is not natural and needlessly exposes a lot of dirty laundry.
Move private interfaces between the two from swap_pager.h to swap_pager.c
and staticize as much as possible.
No functional change.
handed-off/signaled to a higher priority thread. Note that when
there are idle KSEs that could run the higher priority thread,
we still add the preemption point because it seems to take the
kernel a while to schedule an idle KSE. The drawbacks are that
threads will be swapped more often between CPUs (KSEs) and
that there will be an extra userland context switch (the idle
KSE is still woken and will probably resume the preempted
thread). We'll revisit this if and when idle CPU/KSE wakeup
times improve.
Inspired by: Petri Helenius <pete@he.iki.fi>
Reviewed by: davidxu
of by mount point, umount had to take care not to unmount the wrong
file system if another file system was covering the requested one.
Now that the file system to unmount is specified to the kernel using
the filesystem ID, this confusion cannot occur, so remove the code
that checked for it.
work when using a graphics chipset which identifies itself as
`VIA CLE266', used in some VIA EPIA boards. Two values need to be
patched in the VESA mode information structure: the widths of the modes
mentioned above are encoded in a format which was unknown to the VESA
module (and to my copy of the VBE spec.) whereas the window memory
segment values seem to be just incorrect.
I tested this on a VIA EPIA-M9000 and -M10000.
do not clear the `sb_sel' member of the sockbuf structure
while invalidating the receive sockbuf in sorflush(), called
from soshutdown().
The panic was reproduceable from user land by attaching a knote
with EVFILT_READ filters to a socket, disabling further reads
from it using shutdown(2), and then closing it. knote_remove()
was called to remove all knotes from the socket file descriptor
by detaching each using its associated filterops' detach call-
back function, sordetach() in this case, which tried to remove
itself from the invalidated sockbuf's klist (sb_sel.si_note).
PR: kern/54331
is system bound thread and when it is blocked, no upcall is generated.
o Add ability to libkse to allow it run in pure 1:1 threading mode,
defining SYSTEM_SCOPE_ONLY in Makefile can turn on this option.
o Eliminate code for installing dummy signal handler for sigwait call.
o Add hash table to find thread.
Reviewed by: deischen
When a signal is being delivered to process, first find a sigwait
thread to deliver, POSIX's argument is speed of delivering signal
to sigwait thread is faster than other ways. A signal in its wait
set will cause sigwait to return the signal number, a signal not
in its wait set but in not blocked by the thread also causes sigwait
to return, but sigwait returns EINTR, sigwait is oneshot operation,
only one signal can be delivered to its wait set, when a signal is
delivered to the sigwait thread, the thread's sigwait state is canceled.
an appropriate error number after a failure condition.
In particular, three of the changed statements return ESRCH for a
failed pfind(), and in also three places a non-zero return
from p_cansee() will be passed back,
Also noticed by: rwatson
files, so that SWAP_META_PAGES does not vary either.
swap_pager.c ended up with a value of 16, everybody else 8. Go with
the 16 for now.
This should only have any effect in the "kill processes because we
are out of swap" scenario, where it will make some sort of estimate
of something more precise.
1. There was a race condition between a thread unlocking
a umtx and the thread contesting it. If the unlocking
thread won the race it may try to wakeup a thread that
was not yet in msleep(). The contesting thread would then
go to sleep to await a wakeup that would never come. It's
not possible to close the race by using a lock because
calls to casuptr() may have to fault a page in from swap.
Instead, the race was closed by introducing a flag that
the unlocking thread will set when waking up a thread.
The contesting thread will check for this flag before
going to sleep. For now the flag is kept in td_flags,
but it may be better to use some other member or create
a new one because of the possible performance/contention
issues of having to own sched_lock. Thanks to jhb for
pointing me in the right direction on this one.
2. Once a umtx was contested all future locks and unlocks
were happening in the kernel, regardless of whether it
was contested or not. To prevent this from happening,
when a thread locks a umtx it checks the queue for that
umtx and unsets the contested bit if there are no other
threads waiting on it. Again, this is slightly more
complicated than it needs to be because we can't hold
a lock across casuptr(). So, the thread has to check
the queue again after unseting the bit, and reset the
contested bit if it finds that another thread has put
itself on the queue in the mean time.
3. Remove the if... block for unlocking an uncontested
umtx, and replace it with a KASSERT. The _only_ time
a thread should be unlocking a umtx in the kernel is
if it is contested.
Previously, there were two copies of telnet; a non-crypto version
that lived in the usual places, and a crypto version that lived in
crypto/telnet/. The latter was built in a broken manner somewhat akin
to other "contribified" sources. This meant that there were 4 telnets
competing with each other at build time - KerberosIV, Kerberos5,
plain-old-secure and base. KerberosIV is no longer in the running, but
the other three took it in turns to jump all over each other during a
"make buildworld".
As the crypto issue has been clarified, and crypto _calls_ are not
a problem, crypto/telnet has been repo-copied to contrib/telnet,
and with this commit, all telnets are now "contribified". The contrib
path was chosen to not destroy history in the repository, and differs
from other contrib/ entries in that it may be worked on as "normal"
BSD code. There is no dangerous crypto in these sources, only a
very weak system less strong than enigma(1).
Kerberos5 telnet and Secure telnet are now selected by using the usual
macros in /etc/make.conf, and the build process is unsurprising and
less treacherous.