Toomas Soome c2fa905cf6 bhyve: clean up trailing whitespaces
Clean up trailing whitespaces. No functional changes.

Reviewed by: jhb
Differential Revision: https://reviews.freebsd.org/D33681
2021-12-27 19:58:10 +02:00

3130 lines
80 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2017 Shunsuke Mie
* Copyright (c) 2018 Leon Dang
* Copyright (c) 2020 Chuck Tuffli
*
* Function crc16 Copyright (c) 2017, Fedor Uporov
* Obtained from function ext2_crc16() in sys/fs/ext2fs/ext2_csum.c
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* bhyve PCIe-NVMe device emulation.
*
* options:
* -s <n>,nvme,devpath,maxq=#,qsz=#,ioslots=#,sectsz=#,ser=A-Z,eui64=#,dsm=<opt>
*
* accepted devpath:
* /dev/blockdev
* /path/to/image
* ram=size_in_MiB
*
* maxq = max number of queues
* qsz = max elements in each queue
* ioslots = max number of concurrent io requests
* sectsz = sector size (defaults to blockif sector size)
* ser = serial number (20-chars max)
* eui64 = IEEE Extended Unique Identifier (8 byte value)
* dsm = DataSet Management support. Option is one of auto, enable,disable
*
*/
/* TODO:
- create async event for smart and log
- intr coalesce
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/errno.h>
#include <sys/types.h>
#include <net/ieee_oui.h>
#include <assert.h>
#include <pthread.h>
#include <pthread_np.h>
#include <semaphore.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <machine/atomic.h>
#include <machine/vmm.h>
#include <vmmapi.h>
#include <dev/nvme/nvme.h>
#include "bhyverun.h"
#include "block_if.h"
#include "config.h"
#include "debug.h"
#include "pci_emul.h"
static int nvme_debug = 0;
#define DPRINTF(fmt, args...) if (nvme_debug) PRINTLN(fmt, ##args)
#define WPRINTF(fmt, args...) PRINTLN(fmt, ##args)
/* defaults; can be overridden */
#define NVME_MSIX_BAR 4
#define NVME_IOSLOTS 8
/* The NVMe spec defines bits 13:4 in BAR0 as reserved */
#define NVME_MMIO_SPACE_MIN (1 << 14)
#define NVME_QUEUES 16
#define NVME_MAX_QENTRIES 2048
/* Memory Page size Minimum reported in CAP register */
#define NVME_MPSMIN 0
/* MPSMIN converted to bytes */
#define NVME_MPSMIN_BYTES (1 << (12 + NVME_MPSMIN))
#define NVME_PRP2_ITEMS (PAGE_SIZE/sizeof(uint64_t))
#define NVME_MDTS 9
/* Note the + 1 allows for the initial descriptor to not be page aligned */
#define NVME_MAX_IOVEC ((1 << NVME_MDTS) + 1)
#define NVME_MAX_DATA_SIZE ((1 << NVME_MDTS) * NVME_MPSMIN_BYTES)
/* This is a synthetic status code to indicate there is no status */
#define NVME_NO_STATUS 0xffff
#define NVME_COMPLETION_VALID(c) ((c).status != NVME_NO_STATUS)
/* helpers */
/* Convert a zero-based value into a one-based value */
#define ONE_BASED(zero) ((zero) + 1)
/* Convert a one-based value into a zero-based value */
#define ZERO_BASED(one) ((one) - 1)
/* Encode number of SQ's and CQ's for Set/Get Features */
#define NVME_FEATURE_NUM_QUEUES(sc) \
(ZERO_BASED((sc)->num_squeues) & 0xffff) | \
(ZERO_BASED((sc)->num_cqueues) & 0xffff) << 16;
#define NVME_DOORBELL_OFFSET offsetof(struct nvme_registers, doorbell)
enum nvme_controller_register_offsets {
NVME_CR_CAP_LOW = 0x00,
NVME_CR_CAP_HI = 0x04,
NVME_CR_VS = 0x08,
NVME_CR_INTMS = 0x0c,
NVME_CR_INTMC = 0x10,
NVME_CR_CC = 0x14,
NVME_CR_CSTS = 0x1c,
NVME_CR_NSSR = 0x20,
NVME_CR_AQA = 0x24,
NVME_CR_ASQ_LOW = 0x28,
NVME_CR_ASQ_HI = 0x2c,
NVME_CR_ACQ_LOW = 0x30,
NVME_CR_ACQ_HI = 0x34,
};
enum nvme_cmd_cdw11 {
NVME_CMD_CDW11_PC = 0x0001,
NVME_CMD_CDW11_IEN = 0x0002,
NVME_CMD_CDW11_IV = 0xFFFF0000,
};
enum nvme_copy_dir {
NVME_COPY_TO_PRP,
NVME_COPY_FROM_PRP,
};
#define NVME_CQ_INTEN 0x01
#define NVME_CQ_INTCOAL 0x02
struct nvme_completion_queue {
struct nvme_completion *qbase;
pthread_mutex_t mtx;
uint32_t size;
uint16_t tail; /* nvme progress */
uint16_t head; /* guest progress */
uint16_t intr_vec;
uint32_t intr_en;
};
struct nvme_submission_queue {
struct nvme_command *qbase;
pthread_mutex_t mtx;
uint32_t size;
uint16_t head; /* nvme progress */
uint16_t tail; /* guest progress */
uint16_t cqid; /* completion queue id */
int qpriority;
};
enum nvme_storage_type {
NVME_STOR_BLOCKIF = 0,
NVME_STOR_RAM = 1,
};
struct pci_nvme_blockstore {
enum nvme_storage_type type;
void *ctx;
uint64_t size;
uint32_t sectsz;
uint32_t sectsz_bits;
uint64_t eui64;
uint32_t deallocate:1;
};
/*
* Calculate the number of additional page descriptors for guest IO requests
* based on the advertised Max Data Transfer (MDTS) and given the number of
* default iovec's in a struct blockif_req.
*/
#define MDTS_PAD_SIZE \
( NVME_MAX_IOVEC > BLOCKIF_IOV_MAX ? \
NVME_MAX_IOVEC - BLOCKIF_IOV_MAX : \
0 )
struct pci_nvme_ioreq {
struct pci_nvme_softc *sc;
STAILQ_ENTRY(pci_nvme_ioreq) link;
struct nvme_submission_queue *nvme_sq;
uint16_t sqid;
/* command information */
uint16_t opc;
uint16_t cid;
uint32_t nsid;
uint64_t prev_gpaddr;
size_t prev_size;
size_t bytes;
struct blockif_req io_req;
struct iovec iovpadding[MDTS_PAD_SIZE];
};
enum nvme_dsm_type {
/* Dataset Management bit in ONCS reflects backing storage capability */
NVME_DATASET_MANAGEMENT_AUTO,
/* Unconditionally set Dataset Management bit in ONCS */
NVME_DATASET_MANAGEMENT_ENABLE,
/* Unconditionally clear Dataset Management bit in ONCS */
NVME_DATASET_MANAGEMENT_DISABLE,
};
struct pci_nvme_softc;
struct nvme_feature_obj;
typedef void (*nvme_feature_cb)(struct pci_nvme_softc *,
struct nvme_feature_obj *,
struct nvme_command *,
struct nvme_completion *);
struct nvme_feature_obj {
uint32_t cdw11;
nvme_feature_cb set;
nvme_feature_cb get;
bool namespace_specific;
};
#define NVME_FID_MAX (NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION + 1)
typedef enum {
PCI_NVME_AE_TYPE_ERROR = 0,
PCI_NVME_AE_TYPE_SMART,
PCI_NVME_AE_TYPE_NOTICE,
PCI_NVME_AE_TYPE_IO_CMD = 6,
PCI_NVME_AE_TYPE_VENDOR = 7,
PCI_NVME_AE_TYPE_MAX /* Must be last */
} pci_nvme_async_type;
/* Asynchronous Event Requests */
struct pci_nvme_aer {
STAILQ_ENTRY(pci_nvme_aer) link;
uint16_t cid; /* Command ID of the submitted AER */
};
typedef enum {
PCI_NVME_AE_INFO_NS_ATTR_CHANGED = 0,
PCI_NVME_AE_INFO_FW_ACTIVATION,
PCI_NVME_AE_INFO_TELEMETRY_CHANGE,
PCI_NVME_AE_INFO_ANA_CHANGE,
PCI_NVME_AE_INFO_PREDICT_LATENCY_CHANGE,
PCI_NVME_AE_INFO_LBA_STATUS_ALERT,
PCI_NVME_AE_INFO_ENDURANCE_GROUP_CHANGE,
PCI_NVME_AE_INFO_MAX,
} pci_nvme_async_info;
/* Asynchronous Event Notifications */
struct pci_nvme_aen {
pci_nvme_async_type atype;
uint32_t event_data;
bool posted;
};
struct pci_nvme_softc {
struct pci_devinst *nsc_pi;
pthread_mutex_t mtx;
struct nvme_registers regs;
struct nvme_namespace_data nsdata;
struct nvme_controller_data ctrldata;
struct nvme_error_information_entry err_log;
struct nvme_health_information_page health_log;
struct nvme_firmware_page fw_log;
struct nvme_ns_list ns_log;
struct pci_nvme_blockstore nvstore;
uint16_t max_qentries; /* max entries per queue */
uint32_t max_queues; /* max number of IO SQ's or CQ's */
uint32_t num_cqueues;
uint32_t num_squeues;
bool num_q_is_set; /* Has host set Number of Queues */
struct pci_nvme_ioreq *ioreqs;
STAILQ_HEAD(, pci_nvme_ioreq) ioreqs_free; /* free list of ioreqs */
uint32_t pending_ios;
uint32_t ioslots;
sem_t iosemlock;
/*
* Memory mapped Submission and Completion queues
* Each array includes both Admin and IO queues
*/
struct nvme_completion_queue *compl_queues;
struct nvme_submission_queue *submit_queues;
struct nvme_feature_obj feat[NVME_FID_MAX];
enum nvme_dsm_type dataset_management;
/* Accounting for SMART data */
__uint128_t read_data_units;
__uint128_t write_data_units;
__uint128_t read_commands;
__uint128_t write_commands;
uint32_t read_dunits_remainder;
uint32_t write_dunits_remainder;
STAILQ_HEAD(, pci_nvme_aer) aer_list;
pthread_mutex_t aer_mtx;
uint32_t aer_count;
