If an IPI was delivered to this cpu before interrupts were disabled
then return right away via vmx_setjmp() with a return value of VMX_RETURN_AST.
Obtained from: NetApp
- New memory region interface. An RB tree holds the regions,
with a last-found per-vCPU cache to deal with the common case
of repeated guest accesses to MMIO registers in the same page.
- Support memory-mapped BARs in PCI emulation.
mem.c/h - memory region interface
instruction_emul.c/h - remove old region interface.
Use gpa from EPT exit to avoid a tablewalk to
determine operand address. Determine operand size
and use when calling through to region handler.
fbsdrun.c - call into region interface on paging
exit. Distinguish between instruction emul error
and region not found
pci_emul.c/h - implement new BAR callback api.
Split BAR alloc routine into routines that
require/don't require the BAR phys address.
ioapic.c
pci_passthru.c
pci_virtio_block.c
pci_virtio_net.c
pci_uart.c - update to new BAR callback i/f
Reviewed by: neel
Obtained from: NetApp
address associated with the guest memory segment. This is because there is
no longer a 1:1 mapping between GPA and HPA.
As a result 'vmmctl' can only display the guest physical address and the
length of the lowmem and highmem segments.
chunks. This breaks the assumption that the entire memory segment is
contiguously allocated in the host physical address space.
This also paves the way to satisfy the 4KB page allocations by requesting
free pages from the VM subsystem as opposed to hard-partitioning host memory
at boot time.
associated with guest physical memory is contiguous.
Add check to vm_gpa2hpa() that the range indicated by [gpa,gpa+len) is all
contained within a single 4KB page.
wasn't found, and use that in userdisk_open() to allow raw disks
and ISO images to be read.
This is a temporary fix - disk.c has changed a lot in CURRENT so this
code may be reworked or made redundant on the next IFC. It is useful
to be able to boot from CD in the meantime.
associated with guest physical memory is contiguous.
In this case vm_malloc() was using vm_gpa2hpa() to indirectly infer whether
or not the address range had already been allocated.
Replace this instead with an explicit API 'vm_gpa_available()' that returns
TRUE if a page is available for allocation in guest physical address space.
page table fault. Use this when fetching the instruction bytes from the guest
memory.
Also modify the lapic_mmio() API so that a decoded instruction is fed into it
instead of having it fetch the instruction bytes from the guest. This is
useful for hardware assists like SVM that provide the faulting instruction
as part of the vmexit.
AP needs to be activated by spinning up an execution context for it.
The local apic emulation is now completely done in the hypervisor and it will
detect writes to the ICR_LO register that try to bring up the AP. In response
to such writes it will return to userspace with an exit code of SPINUP_AP.
Reviewed by: grehan
the guest. Prior to the fix it was possible for such a bar to appear as a
32-bit bar as long as it was allocated from the region below 4GB.
This had the potential to confuse some drivers that were particular about
the size of the bars.
Obtained from: NetApp
These function number is specified by an optional [:<func>] after the slot
number: -s 1:0,virtio-net,tap0
Ditto for the mptable naming: -n 1:0,e0a
Obtained from: NetApp
or 32-bit signed integer.
Simplify the handling of indirect addressing with displacement by
unconditionally adding the 'instruction->disp' to the target address.
This is alright since 'instruction->disp' is non-zero only for the
addressing modes that specify a displacement.
Obtained from: NetApp
CR4. This bit is specific to the Intel VTX and removing it makes the library
more portable to AMD/SVM.
In the Intel VTX implementation, the hypervisor will ensure that this bit is
always set. See vmx_fix_cr4() for details.
Suggested by: grehan
zalloc and userboot seem to want to use ~600KB of heap space, which
results in a segfault when malloc fails in bhyveload.
Reported by: sree dot openwrk at gmail dot com