subset ("compatible", "device_type", "model" and "name") of the standard
properties in drivers for devices on Open Firmware supported busses. The
standard properties "reg", "interrupts" und "address" are not covered by
this interface because they are only of interest in the respective bridge
code. There's a remaining standard property "status" which is unclear how
to support properly but which also isn't used in FreeBSD at present.
This ofw_bus kobj-interface allows to replace the various (ebus_get_node(),
ofw_pci_get_node(), etc.) and partially inconsistent (central_get_type()
vs. sbus_get_device_type(), etc.) existing IVAR ones with a common one.
This in turn allows to simplify and remove code-duplication in drivers for
devices that can hang off of more than one OFW supported bus.
- Convert the sparc64 Central, EBus, FHC, PCI and SBus bus drivers and the
drivers for their children to use the ofw_bus kobj-interface. The IVAR-
interfaces of the Central, EBus and FHC are entirely replaced by this. The
PCI bus driver used its own kobj-interface and now also uses the ofw_bus
one. The IVARs special to the SBus, e.g. for retrieving the burst size,
remain.
Beware: this causes an ABI-breakage for modules of drivers which used the
IVAR-interfaces, i.e. esp(4), hme(4), isp(4) and uart(4), which need to be
recompiled.
The style-inconsistencies introduced in some of the bus drivers will be
fixed by tmm@ in a generic clean-up of the respective drivers later (he
requested to add the changes in the "new" style).
- Convert the powerpc MacIO bus driver and the drivers for its children to
use the ofw_bus kobj-interface. This invloves removing the IVARs related
to the "reg" property which were unused and a leftover from the NetBSD
origini of the code. There's no ABI-breakage caused by this because none
of these driver are currently built as modules.
There are other powerpc bus drivers which can be converted to the ofw_bus
kobj-interface, e.g. the PCI bus driver, which should be done together
with converting powerpc to use the OFW PCI code from sparc64.
- Make the SBus and FHC front-end of zs(4) and the sparc64 eeprom(4) take
advantage of the ofw_bus kobj-interface and simplify them a bit.
Reviewed by: grehan, tmm
Approved by: re (scottl)
Discussed with: tmm
Tested with: Sun AX1105, AXe, Ultra 2, Ultra 60; PPC cross-build on i386
"options OFW_NEWPCI").
This is a bit overdue, the new sparc64 OFW PCI code which is
meant to replace the old one is in place for 10 months and
enabled by default in GENERIC for 8 months. FreeBSD 5.2 and
5.2.1 also shipped with the new code enabled by default.
- Some minor clean-up, e.g. remove functions that encapsulated
the #ifdefs for OFW_NEWPCI, remove unused resp. no longer
required includes, etc.
Approved by: tmm, no objections on freebsd-sparc64
- Fix some comments; remove numerous superfluous or outdated ones.
- Correctly pass on the requesting device when handing requests up
to the parent bus.
- Use the complete device name, including unit number, to build the
IOMMU instance name.
- Inline a function that was only used once, and was trivial.
a correctable DMA error. Failing to do so can cause the error interrupt
to be triggered over and over again.
- Clean up the comments for UEAFSR_* constants, fix a typo (UEAFSR_BLK is
(1 << 23), not (1 << 22)), and add two more. Also, add similar constants
for the CE AFSR bits.
Add two new arguments to bus_dma_tag_create(): lockfunc and lockfuncarg.
Lockfunc allows a driver to provide a function for managing its locking
semantics while using busdma. At the moment, this is used for the
asynchronous busdma_swi and callback mechanism. Two lockfunc implementations
are provided: busdma_lock_mutex() performs standard mutex operations on the
mutex that is specified from lockfuncarg. dftl_lock() is a panic
implementation and is defaulted to when NULL, NULL are passed to
bus_dma_tag_create(). The only time that NULL, NULL should ever be used is
when the driver ensures that bus_dmamap_load() will not be deferred.
Drivers that do not provide their own locking can pass
busdma_lock_mutex,&Giant args in order to preserve the former behaviour.
sparc64 and powerpc do not provide real busdma_swi functions, so this is
largely a noop on those platforms. The busdma_swi on is64 is not properly
locked yet, so warnings will be emitted on this platform when busdma
callback deferrals happen.
If anyone gets panics or warnings from dflt_lock() being called, please
let me know right away.
Reviewed by: tmm, gibbs
for now. It introduces a OFW PCI bus driver and a generic OFW PCI-PCI
bridge driver. By utilizing these, the PCI handling is much more elegant
now.
The advantages of the new approach are:
- Device enumeration should hopefully be more like on Solaris now,
so unit numbers should match what's printed on the box more
closely.
- Real interrupt routing is implemented now, so cardbus bridges
etc. have at least a chance to work.
- The quirk tables are gone and have been replaced by (hopefully
sufficient) heuristics.
- Much cleaner code.
There was also a report that previously bogus interrupt assignments
are fixed now, which can be attributed to the new heuristics.
