39 Commits

Author SHA1 Message Date
Alexander Motin
9000aabf3b sched_rr_interval() seems always returned period in hz ticks, but same
always it was used as rate.  Fix use side units to period in hz ticks.
2012-08-10 18:19:57 +00:00
David Xu
a231144921 Use p4prio_to_tsprio to calculate TS priority instead of using
p4prio_to_rtpprio which is for RT priority.

PR:	kern/157657
Submitted by:	krivenok.dmitry at gmail dot com
MFC after:	3 days
2011-06-07 02:50:14 +00:00
Alexander Leidinger
de5b19526b Add some FEATURE macros for various features (AUDIT/CAM/IPC/KTR/MAC/NFS/NTP/
PMC/SYSV/...).

No FreeBSD version bump, the userland application to query the features will
be committed last and can serve as an indication of the availablility if
needed.

Sponsored by:   Google Summer of Code 2010
Submitted by:   kibab
Reviewed by:    arch@ (parts by rwatson, trasz, jhb)
X-MFC after:    to be determined in last commit with code from this project
2011-02-25 10:11:01 +00:00
Randall Stewart
bec67fd3bb sched_getparam was just plain broke for time-share
processes. It did not return an error but instead
just let garbage be passed back. This I fix so
it actually properly translates the priority the
process is at to a posix's high means more priority.
I also fix it so that if the ULE scheduler has bumped
it up to a realtime process you get back a sane value
i.e. the highest priority (63 for time-share).

sched_setscheduler() had the setting of the
timeshare class priority disabled. With some notes
about rejecting the posix high numbers is greater
priority and use nice instead. This fix also
adjusts that to work, with the cavet that a t-s
process may well get bumped up or down i.e. the
setscheduler() will NOT change the nice value only
the current priority. I think this is reasonable
considering if the user wants to play with nice then
he can. At least all the posix'ish interfaces now
respond sanely.

MFC after:	3 weeks
2010-03-03 21:46:51 +00:00
Jeff Roberson
982d11f836 Commit 14/14 of sched_lock decomposition.
- Use thread_lock() rather than sched_lock for per-thread scheduling
   sychronization.
 - Use the per-process spinlock rather than the sched_lock for per-process
   scheduling synchronization.

Tested by:      kris, current@
Tested on:      i386, amd64, ULE, 4BSD, libthr, libkse, PREEMPTION, etc.
Discussed with: kris, attilio, kmacy, jhb, julian, bde (small parts each)
2007-06-05 00:00:57 +00:00
Julian Elischer
ad1e7d285a Threading cleanup.. part 2 of several.
Make part of John Birrell's KSE patch permanent..
Specifically, remove:
Any reference of the ksegrp structure. This feature was
never fully utilised and made things overly complicated.
All code in the scheduler that tried to make threaded programs
fair to unthreaded programs.  Libpthread processes will already
do this to some extent and libthr processes already disable it.

Also:
Since this makes such a big change to the scheduler(s), take the opportunity
to rename some structures and elements that had to be moved anyhow.
This makes the code a lot more readable.

The ULE scheduler compiles again but I have no idea if it works.

The 4bsd scheduler still reqires a little cleaning and some functions that now do
ALMOST nothing will go away, but I thought I'd do that as a separate commit.

Tested by David Xu, and Dan Eischen using libthr and libpthread.
2006-12-06 06:34:57 +00:00
Tom Rhodes
bdd04ab184 Update #includes list. 2006-11-11 16:19:12 +00:00
John Birrell
8460a577a4 Make KSE a kernel option, turned on by default in all GENERIC
kernel configs except sun4v (which doesn't process signals properly
with KSE).

