this to be the case. This will mean we don't try and handle the cache in
bus_dmamap_sync when it is not needed.
Obtained from: ABT Systems Ltd
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D6605
tested on the Pass 1.1 and 2.0 ThunderX machines in the Netperf cluster.
Reviewed by: jhb
Obtained from: ABT Systems Ltd
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D6453
- Add a pcib_detach() function for the PCI-PCI bridge driver. It
tears down the NEW_PCIB and hotplug state including destroying
resource managers, deleting child devices, and disabling hotplug
events.
- Add a detach method to the ACPI PCI-PCI bridge driver which calls
pcib_detach() and then frees the copy of the _PRT interrupt routing
table.
- Add a detach method to the PCI-Cardbus bridge driver which frees
the PCI bus resources in addition to calling cbb_detach().
- Explicitly clear any pending hotplug events during attach to ensure
future events will generate an interrupt.
- If a the Command Completed bit is set in the slot status register
when the command completion timeout fires, treat it as if the
command completed and the completion interrupt was just lost rather
than forcing a detach.
- Don't wait for a Command Completed notification if Command Completion
interrupts are disabled. The spec explicitly says no interrupt is
enabled when clearing CCIE, and on my T400 no interrupt is generated
when CCIE is changed from cleared to set, either. In addition, the
T400 doesn't appear to set the Command Completed bit in the cases
where it doesn't generate an interrupt, so don't schedule the timer
either. (If the CC bit were always set, one could always set the timer
and rely on the logic of treating CC set as a missed interrupt.)
Reviewed by: imp (older version)
Differential Revision: https://reviews.freebsd.org/D6424
Previously the command completion interrupt would post any pending
command immediately before pcib_pcie_hotplug_update() had been
run to inspect the current status. Now, the command completion
interrupt merely clears the flag and stops the timer assuming that
the caller is always going to call pcib_pcie_hotplug_update() to
generate the next hotplug command if one is needed.
While here, fix a bug for systems with command completion where the
old (existing) value was written to the slot control register instead
of the new value. This fixes the complaint about a missing hotplug
interrupt on my T400.
Differential Revision: https://reviews.freebsd.org/D6363
translate the pci rid to a controller ID. The translation could be based
on the 'msi-map' OFW property, a similar ACPI option, or hard-coded for
hardware lacking the above options.
Reviewed by: wma
Obtained from: ABT Systems Ltd
Sponsored by: The FreeBSD Foundation
Add a new get_id interface to pci and pcib. This will allow us to both
detect failures, and get different PCI IDs.
For the former the interface returns an int to signal an error. The ID is
returned at a uintptr_t * argument.
For the latter there is a type argument that allows selecting the ID type.
This only specifies a single type, however a MSI type will be added
to handle the need to find the ID the hardware passes to the ARM GICv3
interrupt controller.
A follow up commit will be made to remove pci_get_rid.
Reviewed by: jhb, rstone (previous version)
Obtained from: ABT Systems Ltd
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D6239
interface with 5 methods to mirror the 5 MSI/MSI-X methods in the pcib
interface. The pcib driver will need to perform a device specific lookup
to find the MSI controller and pass this to intrng as the xref. Intrng
will finally find the controller and have it handle the requested operation.
Obtained from: ABT Systems Ltd
MFH: yes
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D5985
which leads to end being before start and thus a signed extended very large
number of size later on, which kva_alloc() will fail upon and we will panic.
Add the missing call.
Debugged with: andrew
Reviewed by: br, andrew
Sponsored by: DARPA/AFRL
Found: while using virtio with gem5
MFC after: 2 weeks
Differential Revision: https://reviews.freebsd.org/D6337
detect failures, and get different PCI IDs.
For the former the interface returns an int to signal an error. The ID is
returned at a uintptr_t * argument.
For the latter there is a type argument that allows selecting the ID type.
This only specifies a single type, however a MSI type will be added
to handle the need to find the ID the hardware passes to the ARM GICv3
interrupt controller.
A follow up commit will be made to remove pci_get_rid.