A pitfall, and the reason why this is not the default yet, is that
it changes device enumeration, as mentioned above, which can make
it necessary to change the system configuration if more than one
unit of a device type is present (on a system with two hme cars,
for example, it is possible that hme0 becomes hme1 and vice versa
after enabling the option). Systems with multiple disk controllers
may need to be booted into single user (and require manual specification
of the root file system on boot) to adjust the fstab.
Nevertheless, I would like to encourage users to use this option,
so that it can be made the default soon.
In detail, the changes are:
- Introduce an OFW PCI bus driver; it inherits most methods from the
generic PCI bus driver, but uses the firmware for enumeration,
performs additional initialization for devices and firmware-specific
interrupt routing. It also implements an OFW-specific method to allow
child devices to get their firmware nodes.
- Introduce an OFW PCI-PCI bridge driver; again, it inherits most
of the generic PCI-PCI bridge driver; it has it's own method for
interrupt routing, as well as some sparc64-specific methods (one to
get the node again, and one to adjust the bridge bus range, since
we need to reenumerate all PCI buses).
- Convert the apb driver to the new way of handling things.
- Provide a common framework for OFW bridge drivers, used be the two
drivers above.
- Provide a small common framework for interrupt routing (for all
bridge types).
- Convert the psycho driver to the new framework; this gets rid of a
bunch of old kludges in pci_read_config(), and the whole
preinitialization (ofw_pci_init()).
- Convert the ISA MD part and the EBus driver to the new way
interrupts and nodes are handled.
- Introduce types for firmware interrupt properties.
- Rename the old sparcbus_if to ofw_pci_if by repo copy (it is only
required for PCI), and move it to a more correct location (new
support methodsx were also added, and an old one was deprecated).
- Fix a bunch of minor bugs, perform some cleanups.
In some cases, I introduced some minor code duplication to keep the
new code clean, in hopes that the old code will be unifdef'ed soon.
Reviewed in part by: imp
Tested by: jake, Marius Strobl <marius@alchemy.franken.de>,
Sergey Mokryshev <mokr@mokr.net>,
Chris Jackman <cjackNOSPAM@klatsch.org>
Info on u30 firmware provided by: kris
data access errors when trying to read/write to non-existant PCI devices.
fix the psycho bridge to use peek for probing devices. This no longer
fakes it if the OFW node doesn't exist (and the reg == 0).
Reviewed by: jake, tmm
- Move prototypes for sparc64-specific helper functions from bus.h to
bus_private.h
- Move the method pointers from struct bus_dma_tag into a separate
structure; this saves some memory, and allows to use a single method
table for each busdma backend, so that the bus drivers need no longer
be changed if the methods tables need to be modified.
- Remove the hierarchical tag method lookup. It was never really useful,
since the layering is fixed, and the current implementations do not
need to call into parent implementations anyway. Each tag inherits
its method table pointer and cookie from the parent (or the root tag)
now, and the method wrapper macros directly use the method table
of the tag.
- Add a method table to the non-IOMMU backend, remove unnecessary
prototypes, remove the extra parent tag argument.
- Rename sparc64_dmamem_alloc_map() and sparc64_dmamem_free_map() to
sparc64_dma_alloc_map() and sparc64_dma_free_map(), move them to a
better place and use them for all map allocations and deallocations.
- Add a method table to the iommu backend, and staticize functions,
remove the extra parent tag argument.
- Change the psycho and sbus drivers to just set cookie and method table
in the root tag.
- Miscellaneous small fixes.
This machine uses a non-standard scheme to specify the interrupts to
be assigned for devices in PCI slots; instead of giving the INO
or full interrupt number (which is done for the other devices in this
box), the firmware interrupt properties contain intpin numbers, which
have to be swizzled as usual on PCI-PCI bridges; however, the PCI host
bridge nodes have no interrupt map, so we need to guess the
correct INO by slot number of the device or the closest PCI-PCI
bridge leading to it, and the intpin.
To do this, this fix makes the following changes:
- Add a newbus method for sparc64 PCI host bridges to guess
the INO, and glue code in ofw_pci_orb_callback() to invoke it based
on a new quirk entry. The guessing is only done for interrupt numbers
too low to contain any IGN found on e450s.
- Create another new quirk entry was created to prevent mapping of EBus
interrupts at PCI level; the e450 has full INOs in the interrupt
properties of EBus devices, so trying to remap them could cause
problems.
- Set both quirk entries for e450s; remove the no-swizzle entry.
- Determine the psycho half (bus A or B) a driver instance manages
in psycho_attach()
- Implement the new guessing method for psycho, using the slot number,
psycho half and property value (intpin).
Thanks go to the testers, especially Brian Denehy, who tested many kernels
for me until I had found the right workaround.
Tested by: Brian Denehy <B.Denehy@90east.com>, jake, fenner,
Marius Strobl <marius@alchemy.franken.de>,
Marian Dobre <mari@onix.ro>
Approved by: re (scottl)
BUS_DMASYNC_ definitions remain as before. The does not change the ABI,
and reverts the API to be a bit more compatible and flexible. This has
survived a full 'make universe'.
