)
Discussed with: jhb, grehan
Sponsored by: The FreeBSD Foundation
MFC after: 2 months
Intel Multiprocessor Specification v1.4. The Intel SDM claims that
the INIT IPIs here are invalid, but other systems follow the MP
spec instead.
While here, fix the IPI wait routine to accept a timeout in microseconds
instead of a raw spin count, and don't spin forever during AP startup.
Instead, panic if a STARTUP IPI is not delivered after 20 us.
PR: 196542
Differential Revision: https://reviews.freebsd.org/D1719
MFC after: 2 weeks
KVM clock shares the same data structures between the guest and the host
as Xen so it makes sense to just have a single copy of this code.
Differential Revision: https://reviews.freebsd.org/D1429
Reviewed by: royger (eariler version)
MFC after: 1 month
const. On x86, even after the machine context is supposedly read into
the struct ucontext, lazy FPU state save code might only mark the FPU
data as hardware-owned. Later, set_fpcontext() needs to fetch the
state from hardware, modifying the *mcp.
The set_mcontext(9) is called from sigreturn(2) and setcontext(2)
implementations and old create_thread(2) interface, which throw the
*mcp out after the set_mcontext() call.
Reported by: dim
Discussed with: jhb
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
for i386, and from the code inspection, nothing in the
arm/mips/sparc64 implementations depends on it.
Discussed with: imp, nwhitehorn
Sponsored by: The FreeBSD Foundation
MFC after: 3 weeks
Implement a subset of the multiboot specification in order to boot Xen
and a FreeBSD Dom0 from the FreeBSD bootloader. This multiboot
implementation is tailored to boot Xen and FreeBSD Dom0, and it will
most surely fail to boot any other multiboot compilant kernel.
In order to detect and boot the Xen microkernel, two new file formats
are added to the bootloader, multiboot and multiboot_obj. Multiboot
support must be tested before regular ELF support, since Xen is a
multiboot kernel that also uses ELF. After a multiboot kernel is
detected, all the other loaded kernels/modules are parsed by the
multiboot_obj format.
The layout of the loaded objects in memory is the following; first the
Xen kernel is loaded as a 32bit ELF into memory (Xen will switch to
long mode by itself), after that the FreeBSD kernel is loaded as a RAW
file (Xen will parse and load it using it's internal ELF loader), and
finally the metadata and the modules are loaded using the native
FreeBSD way. After everything is loaded we jump into Xen's entry point
using a small trampoline. The order of the multiboot modules passed to
Xen is the following, the first module is the RAW FreeBSD kernel, and
the second module is the metadata and the FreeBSD modules.
Since Xen will relocate the memory position of the second
multiboot module (the one that contains the metadata and native
FreeBSD modules), we need to stash the original modulep address inside
of the metadata itself in order to recalculate its position once
booted. This also means the metadata must come before the loaded
modules, so after loading the FreeBSD kernel a portion of memory is
reserved in order to place the metadata before booting.
In order to tell the loader to boot Xen and then the FreeBSD kernel the
following has to be added to the /boot/loader.conf file:
xen_cmdline="dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga"
xen_kernel="/boot/xen"
The first argument contains the command line that will be passed to the Xen
kernel, while the second argument is the path to the Xen kernel itself. This
can also be done manually from the loader command line, by for example
typing the following set of commands:
OK unload
OK load /boot/xen dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga
OK load kernel
OK load zfs
OK load if_tap
OK load ...
OK boot
Sponsored by: Citrix Systems R&D
Reviewed by: jhb
Differential Revision: https://reviews.freebsd.org/D517
For the Forth bits:
Submitted by: Julien Grall <julien.grall AT citrix.com>
Features by CPUID as CPUID.80000008H:EAX[7:0], into variable cpu_maxphyaddr.
Reviewed by: alc
Tested by: pho
Sponsored by: The FreeBSD Foundation
MFC after: 1 week