Reviewed by:	davidxu@
2006-10-26 21:42:22 +00:00
David Xu
c3ab507fcd Return priority range 0..PRI_MAX_TIMESHARE-PRI_MIN_TIMESHARE for
SCHED_OTHER, the same range as rtprio() is using. In old code,
it returns nice range -20 .. 20, nice should be treated as process
weight, it is really managed by getpriority() and setpriority()
syscalls, they are different.
2006-07-12 05:54:17 +00:00
David Xu
65343c788c Extended the POSIX scheduler APIs to accept lwpid as well, we've already
done this in ptrace syscall, when a pid is large than PID_MAX, the syscall
will search a thread in current process. It permits 1:1 thread library to
get and set a thread's scheduler attributes.
2006-07-11 06:11:34 +00:00
David Xu
36ec198bd5 Add scheduler API sched_relinquish(), the API is used to implement
yield() and sched_yield() syscalls. Every scheduler has its own way
to relinquish cpu, the ULE and CORE schedulers have two internal run-
queues, a timesharing thread which calls yield() syscall should be
moved to inactive queue.
2006-06-15 06:37:39 +00:00
David Xu
f6c040a2c5 Style fixes.
Submitted by: Diane Bruce < db at db dot net >
2006-05-19 06:37:24 +00:00
David Xu
e631cff309 Use proc lock to prevent a thread from exiting, Giant was no longer used to
protect thread list.
2006-04-10 04:55:59 +00:00
Warner Losh
60727d8b86 /* -> /*- for license, minor formatting changes 2005-01-07 02:29:27 +00:00
Jacques Vidrine
5949ba2136 sched_setscheduler: Return EINVAL when a invalid policy is specified,
thus complying with POLA and the man page.  (Previously, no error was
returned for this case.)
2003-09-13 18:46:24 +00:00
David E. O'Brien
f4636c5959 Use __FBSDID(). 2003-06-11 06:34:30 +00:00
Julian Elischer
4a338afd7a Move a bunch of flags from the KSE to the thread.
I was in two minds as to where to put them in the first case..
I should have listenned to the other mind.

Submitted by:	 parts by davidxu@
Reviewed by:	jeff@ mini@
2003-02-17 09:55:10 +00:00
Alfred Perlstein
b565fb9e6f headers should not really include "opt_foo.h" (in this case opt_posix.h).
remove it from the header and add it to the files that require it.
2002-11-15 22:55:06 +00:00
Julian Elischer
1f955e2d48 Tidy up the scheduler's code for changing the priority of a thread.
Logically pretty much a NOP.
2002-10-14 20:34:31 +00:00
Jeff Roberson
b43179fbe8 - Create a new scheduler api that is defined in sys/sched.h
- Begin moving scheduler specific functionality into sched_4bsd.c
 - Replace direct manipulation of scheduler data with hooks provided by the
   new api.
 - Remove KSE specific state modifications and single runq assumptions from
   kern_switch.c

Reviewed by:	-arch
2002-10-12 05:32:24 +00:00
Julian Elischer
71fad9fdee Completely redo thread states.
Reviewed by:	davidxu@freebsd.org
2002-09-11 08:13:56 +00:00
Julian Elischer
e602ba25fd Part 1 of KSE-III
The ability to schedule multiple threads per process
(one one cpu) by making ALL system calls optionally asynchronous.
to come: ia64 and power-pc patches, patches for gdb, test program (in tools)

Reviewed by:	Almost everyone who counts
	(at various times, peter, jhb, matt, alfred, mini, bernd,
	and a cast of thousands)

	NOTE: this is still Beta code, and contains lots of debugging stuff.
	expect slight instability in signals..
2002-06-29 17:26:22 +00:00
Julian Elischer
2c1007663f In a threaded world, differnt priorirites become properties of
different entities.  Make it so.

Reviewed by:	jhb@freebsd.org (john baldwin)
2002-02-11 20:37:54 +00:00
Julian Elischer
b40ce4165d KSE Milestone 2
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.

Sorry john! (your next MFC will be a doosie!)

Reviewed by: peter@freebsd.org, dillon@freebsd.org

X-MFC after:    ha ha ha ha
2001-09-12 08:38:13 +00:00
John Baldwin
51b4eed974 Protect pri_to_rtp() with sched_lock when needed. 2001-09-02 00:52:11 +00:00
John Baldwin
688ebe120c - Close races with signals and other AST's being triggered while we are in
the process of exiting the kernel.  The ast() function now loops as long
  as the PS_ASTPENDING or PS_NEEDRESCHED flags are set.  It returns with
  preemption disabled so that any further AST's that arrive via an
  interrupt will be delayed until the low-level MD code returns to user
  mode.
- Use u_int's to store the tick counts for profiling purposes so that we
  do not need sched_lock just to read p_sticks.  This also closes a
  problem where the call to addupc_task() could screw up the arithmetic
  due to non-atomic reads of p_sticks.
- Axe need_proftick(), aston(), astoff(), astpending(), need_resched(),
  clear_resched(), and resched_wanted() in favor of direct bit operations
  on p_sflag.
- Fix up locking with sched_lock some.  In addupc_intr(), use sched_lock
  to ensure pr_addr and pr_ticks are updated atomically with setting
  PS_OWEUPC.  In ast() we clear pr_ticks atomically with clearing
  PS_OWEUPC.  We also do not grab the lock just to test a flag.
- Simplify the handling of Giant in ast() slightly.