Reviewed by: jhb, rstone
Obtained from: ABT Systems Ltd
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D6239
When devctl was added, the location string for PCI devices was changed to
use the PCI "selector" that pciconf and devctl accept. However, devd
assumes that location strings are formatted as a list of name=value pairs.
As a result, devd is no longer parsing any of the values out of PCI
device events. Restore the previous format of the PCI location strings
to restore the location and slot keywords in case any devd scripts are
using this. Add the "selector" as a new 'dbsf' location variable.
Reviewed by: imp
MFC after: 3 days
Differential Revision: https://reviews.freebsd.org/D6253
PCI-express HotPlug support is implemented via bits in the slot
registers of the PCI-express capability of the downstream port along
with an interrupt that triggers when bits in the slot status register
change.
This is implemented for FreeBSD by adding HotPlug support to the
PCI-PCI bridge driver which attaches to the virtual PCI-PCI bridges
representing downstream ports on HotPlug slots. The PCI-PCI bridge
driver registers an interrupt handler to receive HotPlug events. It
also uses the slot registers to determine the current HotPlug state
and drive an internal HotPlug state machine. For simplicty of
implementation, the PCI-PCI bridge device detaches and deletes the
child PCI device when a card is removed from a slot and creates and
attaches a PCI child device when a card is inserted into the slot.
The PCI-PCI bridge driver provides a bus_child_present which claims
that child devices are present on HotPlug-capable slots only when a
card is inserted. Rather than requiring a timeout in the RC for
config accesses to not-present children, the pcib_read/write_config
methods fail all requests when a card is not present (or not yet
ready).
These changes include support for various optional HotPlug
capabilities such as a power controller, mechanical latch,
electro-mechanical interlock, indicators, and an attention button.
It also includes support for devices which require waiting for
command completion events before initiating a subsequent HotPlug
command. However, it has only been tested on ExpressCard systems
which support surprise removal and have none of these optional
capabilities.
PCI-express HotPlug support is conditional on the PCI_HP option
which is enabled by default on arm64, x86, and powerpc.
Reviewed by: adrian, imp, vangyzen (older versions)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D6136
Save the value of the IOV control and page size registers and restore
them (along with the VF count) in pci_cfg_save/pci_cfg_restore. This
ensures ARI remains enabled if a PF driver resets itself during the
PCI_IOV_INIT callback. This might also properly restore SRIOV state
across suspend/resume.
Reviewed by: rstone, vangyzen
Differential Revision: https://reviews.freebsd.org/D6192
While here, check if ARI was enabled by re-reading the config register
after writing it and return an error if the write fails.
Reviewed by: rstone, vangyzen
pci_remap_msix() can be used to alter the mapping of allocated
MSI-X vectors to the MSI-X table. The code had an off by one error
when adding the IRQ resources after performing a remap. This was
fatal for any vectors in the table that used the "last" valid IRQ as
those vectors were assigned a garbage IRQ value.
MFC after: 3 days
This allows the PCI-PCI bridge driver to save a reference to the child
device in its softc.
Note that this required moving the "pci" device creation out of
acpi_pcib_attach(). Instead, acpi_pcib_attach() is renamed to
acpi_pcib_fetch_prt() as it's sole action now is to fetch the PCI
interrupt routing table.
Differential Revision: https://reviews.freebsd.org/D6021
Rescanning a PCI bus uses the following steps:
- Fetch the current set of child devices and save it in the 'devlist'
array.
- Allocate a parallel array 'unchanged' initalized with NULL pointers.
- Scan the bus checking each slot (and each function on slots with a
multifunction device).
- If a valid function is found, look for a matching device in the 'devlist'
array. If a device is found, save the pointer in the 'unchanged' array.
If a device is not found, add a new device.
- After the scan has finished, walk the 'devlist' array deleting any
devices that do not have a matching pointer in the 'unchanged' array.
- Finally, fetch an updated set of child devices and explicitly attach any
devices that are not present in the 'unchanged' array.
This builds on the previous changes to move subclass data management into
pci_alloc_devinfo(), pci_child_added(), and bus_child_deleted().