struct pci_nvme_aen aen[PCI_NVME_AE_TYPE_MAX];
pthread_t aen_tid;
pthread_mutex_t aen_mtx;
pthread_cond_t aen_cond;
};
static void pci_nvme_cq_update(struct pci_nvme_softc *sc,
struct nvme_completion_queue *cq,
uint32_t cdw0,
uint16_t cid,
uint16_t sqid,
uint16_t status);
static struct pci_nvme_ioreq *pci_nvme_get_ioreq(struct pci_nvme_softc *);
static void pci_nvme_release_ioreq(struct pci_nvme_softc *, struct pci_nvme_ioreq *);
static void pci_nvme_io_done(struct blockif_req *, int);
/* Controller Configuration utils */
#define NVME_CC_GET_EN(cc) \
((cc) >> NVME_CC_REG_EN_SHIFT & NVME_CC_REG_EN_MASK)
#define NVME_CC_GET_CSS(cc) \
((cc) >> NVME_CC_REG_CSS_SHIFT & NVME_CC_REG_CSS_MASK)
#define NVME_CC_GET_SHN(cc) \
((cc) >> NVME_CC_REG_SHN_SHIFT & NVME_CC_REG_SHN_MASK)
#define NVME_CC_GET_IOSQES(cc) \
((cc) >> NVME_CC_REG_IOSQES_SHIFT & NVME_CC_REG_IOSQES_MASK)
#define NVME_CC_GET_IOCQES(cc) \
((cc) >> NVME_CC_REG_IOCQES_SHIFT & NVME_CC_REG_IOCQES_MASK)
#define NVME_CC_WRITE_MASK \
((NVME_CC_REG_EN_MASK << NVME_CC_REG_EN_SHIFT) | \
(NVME_CC_REG_IOSQES_MASK << NVME_CC_REG_IOSQES_SHIFT) | \
(NVME_CC_REG_IOCQES_MASK << NVME_CC_REG_IOCQES_SHIFT))
#define NVME_CC_NEN_WRITE_MASK \
((NVME_CC_REG_CSS_MASK << NVME_CC_REG_CSS_SHIFT) | \
(NVME_CC_REG_MPS_MASK << NVME_CC_REG_MPS_SHIFT) | \
(NVME_CC_REG_AMS_MASK << NVME_CC_REG_AMS_SHIFT))
/* Controller Status utils */
#define NVME_CSTS_GET_RDY(sts) \
((sts) >> NVME_CSTS_REG_RDY_SHIFT & NVME_CSTS_REG_RDY_MASK)
#define NVME_CSTS_RDY (1 << NVME_CSTS_REG_RDY_SHIFT)
/* Completion Queue status word utils */
#define NVME_STATUS_P (1 << NVME_STATUS_P_SHIFT)
#define NVME_STATUS_MASK \
((NVME_STATUS_SCT_MASK << NVME_STATUS_SCT_SHIFT) |\
(NVME_STATUS_SC_MASK << NVME_STATUS_SC_SHIFT))
#define NVME_ONCS_DSM (NVME_CTRLR_DATA_ONCS_DSM_MASK << \
NVME_CTRLR_DATA_ONCS_DSM_SHIFT)
static void nvme_feature_invalid_cb(struct pci_nvme_softc *,
struct nvme_feature_obj *,
struct nvme_command *,
struct nvme_completion *);
static void nvme_feature_num_queues(struct pci_nvme_softc *,
struct nvme_feature_obj *,
struct nvme_command *,
struct nvme_completion *);
static void nvme_feature_iv_config(struct pci_nvme_softc *,
struct nvme_feature_obj *,
struct nvme_command *,
struct nvme_completion *);
static void *aen_thr(void *arg);
static __inline void
cpywithpad(char *dst, size_t dst_size, const char *src, char pad)
{
size_t len;
len = strnlen(src, dst_size);
memset(dst, pad, dst_size);
memcpy(dst, src, len);
}
static __inline void
pci_nvme_status_tc(uint16_t *status, uint16_t type, uint16_t code)
{
*status &= ~NVME_STATUS_MASK;
*status |= (type & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT |
(code & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
}
static __inline void
pci_nvme_status_genc(uint16_t *status, uint16_t code)
{
pci_nvme_status_tc(status, NVME_SCT_GENERIC, code);
}
/*
* Initialize the requested number or IO Submission and Completion Queues.
* Admin queues are allocated implicitly.
*/
static void
pci_nvme_init_queues(struct pci_nvme_softc *sc, uint32_t nsq, uint32_t ncq)
{
uint32_t i;
/*
* Allocate and initialize the Submission Queues
*/
if (nsq > NVME_QUEUES) {
WPRINTF("%s: clamping number of SQ from %u to %u",
__func__, nsq, NVME_QUEUES);
nsq = NVME_QUEUES;
}
sc->num_squeues = nsq;
sc->submit_queues = calloc(sc->num_squeues + 1,
sizeof(struct nvme_submission_queue));
if (sc->submit_queues == NULL) {
WPRINTF("%s: SQ allocation failed", __func__);
sc->num_squeues = 0;
} else {
struct nvme_submission_queue *sq = sc->submit_queues;
for (i = 0; i < sc->num_squeues; i++)
pthread_mutex_init(&sq[i].mtx, NULL);
}
/*
* Allocate and initialize the Completion Queues
*/
if (ncq > NVME_QUEUES) {
WPRINTF("%s: clamping number of CQ from %u to %u",
__func__, ncq, NVME_QUEUES);
ncq = NVME_QUEUES;
}
sc->num_cqueues = ncq;
sc->compl_queues = calloc(sc->num_cqueues + 1,
sizeof(struct nvme_completion_queue));
if (sc->compl_queues == NULL) {
WPRINTF("%s: CQ allocation failed", __func__);
sc->num_cqueues = 0;
} else {
struct nvme_completion_queue *cq = sc->compl_queues;
for (i = 0; i < sc->num_cqueues; i++)
pthread_mutex_init(&cq[i].mtx, NULL);
}
}
static void
pci_nvme_init_ctrldata(struct pci_nvme_softc *sc)
{
struct nvme_controller_data *cd = &sc->ctrldata;
cd->vid = 0xFB5D;
cd->ssvid = 0x0000;
cpywithpad((char *)cd->mn, sizeof(cd->mn), "bhyve-NVMe", ' ');
cpywithpad((char *)cd->fr, sizeof(cd->fr), "1.0", ' ');
/* Num of submission commands that we can handle at a time (2^rab) */
cd->rab = 4;
/* FreeBSD OUI */
cd->ieee[0] = 0x58;
cd->ieee[1] = 0x9c;
cd->ieee[2] = 0xfc;
cd->mic = 0;
cd->mdts = NVME_MDTS; /* max data transfer size (2^mdts * CAP.MPSMIN) */
cd->ver = 0x00010300;
cd->oacs = 1 << NVME_CTRLR_DATA_OACS_FORMAT_SHIFT;
cd->acl = 2;
cd->aerl = 4;
/* Advertise 1, Read-only firmware slot */
cd->frmw = NVME_CTRLR_DATA_FRMW_SLOT1_RO_MASK |
(1 << NVME_CTRLR_DATA_FRMW_NUM_SLOTS_SHIFT);
cd->lpa = 0; /* TODO: support some simple things like SMART */
cd->elpe = 0; /* max error log page entries */
cd->npss = 1; /* number of power states support */
/* Warning Composite Temperature Threshold */
cd->wctemp = 0x0157;
cd->sqes = (6 << NVME_CTRLR_DATA_SQES_MAX_SHIFT) |
(6 << NVME_CTRLR_DATA_SQES_MIN_SHIFT);
cd->cqes = (4 << NVME_CTRLR_DATA_CQES_MAX_SHIFT) |
(4 << NVME_CTRLR_DATA_CQES_MIN_SHIFT);
cd->nn = 1; /* number of namespaces */
cd->oncs = 0;
switch (sc->dataset_management) {
case NVME_DATASET_MANAGEMENT_AUTO:
if (sc->nvstore.deallocate)
cd->oncs |= NVME_ONCS_DSM;
break;
case NVME_DATASET_MANAGEMENT_ENABLE:
cd->oncs |= NVME_ONCS_DSM;
break;
default:
break;
}
cd->fna = 0x03;
cd->power_state[0].mp = 10;
}
/*
* Calculate the CRC-16 of the given buffer
* See copyright attribution at top of file
*/
static uint16_t
crc16(uint16_t crc, const void *buffer, unsigned int len)
{
const unsigned char *cp = buffer;
/* CRC table for the CRC-16. The poly is 0x8005 (x16 + x15 + x2 + 1). */
static uint16_t const crc16_table[256] = {
0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040
};
while (len--)
crc = (((crc >> 8) & 0xffU) ^
crc16_table[(crc ^ *cp++) & 0xffU]) & 0x0000ffffU;
return crc;
}
static void
pci_nvme_init_nsdata_size(struct pci_nvme_blockstore *nvstore,
struct nvme_namespace_data *nd)
{
/* Get capacity and block size information from backing store */
nd->nsze = nvstore->size / nvstore->sectsz;
nd->ncap = nd->nsze;
nd->nuse = nd->nsze;
}
static void
pci_nvme_init_nsdata(struct pci_nvme_softc *sc,
struct nvme_namespace_data *nd, uint32_t nsid,
struct pci_nvme_blockstore *nvstore)
{
pci_nvme_init_nsdata_size(nvstore, nd);
if (nvstore->type == NVME_STOR_BLOCKIF)
nvstore->deallocate = blockif_candelete(nvstore->ctx);
nd->nlbaf = 0; /* NLBAF is a 0's based value (i.e. 1 LBA Format) */
nd->flbas = 0;
/* Create an EUI-64 if user did not provide one */
if (nvstore->eui64 == 0) {
char *data = NULL;
uint64_t eui64 = nvstore->eui64;
asprintf(&data, "%s%u%u%u", get_config_value("name"),
sc->nsc_pi->pi_bus, sc->nsc_pi->pi_slot,
sc->nsc_pi->pi_func);
if (data != NULL) {
eui64 = OUI_FREEBSD_NVME_LOW | crc16(0, data, strlen(data));
free(data);
}
nvstore->eui64 = (eui64 << 16) | (nsid & 0xffff);
}
be64enc(nd->eui64, nvstore->eui64);
/* LBA data-sz = 2^lbads */
nd->lbaf[0] = nvstore->sectsz_bits << NVME_NS_DATA_LBAF_LBADS_SHIFT;
}
static void
pci_nvme_init_logpages(struct pci_nvme_softc *sc)
{
memset(&sc->err_log, 0, sizeof(sc->err_log));
memset(&sc->health_log, 0, sizeof(sc->health_log));
memset(&sc->fw_log, 0, sizeof(sc->fw_log));
memset(&sc->ns_log, 0, sizeof(sc->ns_log));
/* Set read/write remainder to round up according to spec */
sc->read_dunits_remainder = 999;
sc->write_dunits_remainder = 999;