Approved by: re (bmah)
quite excessive, and caused the available space to be used up too
easily. The new limit should be a better estimation of how much the
caller will need at most.
- Double the IOTSB size 64kB, for a DVMA area size of 64MB.
This should fix DMA problems on e450s and other large machines due
to DVMA space exhaustion, which were introduced in my last IOMMU
code revision in January.
Reported and tested by: fenner
enum to an int and redefine the BUS_DMASYNC_* constants as
flags. This allows us to specify several operations in one
call to bus_dmamap_sync() as in NetBSD.
counterparts to bus_dmamem_alloc() and bus_dmamem_free(). This allows
the caller to specify the size of the allocation instead of it defaulting
to the max_size field of the busdma tag.
This is intended to aid in converting drivers to busdma. Lots of
hardware cannot understand scatter/gather lists, which forces the
driver to copy the i/o buffers to a single contiguous region
before sending it to the hardware. Without these new methods, this
would require a new busdma tag for each operation, or a complex
internal allocator/cache for each driver.
Allocations greater than PAGE_SIZE are rounded up to the next
PAGE_SIZE by contigmalloc(), so this is not suitable for multiple
static allocations that would be better served by a single
fixed-length subdivided allocation.
Reviewed by: jake (sparc64)
map. Use this new feature to implement iommu_dvmamap_load_mbuf() and
iommu_dvmamap_load_uio() functions in terms of a new helper function,
iommu_dvmamap_load_buffer(). Reimplement the iommu_dvmamap_load()
to use it, too.
This requires some changes to the map format; in addition to that,
remove unused or redundant members.
Add SBus and Psycho wrappers for the new functions, and make them
available through the respective DMA tags.
- tweak the announce message a bit
- remove '\n's from a few panic() calls
- don't use the DVMA base adress the firmware reports; instead, figure
it out from the appropriate register on Sabres and let the IOMMU code
choose it on Psychos. This also makes the IOMMU TSB size freely
selectable.
namely the ones for the timers, error handling and power management.
The registers for the timers, power management and PCI bus b errors are
reserved on Sabres (US-IIi) and can lead to false matches there.
Since all of them are never used for devices on the bus, they can be omitted
safely.
Approved by: re
register to the one of the processor doing the interrupt setup. This
is required since this field is preinitialized to 0, but there exist
machines which have no processor with a MID of 0 (e.g. e450s with 1 or 2
processors).
Add some more macros for handle the interrupt mapping registers, and
rename some existing ones for consistency.
Approved by: re
are nevers used for PCI interrupts, but can cause false matches since
they are fully programmable.
2.) Skip the mapping registers for slot a2 and a3 on "psycho" bridges,
since they are not present there. Again, this could cause false matches,
which would result in the interrupt being delivered at most once.
Submitted by: jake (2)
Approved by: re
this is now done on all machines except for some known problematic ones.
Add an additional guard to make sure that the interrupt numbers are
in the correct range before swizzling. This should catch any remaining
models for which the swizzle is inappropriate.
Correct the swizzle calculation to account for the fact that the parent
interrupt numbers to be swizzled are 1-based.
Approved by: re
1. At least some Netra t1 models have PCI buses with no associated
interrupt map, but obviously expect the PCI swizzle to be done with
the interrupt number from the higher level as intpin. In this case,
the mapping also needs to continue at parent bus nodes.
To handle that, add a quirk table based on the "name" property of
the root node to avoid breaking other boxen. This property is now
retrieved and printed at boot.
2. On SPARCengine Ultra AX machines, interrupt numbers are not mapped
at all, and full interrupt numbers (not just INOs) are given in
the interrupt properties. This is more or less cosmetical; the
PCI interrupt numbers would be wrong, but the psycho resource
allocation method would pass the right numbers on anyway.
Tested by: mux (1), Maxim Mazurok <maxim@km.ua> (2)
recognized compat properties. This should make the psycho driver attach
properly on SPARCengine Ultra AX machines.
Switch to a table-driven logic to recognize the ID's, since their number
is now large enough to justify this.
These changes are analogous to those made in NetBSD r.1.35, but
implemented a bit differently.
of them, and couple them by always performing all operations on all
present IOMMUs. This is required because with the current API there
is no way to determine on which bus a busdma operation is performed.
While being there, clean up the iommu code a bit.
This should be a step in the direction of allow some of larger machines
to work; tests have shown that there still seem to be problems left.
code. Both tasks are not always performed completely by the firmware.
The former is required to get some e450 models to boot; the latter fixes
the repeated fifo underruns with hme(4)s and gem(4)s observed on some
machines (and probably performance problems with other peripherals as
well).
- change the IOMMU support code so that it supports overcommittting the
available DVMA memory, while still allocating as lazily as possible.
This is achieved by limiting the preallocation, and deferring the
allocation to map load time when it fails. In the latter case, the
DVMA memory reserved for unloaded maps can be stolen to free up enough
memory for loading a map.
- allow NULL settings in the method tables, and search the parent tags
until an appropriate implementation is found. This allows to remove some
kluges in the old implementation.