Subclasses of the PCI bus use custom rescan logic explicitly override the
rescan method to disable rescans.
Differential Revision: https://reviews.freebsd.org/D6018
This is a trivial follow-up to r296308. Annotate the intentional fallthrough
to make it clear for future readers and linters.
Reported by: Coverity
CID: 1352716
Discussed with: jhb
Sponsored by: EMC / Isilon Storage Division
The ACPI and OFW PCI bus drivers as well as CardBus override this to
allocate the larger ivars to hold additional info beyond the stock PCI ivars.
This removes the need to pass the size to functions like pci_add_iov_child()
and pci_read_device() simplifying IOV and bus rescanning implementations.
As a result of this and earlier changes, the ACPI PCI bus driver no longer
needs its own device_attach and pci_create_iov_child methods but can use
the methods in the stock PCI bus driver instead.
Differential Revision: https://reviews.freebsd.org/D5891
Instead of providing a wrapper around device_delete_child() that the PCI
bus and child bus drivers must call explicitly, move the bulk of the logic
from pci_delete_child() into a bus_child_deleted() method
(pci_child_deleted()). This allows PCI devices to be safely deleted via
device_delete_child().
- Add a bus_child_deleted method to the ACPI PCI bus which clears the
device_t associated with the corresponding ACPI handle in addition to
the normal PCI bus cleanup.
- Change cardbus_detach_card to call device_delete_children() and move
CardBus-specific delete logic into a new cardbus_child_deleted() method.
- Use device_delete_child() instead of pci_delete_child() in the SRIOV code.
- Add a bus_child_deleted method to the OpenFirmware PCI bus drivers which
frees the OpenFirmware device info for each PCI device.
Reviewed by: imp
Tested on: amd64 (CardBus and PCI-e hotplug)
Differential Revision: https://reviews.freebsd.org/D5831
On some architectures, u_long isn't large enough for resource definitions.
Particularly, powerpc and arm allow 36-bit (or larger) physical addresses, but
type `long' is only 32-bit. This extends rman's resources to uintmax_t. With
this change, any resource can feasibly be placed anywhere in physical memory
(within the constraints of the driver).
Why uintmax_t and not something machine dependent, or uint64_t? Though it's
possible for uintmax_t to grow, it's highly unlikely it will become 128-bit on
32-bit architectures. 64-bit architectures should have plenty of RAM to absorb
the increase on resource sizes if and when this occurs, and the number of
resources on memory-constrained systems should be sufficiently small as to not
pose a drastic overhead. That being said, uintmax_t was chosen for source
clarity. If it's specified as uint64_t, all printf()-like calls would either
need casts to uintmax_t, or be littered with PRI*64 macros. Casts to uintmax_t
aren't horrible, but it would also bake into the API for
resource_list_print_type() either a hidden assumption that entries get cast to
uintmax_t for printing, or these calls would need the PRI*64 macros. Since
source code is meant to be read more often than written, I chose the clearest
path of simply using uintmax_t.
Tested on a PowerPC p5020-based board, which places all device resources in
0xfxxxxxxxx, and has 8GB RAM.
Regression tested on qemu-system-i386
Regression tested on qemu-system-mips (malta profile)
Tested PAE and devinfo on virtualbox (live CD)
Special thanks to bz for his testing on ARM.
Reviewed By: bz, jhb (previous)
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D4544
Summary:
The idea behind this is '~0ul' is well-defined, and casting to uintmax_t, on a
32-bit platform, will leave the upper 32 bits as 0. The maximum range of a
resource is 0xFFF.... (all bits of the full type set). By dropping the 'ul'
suffix, C type promotion rules apply, and the sign extension of ~0 on 32 bit
platforms gets it to a type-independent 'unsigned max'.
Reviewed By: cem
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D5255
Fix the boundary limit to end at the end of the region and not one beyond (1).
Diagnosed by: andrew (1)
Reviewed by: andrew, br
Sponsored by: DARPA/AFRL
Differential Revision: https://reviews.freebsd.org/D5493
On some platforms, BAR entries are hardcoded and must not be accessed
using standard method. Add functionality to identify this situation
and configure the bus based on Enhanced Allocation structure.