/* Set nominal Health values checked by implementations */
sc->health_log.temperature = 310;
sc->health_log.available_spare = 100;
sc->health_log.available_spare_threshold = 10;
}
static void
pci_nvme_init_features(struct pci_nvme_softc *sc)
{
sc->feat[0].set = nvme_feature_invalid_cb;
sc->feat[0].get = nvme_feature_invalid_cb;
sc->feat[NVME_FEAT_LBA_RANGE_TYPE].namespace_specific = true;
sc->feat[NVME_FEAT_ERROR_RECOVERY].namespace_specific = true;
sc->feat[NVME_FEAT_NUMBER_OF_QUEUES].set = nvme_feature_num_queues;
sc->feat[NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION].set =
nvme_feature_iv_config;
/* Enable all AENs by default */
sc->feat[NVME_FEAT_ASYNC_EVENT_CONFIGURATION].cdw11 = 0x31f;
sc->feat[NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG].get =
nvme_feature_invalid_cb;
sc->feat[NVME_FEAT_PREDICTABLE_LATENCY_MODE_WINDOW].get =
nvme_feature_invalid_cb;
}
static void
pci_nvme_aer_reset(struct pci_nvme_softc *sc)
{
STAILQ_INIT(&sc->aer_list);
sc->aer_count = 0;
}
static void
pci_nvme_aer_init(struct pci_nvme_softc *sc)
{
pthread_mutex_init(&sc->aer_mtx, NULL);
pci_nvme_aer_reset(sc);
}
static void
pci_nvme_aer_destroy(struct pci_nvme_softc *sc)
{
struct pci_nvme_aer *aer = NULL;
pthread_mutex_lock(&sc->aer_mtx);
while (!STAILQ_EMPTY(&sc->aer_list)) {
aer = STAILQ_FIRST(&sc->aer_list);
STAILQ_REMOVE_HEAD(&sc->aer_list, link);
free(aer);
}
pthread_mutex_unlock(&sc->aer_mtx);
pci_nvme_aer_reset(sc);
}
static bool
pci_nvme_aer_available(struct pci_nvme_softc *sc)
{
return (sc->aer_count != 0);
}
static bool
pci_nvme_aer_limit_reached(struct pci_nvme_softc *sc)
{
struct nvme_controller_data *cd = &sc->ctrldata;
/* AERL is a zero based value while aer_count is one's based */
return (sc->aer_count == (cd->aerl + 1));
}
/*
* Add an Async Event Request
*
* Stores an AER to be returned later if the Controller needs to notify the
* host of an event.
* Note that while the NVMe spec doesn't require Controllers to return AER's
* in order, this implementation does preserve the order.
*/
static int
pci_nvme_aer_add(struct pci_nvme_softc *sc, uint16_t cid)
{
struct pci_nvme_aer *aer = NULL;
if (pci_nvme_aer_limit_reached(sc))
return (-1);
aer = calloc(1, sizeof(struct pci_nvme_aer));
if (aer == NULL)
return (-1);
/* Save the Command ID for use in the completion message */
aer->cid = cid;
pthread_mutex_lock(&sc->aer_mtx);
sc->aer_count++;
STAILQ_INSERT_TAIL(&sc->aer_list, aer, link);
pthread_mutex_unlock(&sc->aer_mtx);
return (0);
}
/*
* Get an Async Event Request structure
*
* Returns a pointer to an AER previously submitted by the host or NULL if
* no AER's exist. Caller is responsible for freeing the returned struct.
*/
static struct pci_nvme_aer *
pci_nvme_aer_get(struct pci_nvme_softc *sc)
{
struct pci_nvme_aer *aer = NULL;
pthread_mutex_lock(&sc->aer_mtx);
aer = STAILQ_FIRST(&sc->aer_list);
if (aer != NULL) {
STAILQ_REMOVE_HEAD(&sc->aer_list, link);
sc->aer_count--;
}
pthread_mutex_unlock(&sc->aer_mtx);
return (aer);
}
static void
pci_nvme_aen_reset(struct pci_nvme_softc *sc)
{
uint32_t atype;
memset(sc->aen, 0, PCI_NVME_AE_TYPE_MAX * sizeof(struct pci_nvme_aen));
for (atype = 0; atype < PCI_NVME_AE_TYPE_MAX; atype++) {
sc->aen[atype].atype = atype;
}
}
static void
pci_nvme_aen_init(struct pci_nvme_softc *sc)
{
char nstr[80];
pci_nvme_aen_reset(sc);
pthread_mutex_init(&sc->aen_mtx, NULL);
pthread_create(&sc->aen_tid, NULL, aen_thr, sc);
snprintf(nstr, sizeof(nstr), "nvme-aen-%d:%d", sc->nsc_pi->pi_slot,
sc->nsc_pi->pi_func);
pthread_set_name_np(sc->aen_tid, nstr);
}
static void
pci_nvme_aen_destroy(struct pci_nvme_softc *sc)
{
pci_nvme_aen_reset(sc);
}
/* Notify the AEN thread of pending work */
static void
pci_nvme_aen_notify(struct pci_nvme_softc *sc)
{
pthread_cond_signal(&sc->aen_cond);
}
/*
* Post an Asynchronous Event Notification
*/
static int32_t
pci_nvme_aen_post(struct pci_nvme_softc *sc, pci_nvme_async_type atype,
uint32_t event_data)
{
struct pci_nvme_aen *aen;
if (atype >= PCI_NVME_AE_TYPE_MAX) {
return(EINVAL);
}
pthread_mutex_lock(&sc->aen_mtx);
aen = &sc->aen[atype];
/* Has the controller already posted an event of this type? */
if (aen->posted) {
pthread_mutex_unlock(&sc->aen_mtx);
return(EALREADY);
}
aen->event_data = event_data;
aen->posted = true;
pthread_mutex_unlock(&sc->aen_mtx);
pci_nvme_aen_notify(sc);
return(0);
}
static void
pci_nvme_aen_process(struct pci_nvme_softc *sc)
{
struct pci_nvme_aer *aer;
struct pci_nvme_aen *aen;
pci_nvme_async_type atype;
uint32_t mask;
uint16_t status;
uint8_t lid;
assert(pthread_mutex_isowned_np(&sc->aen_mtx));
for (atype = 0; atype < PCI_NVME_AE_TYPE_MAX; atype++) {
aen = &sc->aen[atype];
/* Previous iterations may have depleted the available AER's */
if (!pci_nvme_aer_available(sc)) {
DPRINTF("%s: no AER", __func__);
break;
}
if (!aen->posted) {
DPRINTF("%s: no AEN posted for atype=%#x", __func__, atype);
continue;
}
status = NVME_SC_SUCCESS;
/* Is the event masked? */
mask =
sc->feat[NVME_FEAT_ASYNC_EVENT_CONFIGURATION].cdw11;
DPRINTF("%s: atype=%#x mask=%#x event_data=%#x", __func__, atype, mask, aen->event_data);
switch (atype) {
case PCI_NVME_AE_TYPE_ERROR:
lid = NVME_LOG_ERROR;
break;
case PCI_NVME_AE_TYPE_SMART:
mask &= 0xff;
if ((mask & aen->event_data) == 0)
continue;
lid = NVME_LOG_HEALTH_INFORMATION;
break;
case PCI_NVME_AE_TYPE_NOTICE:
if (aen->event_data >= PCI_NVME_AE_INFO_MAX) {
EPRINTLN("%s unknown AEN notice type %u",
__func__, aen->event_data);
status = NVME_SC_INTERNAL_DEVICE_ERROR;
break;
}
mask >>= 8;
if (((1 << aen->event_data) & mask) == 0)
continue;
switch (aen->event_data) {
case PCI_NVME_AE_INFO_NS_ATTR_CHANGED:
lid = NVME_LOG_CHANGED_NAMESPACE;
break;
case PCI_NVME_AE_INFO_FW_ACTIVATION:
lid = NVME_LOG_FIRMWARE_SLOT;
break;
case PCI_NVME_AE_INFO_TELEMETRY_CHANGE:
lid = NVME_LOG_TELEMETRY_CONTROLLER_INITIATED;
break;
case PCI_NVME_AE_INFO_ANA_CHANGE:
lid = NVME_LOG_ASYMMETRIC_NAMESPAVE_ACCESS; //TODO spelling
break;
case PCI_NVME_AE_INFO_PREDICT_LATENCY_CHANGE:
lid = NVME_LOG_PREDICTABLE_LATENCY_EVENT_AGGREGATE;
break;
case PCI_NVME_AE_INFO_LBA_STATUS_ALERT:
lid = NVME_LOG_LBA_STATUS_INFORMATION;
break;
case PCI_NVME_AE_INFO_ENDURANCE_GROUP_CHANGE:
lid = NVME_LOG_ENDURANCE_GROUP_EVENT_AGGREGATE;
break;
default:
lid = 0;
}
break;
default:
/* bad type?!? */
EPRINTLN("%s unknown AEN type %u", __func__, atype);
status = NVME_SC_INTERNAL_DEVICE_ERROR;
break;
}
aer = pci_nvme_aer_get(sc);
assert(aer != NULL);
DPRINTF("%s: CID=%#x CDW0=%#x", __func__, aer->cid, (lid << 16) | (aen->event_data << 8) | atype);
pci_nvme_cq_update(sc, &sc->compl_queues[0],
(lid << 16) | (aen->event_data << 8) | atype, /* cdw0 */
aer->cid,
0, /* SQID */
status);
aen->event_data = 0;
aen->posted = false;
pci_generate_msix(sc->nsc_pi, 0);
}
}
static void *
aen_thr(void *arg)
{
struct pci_nvme_softc *sc;
sc = arg;
pthread_mutex_lock(&sc->aen_mtx);
for (;;) {
pci_nvme_aen_process(sc);
pthread_cond_wait(&sc->aen_cond, &sc->aen_mtx);
}
pthread_mutex_unlock(&sc->aen_mtx);
pthread_exit(NULL);
return (NULL);
}
static void
pci_nvme_reset_locked(struct pci_nvme_softc *sc)
{
uint32_t i;
DPRINTF("%s", __func__);
sc->regs.cap_lo = (ZERO_BASED(sc->max_qentries) & NVME_CAP_LO_REG_MQES_MASK) |
(1 << NVME_CAP_LO_REG_CQR_SHIFT) |
(60 << NVME_CAP_LO_REG_TO_SHIFT);
sc->regs.cap_hi = 1 << NVME_CAP_HI_REG_CSS_NVM_SHIFT;
sc->regs.vs = 0x00010300; /* NVMe v1.3 */
sc->regs.cc = 0;
sc->regs.csts = 0;
assert(sc->submit_queues != NULL);
for (i = 0; i < sc->num_squeues + 1; i++) {
sc->submit_queues[i].qbase = NULL;
sc->submit_queues[i].size = 0;
sc->submit_queues[i].cqid = 0;
sc->submit_queues[i].tail = 0;
sc->submit_queues[i].head = 0;
}
assert(sc->compl_queues != NULL);
for (i = 0; i < sc->num_cqueues + 1; i++) {