Reviewed by:	bde (mostly)
2001-08-10 22:53:32 +00:00
Mark Murray
fb919e4d5a Undo part of the tangle of having sys/lock.h and sys/mutex.h included in
other "system" header files.

Also help the deprecation of lockmgr.h by making it a sub-include of
sys/lock.h and removing sys/lockmgr.h form kernel .c files.

Sort sys/*.h includes where possible in affected files.

OK'ed by:	bde (with reservations)
2001-05-01 08:13:21 +00:00
John Baldwin
6caa8a1501 Overhaul of the SMP code. Several portions of the SMP kernel support have
been made machine independent and various other adjustments have been made
to support Alpha SMP.

- It splits the per-process portions of hardclock() and statclock() off
  into hardclock_process() and statclock_process() respectively.  hardclock()
  and statclock() call the *_process() functions for the current process so
  that UP systems will run as before.  For SMP systems, it is simply necessary
  to ensure that all other processors execute the *_process() functions when the
  main clock functions are triggered on one CPU by an interrupt.  For the alpha
  4100, clock interrupts are delievered in a staggered broadcast fashion, so
  we simply call hardclock/statclock on the boot CPU and call the *_process()
  functions on the secondaries.  For x86, we call statclock and hardclock as
  usual and then call forward_hardclock/statclock in the MD code to send an IPI
  to cause the AP's to execute forwared_hardclock/statclock which then call the
  *_process() functions.
- forward_signal() and forward_roundrobin() have been reworked to be MI and to
  involve less hackery.  Now the cpu doing the forward sets any flags, etc. and
  sends a very simple IPI_AST to the other cpu(s).  AST IPIs now just basically
  return so that they can execute ast() and don't bother with setting the
  astpending or needresched flags themselves.  This also removes the loop in
  forward_signal() as sched_lock closes the race condition that the loop worked
  around.
- need_resched(), resched_wanted() and clear_resched() have been changed to take
  a process to act on rather than assuming curproc so that they can be used to
  implement forward_roundrobin() as described above.
- Various other SMP variables have been moved to a MI subr_smp.c and a new
  header sys/smp.h declares MI SMP variables and API's.   The IPI API's from
  machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h.
- The globaldata_register() and globaldata_find() functions as well as the
  SLIST of globaldata structures has become MI and moved into subr_smp.c.
  Also, the globaldata list is only available if SMP support is compiled in.

Reviewed by:	jake, peter
Looked over by:	eivind
2001-04-27 19:28:25 +00:00
John Baldwin
3a18729505 Lock need_resched with sched_lock.
Reported by:	des
2001-02-22 13:46:09 +00:00
Jake Burkholder
d5a08a6065 Implement a unified run queue and adjust priority levels accordingly.
- All processes go into the same array of queues, with different
  scheduling classes using different portions of the array.  This
  allows user processes to have their priorities propogated up into
  interrupt thread range if need be.
- I chose 64 run queues as an arbitrary number that is greater than
  32.  We used to have 4 separate arrays of 32 queues each, so this
  may not be optimal.  The new run queue code was written with this
  in mind; changing the number of run queues only requires changing
  constants in runq.h and adjusting the priority levels.
- The new run queue code takes the run queue as a parameter.  This
  is intended to be used to create per-cpu run queues.  Implement
  wrappers for compatibility with the old interface which pass in
  the global run queue structure.
- Group the priority level, user priority, native priority (before
  propogation) and the scheduling class into a struct priority.
- Change any hard coded priority levels that I found to use
  symbolic constants (TTIPRI and TTOPRI).
- Remove the curpriority global variable and use that of curproc.
  This was used to detect when a process' priority had lowered and
  it should yield.  We now effectively yield on every interrupt.
- Activate propogate_priority().  It should now have the desired
  effect without needing to also propogate the scheduling class.
- Temporarily comment out the call to vm_page_zero_idle() in the
  idle loop.  It interfered with propogate_priority() because
  the idle process needed to do a non-blocking acquire of Giant
  and then other processes would try to propogate their priority
  onto it.  The idle process should not do anything except idle.
  vm_page_zero_idle() will return in the form of an idle priority
  kernel thread which is woken up at apprioriate times by the vm
  system.
- Update struct kinfo_proc to the new priority interface.  Deliberately
  change its size by adjusting the spare fields.  It remained the same
  size, but the layout has changed, so userland processes that use it
  would parse the data incorrectly.  The size constraint should really
  be changed to an arbitrary version number.  Also add a debug.sizeof
  sysctl node for struct kinfo_proc.
2001-02-12 00:20:08 +00:00
Poul-Henning Kamp
eb95c536ad Remove unneeded #include <sys/kernel.h> 2000-04-29 15:36:14 +00:00
Matthew Dillon
36e9f877df Commit major SMP cleanups and move the BGL (big giant lock) in the
syscall path inward.  A system call may select whether it needs the MP
    lock or not (the default being that it does need it).