Obtained from: Semihalf
Sponsored by: Cavium
Approved by: cognet (mentor)
Reviewed by: jhb
Differential revision: https://reviews.freebsd.org/D5242
Most calls to bus_alloc_resource() use "anywhere" as the range, with a given
count. Migrate these to use the new bus_alloc_resource_anywhere() API.
Reviewed by: jhb
Differential Revision: https://reviews.freebsd.org/D5370
If Enhanced Allocation is not used, we can't allocate any random
range. All internal devices have hardcoded place where they can
be located within PCI address space. Fortunately, we can read
this value from BAR.
Obtained from: Semihalf
Sponsored by: Cavium
Approved by: cognet (mentor)
Reviewed by: zbb
Differential revision: https://reviews.freebsd.org/D5455
* provided OFW interface for pci_host_generic (for handling devices which are present in DTS under the PCI node)
* removed support for internal PCI from arm64/cavium
* cleaned up and made most of the code common
Obtained from: Semihalf
Sponsored by: Cavium
Approved by: cognet (mentor)
Reviewed by: zbb
Differential revision: https://reviews.freebsd.org/D5261
Summary:
Migrate to using the semi-opaque type rman_res_t to specify rman resources. For
now, this is still compatible with u_long.
This is step one in migrating rman to use uintmax_t for resources instead of
u_long.
Going forward, this could feasibly be used to specify architecture-specific
definitions of resource ranges, rather than baking a specific integer type into
the API.
This change has been broken out to facilitate MFC'ing drivers back to 10 without
breaking ABI.
Reviewed By: jhb
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D5075
mv_pci driver omitted slot 0, which can be valid device on Armada38x.
New mechanism detects if device is root link, basing on vendor's
and device's IDs.
It is restricted to Armada38x; on other machines, behaviour remains
the same.
Reviewed by: andrew
Obtained from: Semihalf
Sponsored by: Stormshield
Submitted by: Bartosz Szczepanek <bsz@semihalf.com>
Differential revision: https://reviews.freebsd.org/D4377
While here, explicitly note the requirement that the BAR(s) must be
allocated prior to calling pci_alloc_msix().
Reviewed by: andrew, emaste
MFC after: 1 week
Differential Revision: https://reviews.freebsd.org/D4688
* Use the interrupt-map property to route interrupts
* Remove the IRQ rman, it's now unneeded
* Support MSI/MSI-X interrupts
With this I'm able to use the two NICs I've tested (em and msk), however
while I can boot with an AHCI devie attached it fails when any drives are
connected.
Obtained from: ABT Systems Ltd
Sponsored by: SoftIron Inc
bridges. Currently this includes information about what resources a
bridge decodes on the upstream side for use by downstream devices including
bus numbers, I/O port resources, and memory resources. Windows and bus
ranges are enumerated for both PCI-PCI bridges and PCI-CardBus bridges.
To simplify the implementation, all enumeration is done by reading the
appropriate config space registers directly rather than querying the
bridge driver in the kernel via new ioctls. This does result in a few
limitations.
First, an unimplemented window in a PCI-PCI bridge cannot be accurately
detected as accurate detection requires writing to the window base
register. That is not safe for pciconf(8). Instead, this assumes that
any window where both the base and limit read as all zeroes is
unimplemented.
Second, the PCI-PCI bridge driver in a tree has a few quirks for
PCI-PCI bridges that use subtractive decoding but do not indicate that
via the progif config register. The list of quirks is duplicated in
pciconf's source.
Reviewed by: imp
MFC after: 2 weeks
Differential Revision: https://reviews.freebsd.org/D4171
PCI-Express capability registers (that is, PCI config registers in the
standard PCI config space belonging to the PCI-Express capability
register set).
Note that all of the current PCI-e registers are either 16 or 32-bits,
so only widths of 2 or 4 bytes are supported.
Reviewed by: imp
MFC after: 1 week
Sponsored by: Chelsio
Differential Revision: https://reviews.freebsd.org/D4088