sc->compl_queues[i].qbase = NULL;
sc->compl_queues[i].size = 0;
sc->compl_queues[i].tail = 0;
sc->compl_queues[i].head = 0;
}
sc->num_q_is_set = false;
pci_nvme_aer_destroy(sc);
pci_nvme_aen_destroy(sc);
}
static void
pci_nvme_reset(struct pci_nvme_softc *sc)
{
pthread_mutex_lock(&sc->mtx);
pci_nvme_reset_locked(sc);
pthread_mutex_unlock(&sc->mtx);
}
static void
pci_nvme_init_controller(struct vmctx *ctx, struct pci_nvme_softc *sc)
{
uint16_t acqs, asqs;
DPRINTF("%s", __func__);
asqs = (sc->regs.aqa & NVME_AQA_REG_ASQS_MASK) + 1;
sc->submit_queues[0].size = asqs;
sc->submit_queues[0].qbase = vm_map_gpa(ctx, sc->regs.asq,
sizeof(struct nvme_command) * asqs);
DPRINTF("%s mapping Admin-SQ guest 0x%lx, host: %p",
__func__, sc->regs.asq, sc->submit_queues[0].qbase);
acqs = ((sc->regs.aqa >> NVME_AQA_REG_ACQS_SHIFT) &
NVME_AQA_REG_ACQS_MASK) + 1;
sc->compl_queues[0].size = acqs;
sc->compl_queues[0].qbase = vm_map_gpa(ctx, sc->regs.acq,
sizeof(struct nvme_completion) * acqs);
sc->compl_queues[0].intr_en = NVME_CQ_INTEN;
DPRINTF("%s mapping Admin-CQ guest 0x%lx, host: %p",
__func__, sc->regs.acq, sc->compl_queues[0].qbase);
}
static int
nvme_prp_memcpy(struct vmctx *ctx, uint64_t prp1, uint64_t prp2, uint8_t *b,
size_t len, enum nvme_copy_dir dir)
{
uint8_t *p;
size_t bytes;
if (len > (8 * 1024)) {
return (-1);
}
/* Copy from the start of prp1 to the end of the physical page */
bytes = PAGE_SIZE - (prp1 & PAGE_MASK);
bytes = MIN(bytes, len);
p = vm_map_gpa(ctx, prp1, bytes);
if (p == NULL) {
return (-1);
}
if (dir == NVME_COPY_TO_PRP)
memcpy(p, b, bytes);
else
memcpy(b, p, bytes);
b += bytes;
len -= bytes;
if (len == 0) {
return (0);
}
len = MIN(len, PAGE_SIZE);
p = vm_map_gpa(ctx, prp2, len);
if (p == NULL) {
return (-1);
}
if (dir == NVME_COPY_TO_PRP)
memcpy(p, b, len);
else
memcpy(b, p, len);
return (0);
}
/*
* Write a Completion Queue Entry update
*
* Write the completion and update the doorbell value
*/
static void
pci_nvme_cq_update(struct pci_nvme_softc *sc,
struct nvme_completion_queue *cq,
uint32_t cdw0,
uint16_t cid,
uint16_t sqid,
uint16_t status)
{
struct nvme_submission_queue *sq = &sc->submit_queues[sqid];
struct nvme_completion *cqe;
assert(cq->qbase != NULL);
pthread_mutex_lock(&cq->mtx);
cqe = &cq->qbase[cq->tail];
/* Flip the phase bit */
status |= (cqe->status ^ NVME_STATUS_P) & NVME_STATUS_P_MASK;
cqe->cdw0 = cdw0;
cqe->sqhd = sq->head;
cqe->sqid = sqid;
cqe->cid = cid;
cqe->status = status;
cq->tail++;
if (cq->tail >= cq->size) {
cq->tail = 0;
}
pthread_mutex_unlock(&cq->mtx);
}
static int
nvme_opc_delete_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
uint16_t qid = command->cdw10 & 0xffff;
DPRINTF("%s DELETE_IO_SQ %u", __func__, qid);
if (qid == 0 || qid > sc->num_squeues ||
(sc->submit_queues[qid].qbase == NULL)) {
WPRINTF("%s NOT PERMITTED queue id %u / num_squeues %u",
__func__, qid, sc->num_squeues);
pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_QUEUE_IDENTIFIER);
return (1);
}
sc->submit_queues[qid].qbase = NULL;
sc->submit_queues[qid].cqid = 0;
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
return (1);
}
static int
nvme_opc_create_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
if (command->cdw11 & NVME_CMD_CDW11_PC) {
uint16_t qid = command->cdw10 & 0xffff;
struct nvme_submission_queue *nsq;
if ((qid == 0) || (qid > sc->num_squeues) ||
(sc->submit_queues[qid].qbase != NULL)) {
WPRINTF("%s queue index %u > num_squeues %u",
__func__, qid, sc->num_squeues);
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_QUEUE_IDENTIFIER);
return (1);
}
nsq = &sc->submit_queues[qid];
nsq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff);
DPRINTF("%s size=%u (max=%u)", __func__, nsq->size, sc->max_qentries);
if ((nsq->size < 2) || (nsq->size > sc->max_qentries)) {
/*
* Queues must specify at least two entries
* NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to
* "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec
*/
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED);
return (1);
}
nsq->head = nsq->tail = 0;
nsq->cqid = (command->cdw11 >> 16) & 0xffff;
if ((nsq->cqid == 0) || (nsq->cqid > sc->num_cqueues)) {
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_QUEUE_IDENTIFIER);
return (1);
}
if (sc->compl_queues[nsq->cqid].qbase == NULL) {
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_COMPLETION_QUEUE_INVALID);
return (1);
}
nsq->qpriority = (command->cdw11 >> 1) & 0x03;
nsq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
sizeof(struct nvme_command) * (size_t)nsq->size);
DPRINTF("%s sq %u size %u gaddr %p cqid %u", __func__,
qid, nsq->size, nsq->qbase, nsq->cqid);
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
DPRINTF("%s completed creating IOSQ qid %u",
__func__, qid);
} else {
/*
* Guest sent non-cont submission queue request.
* This setting is unsupported by this emulation.
*/
WPRINTF("%s unsupported non-contig (list-based) "
"create i/o submission queue", __func__);
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
}
return (1);
}
static int
nvme_opc_delete_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
uint16_t qid = command->cdw10 & 0xffff;
uint16_t sqid;
DPRINTF("%s DELETE_IO_CQ %u", __func__, qid);
if (qid == 0 || qid > sc->num_cqueues ||
(sc->compl_queues[qid].qbase == NULL)) {
WPRINTF("%s queue index %u / num_cqueues %u",
__func__, qid, sc->num_cqueues);
pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_QUEUE_IDENTIFIER);
return (1);
}
/* Deleting an Active CQ is an error */
for (sqid = 1; sqid < sc->num_squeues + 1; sqid++)
if (sc->submit_queues[sqid].cqid == qid) {
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_QUEUE_DELETION);
return (1);
}
sc->compl_queues[qid].qbase = NULL;
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
return (1);
}
static int
nvme_opc_create_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
struct nvme_completion_queue *ncq;
uint16_t qid = command->cdw10 & 0xffff;
/* Only support Physically Contiguous queues */
if ((command->cdw11 & NVME_CMD_CDW11_PC) == 0) {
WPRINTF("%s unsupported non-contig (list-based) "
"create i/o completion queue",
__func__);
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
return (1);
}
if ((qid == 0) || (qid > sc->num_cqueues) ||
(sc->compl_queues[qid].qbase != NULL)) {
WPRINTF("%s queue index %u > num_cqueues %u",
__func__, qid, sc->num_cqueues);
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_QUEUE_IDENTIFIER);
return (1);
}
ncq = &sc->compl_queues[qid];
ncq->intr_en = (command->cdw11 & NVME_CMD_CDW11_IEN) >> 1;
ncq->intr_vec = (command->cdw11 >> 16) & 0xffff;
if (ncq->intr_vec > (sc->max_queues + 1)) {
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_INTERRUPT_VECTOR);
return (1);
}
ncq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff);
if ((ncq->size < 2) || (ncq->size > sc->max_qentries)) {
/*
* Queues must specify at least two entries
* NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to
* "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec
*/
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED);
return (1);
}
ncq->head = ncq->tail = 0;
ncq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx,
command->prp1,
sizeof(struct nvme_command) * (size_t)ncq->size);
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
return (1);
}
static int
nvme_opc_get_log_page(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
uint32_t logsize;
uint8_t logpage = command->cdw10 & 0xFF;
DPRINTF("%s log page %u len %u", __func__, logpage, logsize);
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
/*
* Command specifies the number of dwords to return in fields NUMDU
* and NUMDL. This is a zero-based value.