    A great deal of conditional SMP code for various deadended experiments
    has been removed.  'cil' and 'cml' have been removed entirely, and the
    locking around the cpl has been removed.  The conditional
    separately-locked fast-interrupt code has been removed, meaning that
    interrupts must hold the CPL now (but they pretty much had to anyway).
    Another reason for doing this is that the original separate-lock for
    interrupts just doesn't apply to the interrupt thread mechanism being
    contemplated.

    Modifications to the cpl may now ONLY occur while holding the MP
    lock.  For example, if an otherwise MP safe syscall needs to mess with
    the cpl, it must hold the MP lock for the duration and must (as usual)
    save/restore the cpl in a nested fashion.

    This is precursor work for the real meat coming later: avoiding having
    to hold the MP lock for common syscalls and I/O's and interrupt threads.
    It is expected that the spl mechanisms and new interrupt threading
    mechanisms will be able to run in tandem, allowing a slow piecemeal
    transition to occur.

    This patch should result in a moderate performance improvement due to
    the considerable amount of code that has been removed from the critical
    path, especially the simplification of the spl*() calls.  The real
    performance gains will come later.

Approved by: jkh
Reviewed by: current, bde (exception.s)
Some work taken from: luoqi's patch
2000-03-28 07:16:37 +00:00
Bruce Evans
9f79feec16 Fixed some type mismatches. p_retval[0] in struct proc has type
register_t, so pointers to it must be passed around as `register_t *',
not as `int *'.  The type mismatches were non-benign on alphas, but
the broken code is normally only configured by LINT.
1999-12-27 10:22:09 +00:00
Peter Dufault
aebde78243 1. Add new defs for mins and maxs for the POSIX flavor priorities. They
end up being the same, but it doesn't look like you're comparing
apples and oranges.

2. Use need_resched instead of reset_priority.  This isn't right
either, since for example you'll round-robin against equal priority FIFO
processes when lowering the priority of another process,
but this works better and a real fix needs to be in kern_synch and
not out here.

3. This is not a device driver: copyin/copyout the structure.
1998-05-19 21:11:53 +00:00
Peter Dufault
2a61a11038 1. Don't use "nosys" and generate coredumps for unconfigured
system calls - return ENOSYS per the spec.

2. Fix interface stub to set priority properly.
1998-05-18 12:53:45 +00:00
Bruce Evans
c1087c1324 Support compiling with `gcc -ansi'. 1998-04-15 17:47:40 +00:00
Peter Dufault
38c76440b8 Include sys/resource.h to get PRIO_MAX. 1998-03-28 14:49:47 +00:00
Peter Dufault
8a6472b723 Finish _POSIX_PRIORITY_SCHEDULING. Needs P1003_1B and
_KPOSIX_PRIORITY_SCHEDULING options to work.  Changes:

Change all "posix4" to "p1003_1b".  Misnamed files are left
as "posix4" until I'm told if I can simply delete them and add
new ones;

Add _POSIX_PRIORITY_SCHEDULING system calls for FreeBSD and Linux;

Add man pages for _POSIX_PRIORITY_SCHEDULING system calls;

Add options to LINT;

Minor fixes to P1003_1B code during testing.
1998-03-28 11:51:01 +00:00
Peter Dufault
917e476dad Reviewed by: msmith, bde long ago
POSIX.4 headers and sysctl variables.  Nothing should change
unless POSIX4 is defined or _POSIX_VERSION is set to 199309.
1998-03-04 10:27:00 +00:00