*/
logsize = ((command->cdw11 << 16) | (command->cdw10 >> 16)) + 1;
logsize *= sizeof(uint32_t);
switch (logpage) {
case NVME_LOG_ERROR:
nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
command->prp2, (uint8_t *)&sc->err_log,
MIN(logsize, sizeof(sc->err_log)),
NVME_COPY_TO_PRP);
break;
case NVME_LOG_HEALTH_INFORMATION:
pthread_mutex_lock(&sc->mtx);
memcpy(&sc->health_log.data_units_read, &sc->read_data_units,
sizeof(sc->health_log.data_units_read));
memcpy(&sc->health_log.data_units_written, &sc->write_data_units,
sizeof(sc->health_log.data_units_written));
memcpy(&sc->health_log.host_read_commands, &sc->read_commands,
sizeof(sc->health_log.host_read_commands));
memcpy(&sc->health_log.host_write_commands, &sc->write_commands,
sizeof(sc->health_log.host_write_commands));
pthread_mutex_unlock(&sc->mtx);
nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
command->prp2, (uint8_t *)&sc->health_log,
MIN(logsize, sizeof(sc->health_log)),
NVME_COPY_TO_PRP);
break;
case NVME_LOG_FIRMWARE_SLOT:
nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
command->prp2, (uint8_t *)&sc->fw_log,
MIN(logsize, sizeof(sc->fw_log)),
NVME_COPY_TO_PRP);
break;
case NVME_LOG_CHANGED_NAMESPACE:
nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
command->prp2, (uint8_t *)&sc->ns_log,
MIN(logsize, sizeof(sc->ns_log)),
NVME_COPY_TO_PRP);
memset(&sc->ns_log, 0, sizeof(sc->ns_log));
break;
default:
DPRINTF("%s get log page %x command not supported",
__func__, logpage);
pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_LOG_PAGE);
}
return (1);
}
static int
nvme_opc_identify(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
void *dest;
uint16_t status;
DPRINTF("%s identify 0x%x nsid 0x%x", __func__,
command->cdw10 & 0xFF, command->nsid);
pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
switch (command->cdw10 & 0xFF) {
case 0x00: /* return Identify Namespace data structure */
nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
command->prp2, (uint8_t *)&sc->nsdata, sizeof(sc->nsdata),
NVME_COPY_TO_PRP);
break;
case 0x01: /* return Identify Controller data structure */
nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
command->prp2, (uint8_t *)&sc->ctrldata,
sizeof(sc->ctrldata),
NVME_COPY_TO_PRP);
break;
case 0x02: /* list of 1024 active NSIDs > CDW1.NSID */
dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
sizeof(uint32_t) * 1024);
/* All unused entries shall be zero */
bzero(dest, sizeof(uint32_t) * 1024);
((uint32_t *)dest)[0] = 1;
break;
case 0x03: /* list of NSID structures in CDW1.NSID, 4096 bytes */
if (command->nsid != 1) {
pci_nvme_status_genc(&status,
NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
break;
}
dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
sizeof(uint32_t) * 1024);
/* All bytes after the descriptor shall be zero */
bzero(dest, sizeof(uint32_t) * 1024);
/* Return NIDT=1 (i.e. EUI64) descriptor */
((uint8_t *)dest)[0] = 1;
((uint8_t *)dest)[1] = sizeof(uint64_t);
bcopy(sc->nsdata.eui64, ((uint8_t *)dest) + 4, sizeof(uint64_t));
break;
default:
DPRINTF("%s unsupported identify command requested 0x%x",
__func__, command->cdw10 & 0xFF);
pci_nvme_status_genc(&status, NVME_SC_INVALID_FIELD);
break;
}
compl->status = status;
return (1);
}
static const char *
nvme_fid_to_name(uint8_t fid)
{
const char *name;
switch (fid) {
case NVME_FEAT_ARBITRATION:
name = "Arbitration";
break;
case NVME_FEAT_POWER_MANAGEMENT:
name = "Power Management";
break;
case NVME_FEAT_LBA_RANGE_TYPE:
name = "LBA Range Type";
break;
case NVME_FEAT_TEMPERATURE_THRESHOLD:
name = "Temperature Threshold";
break;
case NVME_FEAT_ERROR_RECOVERY:
name = "Error Recovery";
break;
case NVME_FEAT_VOLATILE_WRITE_CACHE:
name = "Volatile Write Cache";
break;
case NVME_FEAT_NUMBER_OF_QUEUES:
name = "Number of Queues";
break;
case NVME_FEAT_INTERRUPT_COALESCING:
name = "Interrupt Coalescing";
break;
case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
name = "Interrupt Vector Configuration";
break;
case NVME_FEAT_WRITE_ATOMICITY:
name = "Write Atomicity Normal";
break;
case NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
name = "Asynchronous Event Configuration";
break;
case NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
name = "Autonomous Power State Transition";
break;
case NVME_FEAT_HOST_MEMORY_BUFFER:
name = "Host Memory Buffer";
break;
case NVME_FEAT_TIMESTAMP:
name = "Timestamp";
break;
case NVME_FEAT_KEEP_ALIVE_TIMER:
name = "Keep Alive Timer";
break;
case NVME_FEAT_HOST_CONTROLLED_THERMAL_MGMT:
name = "Host Controlled Thermal Management";
break;
case NVME_FEAT_NON_OP_POWER_STATE_CONFIG:
name = "Non-Operation Power State Config";
break;
case NVME_FEAT_READ_RECOVERY_LEVEL_CONFIG:
name = "Read Recovery Level Config";
break;
case NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG:
name = "Predictable Latency Mode Config";
break;
case NVME_FEAT_PREDICTABLE_LATENCY_MODE_WINDOW:
name = "Predictable Latency Mode Window";
break;
case NVME_FEAT_LBA_STATUS_INFORMATION_ATTRIBUTES:
name = "LBA Status Information Report Interval";
break;
case NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
name = "Host Behavior Support";
break;
case NVME_FEAT_SANITIZE_CONFIG:
name = "Sanitize Config";
break;
case NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION:
name = "Endurance Group Event Configuration";
break;
case NVME_FEAT_SOFTWARE_PROGRESS_MARKER:
name = "Software Progress Marker";
break;
case NVME_FEAT_HOST_IDENTIFIER:
name = "Host Identifier";
break;
case NVME_FEAT_RESERVATION_NOTIFICATION_MASK:
name = "Reservation Notification Mask";
break;
case NVME_FEAT_RESERVATION_PERSISTENCE:
name = "Reservation Persistence";
break;
case NVME_FEAT_NAMESPACE_WRITE_PROTECTION_CONFIG:
name = "Namespace Write Protection Config";
break;
default:
name = "Unknown";
break;
}
return (name);
}
static void
nvme_feature_invalid_cb(struct pci_nvme_softc *sc,
struct nvme_feature_obj *feat,
struct nvme_command *command,
struct nvme_completion *compl)
{
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
}
static void
nvme_feature_iv_config(struct pci_nvme_softc *sc,
struct nvme_feature_obj *feat,
struct nvme_command *command,
struct nvme_completion *compl)
{
uint32_t i;
uint32_t cdw11 = command->cdw11;
uint16_t iv;
bool cd;
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
iv = cdw11 & 0xffff;
cd = cdw11 & (1 << 16);
if (iv > (sc->max_queues + 1)) {
return;
}
/* No Interrupt Coalescing (i.e. not Coalescing Disable) for Admin Q */
if ((iv == 0) && !cd)
return;
/* Requested Interrupt Vector must be used by a CQ */
for (i = 0; i < sc->num_cqueues + 1; i++) {
if (sc->compl_queues[i].intr_vec == iv) {
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
}
}
}
static void
nvme_feature_num_queues(struct pci_nvme_softc *sc,
struct nvme_feature_obj *feat,
struct nvme_command *command,
struct nvme_completion *compl)
{
uint16_t nqr; /* Number of Queues Requested */
if (sc->num_q_is_set) {
WPRINTF("%s: Number of Queues already set", __func__);
pci_nvme_status_genc(&compl->status,
NVME_SC_COMMAND_SEQUENCE_ERROR);
return;
}
nqr = command->cdw11 & 0xFFFF;
if (nqr == 0xffff) {
WPRINTF("%s: Illegal NSQR value %#x", __func__, nqr);
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
return;
}
sc->num_squeues = ONE_BASED(nqr);
if (sc->num_squeues > sc->max_queues) {
DPRINTF("NSQR=%u is greater than max %u", sc->num_squeues,
sc->max_queues);
sc->num_squeues = sc->max_queues;
}
nqr = (command->cdw11 >> 16) & 0xFFFF;
if (nqr == 0xffff) {
WPRINTF("%s: Illegal NCQR value %#x", __func__, nqr);
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
return;
}
sc->num_cqueues = ONE_BASED(nqr);
if (sc->num_cqueues > sc->max_queues) {
DPRINTF("NCQR=%u is greater than max %u", sc->num_cqueues,
sc->max_queues);
sc->num_cqueues = sc->max_queues;
}
/* Patch the command value which will be saved on callback's return */
command->cdw11 = NVME_FEATURE_NUM_QUEUES(sc);
compl->cdw0 = NVME_FEATURE_NUM_QUEUES(sc);
sc->num_q_is_set = true;
}
static int
nvme_opc_set_features(struct pci_nvme_softc *sc, struct nvme_command *command,
struct nvme_completion *compl)
{
struct nvme_feature_obj *feat;
uint32_t nsid = command->nsid;
uint8_t fid = command->cdw10 & 0xFF;
DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid));
if (fid >= NVME_FID_MAX) {
DPRINTF("%s invalid feature 0x%x", __func__, fid);
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
return (1);
}
feat = &sc->feat[fid];
if (!feat->namespace_specific &&
!((nsid == 0) || (nsid == NVME_GLOBAL_NAMESPACE_TAG))) {
pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_FEATURE_NOT_NS_SPECIFIC);
return (1);
}
compl->cdw0 = 0;
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
if (feat->set)
feat->set(sc, feat, command, compl);
DPRINTF("%s: status=%#x cdw11=%#x", __func__, compl->status, command->cdw11);
if (compl->status == NVME_SC_SUCCESS) {
feat->cdw11 = command->cdw11;
if ((fid == NVME_FEAT_ASYNC_EVENT_CONFIGURATION) &&
(command->cdw11 != 0))
pci_nvme_aen_notify(sc);
}
return (0);
}
static int
nvme_opc_get_features(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
struct nvme_feature_obj *feat;
uint8_t fid = command->cdw10 & 0xFF;
DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid));
if (fid >= NVME_FID_MAX) {
DPRINTF("%s invalid feature 0x%x", __func__, fid);
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
return (1);
}
compl->cdw0 = 0;
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
feat = &sc->feat[fid];
if (feat->get) {
feat->get(sc, feat, command, compl);
}
if (compl->status == NVME_SC_SUCCESS) {
compl->cdw0 = feat->cdw11;
}
return (0);
}
static int
nvme_opc_format_nvm(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
uint8_t ses, lbaf, pi;
/* Only supports Secure Erase Setting - User Data Erase */
ses = (command->cdw10 >> 9) & 0x7;
if (ses > 0x1) {
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
return (1);
}
/* Only supports a single LBA Format */
lbaf = command->cdw10 & 0xf;
if (lbaf != 0) {
pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_FORMAT);
return (1);
}
/* Doesn't support Protection Infomation */
pi = (command->cdw10 >> 5) & 0x7;
if (pi != 0) {
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
return (1);
}
if (sc->nvstore.type == NVME_STOR_RAM) {
if (sc->nvstore.ctx)
free(sc->nvstore.ctx);
sc->nvstore.ctx = calloc(1, sc->nvstore.size);
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
} else {
struct pci_nvme_ioreq *req;
int err;
req = pci_nvme_get_ioreq(sc);
if (req == NULL) {
pci_nvme_status_genc(&compl->status,
NVME_SC_INTERNAL_DEVICE_ERROR);
WPRINTF("%s: unable to allocate IO req", __func__);
return (1);
}
req->nvme_sq = &sc->submit_queues[0];
req->sqid = 0;
req->opc = command->opc;
req->cid = command->cid;
req->nsid = command->nsid;
req->io_req.br_offset = 0;
req->io_req.br_resid = sc->nvstore.size;
req->io_req.br_callback = pci_nvme_io_done;
err = blockif_delete(sc->nvstore.ctx, &req->io_req);
if (err) {
pci_nvme_status_genc(&compl->status,
NVME_SC_INTERNAL_DEVICE_ERROR);
pci_nvme_release_ioreq(sc, req);
}
}
return (1);
}
static int
nvme_opc_abort(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
DPRINTF("%s submission queue %u, command ID 0x%x", __func__,
command->cdw10 & 0xFFFF, (command->cdw10 >> 16) & 0xFFFF);
/* TODO: search for the command ID and abort it */
compl->cdw0 = 1;
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
return (1);
}
static int
nvme_opc_async_event_req(struct pci_nvme_softc* sc,
struct nvme_command* command, struct nvme_completion* compl)
{
DPRINTF("%s async event request count=%u aerl=%u cid=%#x", __func__,
sc->aer_count, sc->ctrldata.aerl, command->cid);
/* Don't exceed the Async Event Request Limit (AERL). */
if (pci_nvme_aer_limit_reached(sc)) {
pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED);
return (1);
}
if (pci_nvme_aer_add(sc, command->cid)) {
pci_nvme_status_tc(&compl->status, NVME_SCT_GENERIC,
NVME_SC_INTERNAL_DEVICE_ERROR);
return (1);
}
/*
* Raise events when they happen based on the Set Features cmd.
* These events happen async, so only set completion successful if
* there is an event reflective of the request to get event.
*/
compl->status = NVME_NO_STATUS;
pci_nvme_aen_notify(sc);
return (0);
}
static void
pci_nvme_handle_admin_cmd(struct pci_nvme_softc* sc, uint64_t value)
{
struct nvme_completion compl;
struct nvme_command *cmd;
struct nvme_submission_queue *sq;
struct nvme_completion_queue *cq;
uint16_t sqhead;
DPRINTF("%s index %u", __func__, (uint32_t)value);
sq = &sc->submit_queues[0];
cq = &sc->compl_queues[0];
pthread_mutex_lock(&sq->mtx);
sqhead = sq->head;
DPRINTF("sqhead %u, tail %u", sqhead, sq->tail);
while (sqhead != atomic_load_acq_short(&sq->tail)) {
cmd = &(sq->qbase)[sqhead];
compl.cdw0 = 0;
compl.status = 0;
switch (cmd->opc) {
case NVME_OPC_DELETE_IO_SQ:
DPRINTF("%s command DELETE_IO_SQ", __func__);
nvme_opc_delete_io_sq(sc, cmd, &compl);
break;
case NVME_OPC_CREATE_IO_SQ:
DPRINTF("%s command CREATE_IO_SQ", __func__);
nvme_opc_create_io_sq(sc, cmd, &compl);
break;
case NVME_OPC_DELETE_IO_CQ:
DPRINTF("%s command DELETE_IO_CQ", __func__);
nvme_opc_delete_io_cq(sc, cmd, &compl);
break;
case NVME_OPC_CREATE_IO_CQ:
DPRINTF("%s command CREATE_IO_CQ", __func__);
nvme_opc_create_io_cq(sc, cmd, &compl);
break;
case NVME_OPC_GET_LOG_PAGE:
DPRINTF("%s command GET_LOG_PAGE", __func__);
nvme_opc_get_log_page(sc, cmd, &compl);
break;
case NVME_OPC_IDENTIFY:
DPRINTF("%s command IDENTIFY", __func__);
nvme_opc_identify(sc, cmd, &compl);
break;
case NVME_OPC_ABORT:
DPRINTF("%s command ABORT", __func__);
nvme_opc_abort(sc, cmd, &compl);
break;
case NVME_OPC_SET_FEATURES:
DPRINTF("%s command SET_FEATURES", __func__);
nvme_opc_set_features(sc, cmd, &compl);
break;
case NVME_OPC_GET_FEATURES:
DPRINTF("%s command GET_FEATURES", __func__);
nvme_opc_get_features(sc, cmd, &compl);
break;
case NVME_OPC_FIRMWARE_ACTIVATE:
DPRINTF("%s command FIRMWARE_ACTIVATE", __func__);
pci_nvme_status_tc(&compl.status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_FIRMWARE_SLOT);
break;
case NVME_OPC_ASYNC_EVENT_REQUEST:
DPRINTF("%s command ASYNC_EVENT_REQ", __func__);
nvme_opc_async_event_req(sc, cmd, &compl);
break;
case NVME_OPC_FORMAT_NVM:
DPRINTF("%s command FORMAT_NVM", __func__);
if ((sc->ctrldata.oacs &
(1 << NVME_CTRLR_DATA_OACS_FORMAT_SHIFT)) == 0) {
pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE);
}
compl.status = NVME_NO_STATUS;
nvme_opc_format_nvm(sc, cmd, &compl);
break;
default:
DPRINTF("0x%x command is not implemented",
cmd->opc);
pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE);
}
sqhead = (sqhead + 1) % sq->size;
if (NVME_COMPLETION_VALID(compl)) {
pci_nvme_cq_update(sc, &sc->compl_queues[0],
compl.cdw0,
cmd->cid,
0, /* SQID */
compl.status);
}
}
DPRINTF("setting sqhead %u", sqhead);
sq->head = sqhead;
if (cq->head != cq->tail)
pci_generate_msix(sc->nsc_pi, 0);
pthread_mutex_unlock(&sq->mtx);
}
/*
* Update the Write and Read statistics reported in SMART data
*
* NVMe defines "data unit" as thousand's of 512 byte blocks and is rounded up.
* E.g. 1 data unit is 1 - 1,000 512 byte blocks. 3 data units are 2,001 - 3,000
* 512 byte blocks. Rounding up is acheived by initializing the remainder to 999.
*/
static void
pci_nvme_stats_write_read_update(struct pci_nvme_softc *sc, uint8_t opc,
size_t bytes, uint16_t status)
{
pthread_mutex_lock(&sc->mtx);
switch (opc) {
case NVME_OPC_WRITE:
sc->write_commands++;
if (status != NVME_SC_SUCCESS)
break;
sc->write_dunits_remainder += (bytes / 512);
while (sc->write_dunits_remainder >= 1000) {
sc->write_data_units++;
sc->write_dunits_remainder -= 1000;
}
break;
case NVME_OPC_READ:
sc->read_commands++;
if (status != NVME_SC_SUCCESS)
break;
sc->read_dunits_remainder += (bytes / 512);
while (sc->read_dunits_remainder >= 1000) {
sc->read_data_units++;
sc->read_dunits_remainder -= 1000;
}
break;
default:
DPRINTF("%s: Invalid OPC 0x%02x for stats", __func__, opc);
break;
}
pthread_mutex_unlock(&sc->mtx);
}
/*
* Check if the combination of Starting LBA (slba) and Number of Logical
* Blocks (nlb) exceeds the range of the underlying storage.
*
* Because NVMe specifies the SLBA in blocks as a uint64_t and blockif stores
* the capacity in bytes as a uint64_t, care must be taken to avoid integer
* overflow.
*/
static bool
pci_nvme_out_of_range(struct pci_nvme_blockstore *nvstore, uint64_t slba,
uint32_t nlb)
{
size_t offset, bytes;
/* Overflow check of multiplying Starting LBA by the sector size */
if (slba >> (64 - nvstore->sectsz_bits))
return (true);
offset = slba << nvstore->sectsz_bits;
bytes = nlb << nvstore->sectsz_bits;
/* Overflow check of Number of Logical Blocks */
if ((nvstore->size - offset) < bytes)
return (true);
return (false);
}
static int
pci_nvme_append_iov_req(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req,
uint64_t gpaddr, size_t size, int do_write, uint64_t lba)
{
int iovidx;
if (req == NULL)
return (-1);
if (req->io_req.br_iovcnt == NVME_MAX_IOVEC) {
return (-1);
}
/* concatenate contig block-iovs to minimize number of iovs */
if ((req->prev_gpaddr + req->prev_size) == gpaddr) {
iovidx = req->io_req.br_iovcnt - 1;
req->io_req.br_iov[iovidx].iov_base =
paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
req->prev_gpaddr, size);
req->prev_size += size;
req->io_req.br_resid += size;
req->io_req.br_iov[iovidx].iov_len = req->prev_size;
} else {
iovidx = req->io_req.br_iovcnt;
if (iovidx == 0) {
req->io_req.br_offset = lba;
req->io_req.br_resid = 0;
req->io_req.br_param = req;
}
req->io_req.br_iov[iovidx].iov_base =
paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
gpaddr, size);
req->io_req.br_iov[iovidx].iov_len = size;
req->prev_gpaddr = gpaddr;
req->prev_size = size;
req->io_req.br_resid += size;
req->io_req.br_iovcnt++;
}
return (0);
}
static void
pci_nvme_set_completion(struct pci_nvme_softc *sc,
struct nvme_submission_queue *sq, int sqid, uint16_t cid,
uint32_t cdw0, uint16_t status)
{
struct nvme_completion_queue *cq = &sc->compl_queues[sq->cqid];
DPRINTF("%s sqid %d cqid %u cid %u status: 0x%x 0x%x",
__func__, sqid, sq->cqid, cid, NVME_STATUS_GET_SCT(status),
NVME_STATUS_GET_SC(status));
pci_nvme_cq_update(sc, cq,
0, /* CDW0 */
cid,
sqid,
status);
if (cq->head != cq->tail) {
if (cq->intr_en & NVME_CQ_INTEN) {
pci_generate_msix(sc->nsc_pi, cq->intr_vec);
} else {
DPRINTF("%s: CQ%u interrupt disabled",
__func__, sq->cqid);
}
}
}
static void
pci_nvme_release_ioreq(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req)
{
req->sc = NULL;
req->nvme_sq = NULL;
req->sqid = 0;
pthread_mutex_lock(&sc->mtx);
STAILQ_INSERT_TAIL(&sc->ioreqs_free, req, link);
sc->pending_ios--;
/* when no more IO pending, can set to ready if device reset/enabled */
if (sc->pending_ios == 0 &&
NVME_CC_GET_EN(sc->regs.cc) && !(NVME_CSTS_GET_RDY(sc->regs.csts)))
sc->regs.csts |= NVME_CSTS_RDY;
pthread_mutex_unlock(&sc->mtx);
sem_post(&sc->iosemlock);
}
static struct pci_nvme_ioreq *
pci_nvme_get_ioreq(struct pci_nvme_softc *sc)
{
struct pci_nvme_ioreq *req = NULL;
sem_wait(&sc->iosemlock);
pthread_mutex_lock(&sc->mtx);
req = STAILQ_FIRST(&sc->ioreqs_free);
assert(req != NULL);
STAILQ_REMOVE_HEAD(&sc->ioreqs_free, link);
req->sc = sc;
sc->pending_ios++;
pthread_mutex_unlock(&sc->mtx);
req->io_req.br_iovcnt = 0;
req->io_req.br_offset = 0;
req->io_req.br_resid = 0;
req->io_req.br_param = req;
req->prev_gpaddr = 0;
req->prev_size = 0;
return req;
}
static void
pci_nvme_io_done(struct blockif_req *br, int err)
{
struct pci_nvme_ioreq *req = br->br_param;
struct nvme_submission_queue *sq = req->nvme_sq;
uint16_t code, status;
DPRINTF("%s error %d %s", __func__, err, strerror(err));
/* TODO return correct error */
code = err ? NVME_SC_DATA_TRANSFER_ERROR : NVME_SC_SUCCESS;
pci_nvme_status_genc(&status, code);
pci_nvme_set_completion(req->sc, sq, req->sqid, req->cid, 0, status);
pci_nvme_stats_write_read_update(req->sc, req->opc,
req->bytes, status);
pci_nvme_release_ioreq(req->sc, req);
}
/*
* Implements the Flush command. The specification states:
* If a volatile write cache is not present, Flush commands complete
* successfully and have no effect
* in the description of the Volatile Write Cache (VWC) field of the Identify
* Controller data. Therefore, set status to Success if the command is
* not supported (i.e. RAM or as indicated by the blockif).
*/
static bool
nvme_opc_flush(struct pci_nvme_softc *sc,
struct nvme_command *cmd,
struct pci_nvme_blockstore *nvstore,
struct pci_nvme_ioreq *req,
uint16_t *status)
{
bool pending = false;
if (nvstore->type == NVME_STOR_RAM) {
pci_nvme_status_genc(status, NVME_SC_SUCCESS);
} else {
int err;
req->io_req.br_callback = pci_nvme_io_done;
err = blockif_flush(nvstore->ctx, &req->io_req);
switch (err) {
case 0:
pending = true;
break;
case EOPNOTSUPP:
pci_nvme_status_genc(status, NVME_SC_SUCCESS);
break;
default:
pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
}
}
return (pending);
}
static uint16_t
nvme_write_read_ram(struct pci_nvme_softc *sc,
struct pci_nvme_blockstore *nvstore,
uint64_t prp1, uint64_t prp2,
size_t offset, uint64_t bytes,
bool is_write)
{
uint8_t *buf = nvstore->ctx;
enum nvme_copy_dir dir;
uint16_t status;
if (is_write)
dir = NVME_COPY_TO_PRP;
else
dir = NVME_COPY_FROM_PRP;
if (nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, prp1, prp2,
buf + offset, bytes, dir))
pci_nvme_status_genc(&status,
NVME_SC_DATA_TRANSFER_ERROR);
else
pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
return (status);
}
static uint16_t
nvme_write_read_blockif(struct pci_nvme_softc *sc,
struct pci_nvme_blockstore *nvstore,
struct pci_nvme_ioreq *req,
uint64_t prp1, uint64_t prp2,
size_t offset, uint64_t bytes,
bool is_write)
{
uint64_t size;
int err;
uint16_t status = NVME_NO_STATUS;
size = MIN(PAGE_SIZE - (prp1 % PAGE_SIZE), bytes);
if (pci_nvme_append_iov_req(sc, req, prp1,
size, is_write, offset)) {
pci_nvme_status_genc(&status,
NVME_SC_DATA_TRANSFER_ERROR);
goto out;
}
offset += size;
bytes -= size;
if (bytes == 0) {
;
} else if (bytes <= PAGE_SIZE) {
size = bytes;
if (pci_nvme_append_iov_req(sc, req, prp2,
size, is_write, offset)) {
pci_nvme_status_genc(&status,
NVME_SC_DATA_TRANSFER_ERROR);
goto out;
}
} else {
void *vmctx = sc->nsc_pi->pi_vmctx;
uint64_t *prp_list = &prp2;
uint64_t *last = prp_list;
/* PRP2 is pointer to a physical region page list */
while (bytes) {
/* Last entry in list points to the next list */
if ((prp_list == last) && (bytes > PAGE_SIZE)) {
uint64_t prp = *prp_list;
prp_list = paddr_guest2host(vmctx, prp,
PAGE_SIZE - (prp % PAGE_SIZE));
last = prp_list + (NVME_PRP2_ITEMS - 1);
}
size = MIN(bytes, PAGE_SIZE);
if (pci_nvme_append_iov_req(sc, req, *prp_list,
size, is_write, offset)) {
pci_nvme_status_genc(&status,
NVME_SC_DATA_TRANSFER_ERROR);
goto out;
}
offset += size;
bytes -= size;
prp_list++;
}
}
req->io_req.br_callback = pci_nvme_io_done;
if (is_write)
err = blockif_write(nvstore->ctx, &req->io_req);
else
err = blockif_read(nvstore->ctx, &req->io_req);
if (err)
pci_nvme_status_genc(&status, NVME_SC_DATA_TRANSFER_ERROR);
out:
return (status);
}
static bool
nvme_opc_write_read(struct pci_nvme_softc *sc,
struct nvme_command *cmd,
struct pci_nvme_blockstore *nvstore,
struct pci_nvme_ioreq *req,
uint16_t *status)
{
uint64_t lba, nblocks, bytes;
size_t offset;
bool is_write = cmd->opc == NVME_OPC_WRITE;
bool pending = false;
lba = ((uint64_t)cmd->cdw11 << 32) | cmd->cdw10;
nblocks = (cmd->cdw12 & 0xFFFF) + 1;
if (pci_nvme_out_of_range(nvstore, lba, nblocks)) {
WPRINTF("%s command would exceed LBA range", __func__);
pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
goto out;
}
bytes = nblocks << nvstore->sectsz_bits;
if (bytes > NVME_MAX_DATA_SIZE) {
WPRINTF("%s command would exceed MDTS", __func__);
pci_nvme_status_genc(status, NVME_SC_INVALID_FIELD);
goto out;
}
offset = lba << nvstore->sectsz_bits;
req->bytes = bytes;
req->io_req.br_offset = lba;
/* PRP bits 1:0 must be zero */
cmd->prp1 &= ~0x3UL;
cmd->prp2 &= ~0x3UL;
if (nvstore->type == NVME_STOR_RAM) {
*status = nvme_write_read_ram(sc, nvstore, cmd->prp1,
cmd->prp2, offset, bytes, is_write);
} else {
*status = nvme_write_read_blockif(sc, nvstore, req,
cmd->prp1, cmd->prp2, offset, bytes, is_write);
if (*status == NVME_NO_STATUS)
pending = true;
}
out:
if (!pending)
pci_nvme_stats_write_read_update(sc, cmd->opc, bytes, *status);
return (pending);
}
static void
pci_nvme_dealloc_sm(struct blockif_req *br, int err)
{
struct pci_nvme_ioreq *req = br->br_param;
struct pci_nvme_softc *sc = req->sc;
bool done = true;
uint16_t status;
if (err) {
pci_nvme_status_genc(&status, NVME_SC_INTERNAL_DEVICE_ERROR);
} else if ((req->prev_gpaddr + 1) == (req->prev_size)) {
pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
} else {
struct iovec *iov = req->io_req.br_iov;
req->prev_gpaddr++;
iov += req->prev_gpaddr;
/* The iov_* values already include the sector size */
req->io_req.br_offset = (off_t)iov->iov_base;
req->io_req.br_resid = iov->iov_len;
if (blockif_delete(sc->nvstore.ctx, &req->io_req)) {
pci_nvme_status_genc(&status,
NVME_SC_INTERNAL_DEVICE_ERROR);
} else
done = false;
}
if (done) {
pci_nvme_set_completion(sc, req->nvme_sq, req->sqid,
req->cid, 0, status);
pci_nvme_release_ioreq(sc, req);
}
}
static bool
nvme_opc_dataset_mgmt(struct pci_nvme_softc *sc,
struct nvme_command *cmd,
struct pci_nvme_blockstore *nvstore,
struct pci_nvme_ioreq *req,
uint16_t *status)
{
struct nvme_dsm_range *range;
uint32_t nr, r, non_zero, dr;
int err;
bool pending = false;
if ((sc->ctrldata.oncs & NVME_ONCS_DSM) == 0) {
pci_nvme_status_genc(status, NVME_SC_INVALID_OPCODE);
goto out;
}
nr = cmd->cdw10 & 0xff;
/* copy locally because a range entry could straddle PRPs */
range = calloc(1, NVME_MAX_DSM_TRIM);
if (range == NULL) {
pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
goto out;
}
nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, cmd->prp1, cmd->prp2,
(uint8_t *)range, NVME_MAX_DSM_TRIM, NVME_COPY_FROM_PRP);
/* Check for invalid ranges and the number of non-zero lengths */
non_zero = 0;
for (r = 0; r <= nr; r++) {
if (pci_nvme_out_of_range(nvstore,
range[r].starting_lba, range[r].length)) {
pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
goto out;
}
if (range[r].length != 0)
non_zero++;
}
if (cmd->cdw11 & NVME_DSM_ATTR_DEALLOCATE) {
size_t offset, bytes;
int sectsz_bits = sc->nvstore.sectsz_bits;
/*
* DSM calls are advisory only, and compliant controllers
* may choose to take no actions (i.e. return Success).
*/
if (!nvstore->deallocate) {
pci_nvme_status_genc(status, NVME_SC_SUCCESS);
goto out;
}
/* If all ranges have a zero length, return Success */
if (non_zero == 0) {
pci_nvme_status_genc(status, NVME_SC_SUCCESS);
goto out;
}
if (req == NULL) {
pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
goto out;
}
offset = range[0].starting_lba << sectsz_bits;
bytes = range[0].length << sectsz_bits;
/*
* If the request is for more than a single range, store
* the ranges in the br_iov. Optimize for the common case
* of a single range.
*
* Note that NVMe Number of Ranges is a zero based value
*/
req->io_req.br_iovcnt = 0;
req->io_req.br_offset = offset;
req->io_req.br_resid = bytes;
if (nr == 0) {
req->io_req.br_callback = pci_nvme_io_done;
} else {
struct iovec *iov = req->io_req.br_iov;
for (r = 0, dr = 0; r <= nr; r++) {
offset = range[r].starting_lba << sectsz_bits;
bytes = range[r].length << sectsz_bits;
if (bytes == 0)
continue;
if ((nvstore->size - offset) < bytes) {
pci_nvme_status_genc(status,
NVME_SC_LBA_OUT_OF_RANGE);
goto out;
}
iov[dr].iov_base = (void *)offset;
iov[dr].iov_len = bytes;
dr++;
}
req->io_req.br_callback = pci_nvme_dealloc_sm;
/*
* Use prev_gpaddr to track the current entry and
* prev_size to track the number of entries
*/
req->prev_gpaddr = 0;
req->prev_size = dr;
}
err = blockif_delete(nvstore->ctx, &req->io_req);
if (err)
pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
else
pending = true;
}
out:
free(range);
return (pending);
}
static void
pci_nvme_handle_io_cmd(struct pci_nvme_softc* sc, uint16_t idx)
{
struct nvme_submission_queue *sq;
uint16_t status;
uint16_t sqhead;
/* handle all submissions up to sq->tail index */
sq = &sc->submit_queues[idx];
pthread_mutex_lock(&sq->mtx);
sqhead = sq->head;
DPRINTF("nvme_handle_io qid %u head %u tail %u cmdlist %p",
idx, sqhead, sq->tail, sq->qbase);
while (sqhead != atomic_load_acq_short(&sq->tail)) {
struct nvme_command *cmd;
struct pci_nvme_ioreq *req;
uint32_t nsid;
bool pending;
pending = false;
req = NULL;
status = 0;
cmd = &sq->qbase[sqhead];
sqhead = (sqhead + 1) % sq->size;
nsid = le32toh(cmd->nsid);
if ((nsid == 0) || (nsid > sc->ctrldata.nn)) {
pci_nvme_status_genc(&status,
NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
status |=
NVME_STATUS_DNR_MASK << NVME_STATUS_DNR_SHIFT;
goto complete;
}
req = pci_nvme_get_ioreq(sc);
if (req == NULL) {
pci_nvme_status_genc(&status,
NVME_SC_INTERNAL_DEVICE_ERROR);
WPRINTF("%s: unable to allocate IO req", __func__);
goto complete;
}
req->nvme_sq = sq;
req->sqid = idx;
req->opc = cmd->opc;
req->cid = cmd->cid;
req->nsid = cmd->nsid;
switch (cmd->opc) {
case NVME_OPC_FLUSH:
pending = nvme_opc_flush(sc, cmd, &sc->nvstore,
req, &status);
break;
case NVME_OPC_WRITE:
case NVME_OPC_READ:
pending = nvme_opc_write_read(sc, cmd, &sc->nvstore,
req, &status);
break;
case NVME_OPC_WRITE_ZEROES:
/* TODO: write zeroes
WPRINTF("%s write zeroes lba 0x%lx blocks %u",
__func__, lba, cmd->cdw12 & 0xFFFF); */
pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
break;
case NVME_OPC_DATASET_MANAGEMENT:
pending = nvme_opc_dataset_mgmt(sc, cmd, &sc->nvstore,
req, &status);
break;
default:
WPRINTF("%s unhandled io command 0x%x",
__func__, cmd->opc);
pci_nvme_status_genc(&status, NVME_SC_INVALID_OPCODE);
}
complete:
if (!pending) {
pci_nvme_set_completion(sc, sq, idx, cmd->cid, 0,
status);
if (req != NULL)
pci_nvme_release_ioreq(sc, req);
}
}
sq->head = sqhead;
pthread_mutex_unlock(&sq->mtx);
}
static void
pci_nvme_handle_doorbell(struct vmctx *ctx, struct pci_nvme_softc* sc,
uint64_t idx, int is_sq, uint64_t value)
{
DPRINTF("nvme doorbell %lu, %s, val 0x%lx",
idx, is_sq ? "SQ" : "CQ", value & 0xFFFF);
if (is_sq) {
if (idx > sc->num_squeues) {
WPRINTF("%s queue index %lu overflow from "
"guest (max %u)",
__func__, idx, sc->num_squeues);
return;
}
atomic_store_short(&sc->submit_queues[idx].tail,
(uint16_t)value);
if (idx == 0) {
pci_nvme_handle_admin_cmd(sc, value);
} else {
/* submission queue; handle new entries in SQ */
if (idx > sc->num_squeues) {
WPRINTF("%s SQ index %lu overflow from "
"guest (max %u)",
__func__, idx, sc->num_squeues);
return;
}
pci_nvme_handle_io_cmd(sc, (uint16_t)idx);
}
} else {
if (idx > sc->num_cqueues) {
WPRINTF("%s queue index %lu overflow from "
"guest (max %u)",
__func__, idx, sc->num_cqueues);
return;
}
atomic_store_short(&sc->compl_queues[idx].head,
(uint16_t)value);
}
}
static void
pci_nvme_bar0_reg_dumps(const char *func, uint64_t offset, int iswrite)
{
const char *s = iswrite ? "WRITE" : "READ";
switch (offset) {
case NVME_CR_CAP_LOW:
DPRINTF("%s %s NVME_CR_CAP_LOW", func, s);
break;
case NVME_CR_CAP_HI:
DPRINTF("%s %s NVME_CR_CAP_HI", func, s);
break;
case NVME_CR_VS:
DPRINTF("%s %s NVME_CR_VS", func, s);
break;
case NVME_CR_INTMS:
DPRINTF("%s %s NVME_CR_INTMS", func, s);
break;
case NVME_CR_INTMC:
DPRINTF("%s %s NVME_CR_INTMC", func, s);
break;
case NVME_CR_CC:
DPRINTF("%s %s NVME_CR_CC", func, s);
break;
case NVME_CR_CSTS:
DPRINTF("%s %s NVME_CR_CSTS", func, s);
break;
case NVME_CR_NSSR:
DPRINTF("%s %s NVME_CR_NSSR", func, s);
break;
case NVME_CR_AQA:
DPRINTF("%s %s NVME_CR_AQA", func, s);
break;
case NVME_CR_ASQ_LOW:
DPRINTF("%s %s NVME_CR_ASQ_LOW", func, s);
break;
case NVME_CR_ASQ_HI:
DPRINTF("%s %s NVME_CR_ASQ_HI", func, s);
break;
case NVME_CR_ACQ_LOW:
DPRINTF("%s %s NVME_CR_ACQ_LOW", func, s);
break;
case NVME_CR_ACQ_HI:
DPRINTF("%s %s NVME_CR_ACQ_HI", func, s);
break;
default:
DPRINTF("unknown nvme bar-0 offset 0x%lx", offset);
}
}
static void
pci_nvme_write_bar_0(struct vmctx *ctx, struct pci_nvme_softc* sc,
uint64_t offset, int size, uint64_t value)
{
uint32_t ccreg;
if (offset >= NVME_DOORBELL_OFFSET) {
uint64_t belloffset = offset - NVME_DOORBELL_OFFSET;
uint64_t idx = belloffset / 8; /* door bell size = 2*int */
int is_sq = (belloffset % 8) < 4;
if (belloffset > ((sc->max_queues+1) * 8 - 4)) {
WPRINTF("guest attempted an overflow write offset "
"0x%lx, val 0x%lx in %s",
offset, value, __func__);
return;
}
pci_nvme_handle_doorbell(ctx, sc, idx, is_sq, value);
return;
}
DPRINTF("nvme-write offset 0x%lx, size %d, value 0x%lx",
offset, size, value);
if (size != 4) {
WPRINTF("guest wrote invalid size %d (offset 0x%lx, "
"val 0x%lx) to bar0 in %s",
size, offset, value, __func__);
/* TODO: shutdown device */
return;
}
pci_nvme_bar0_reg_dumps(__func__, offset, 1);
pthread_mutex_lock(&sc->mtx);
switch (offset) {
case NVME_CR_CAP_LOW:
case NVME_CR_CAP_HI:
/* readonly */
break;
case NVME_CR_VS:
/* readonly */
break;
case NVME_CR_INTMS:
/* MSI-X, so ignore */
break;
case NVME_CR_INTMC:
/* MSI-X, so ignore */
break;
case NVME_CR_CC:
ccreg = (uint32_t)value;
DPRINTF("%s NVME_CR_CC en %x css %x shn %x iosqes %u "
"iocqes %u",
__func__,
NVME_CC_GET_EN(ccreg), NVME_CC_GET_CSS(ccreg),
NVME_CC_GET_SHN(ccreg), NVME_CC_GET_IOSQES(ccreg),
NVME_CC_GET_IOCQES(ccreg));
if (NVME_CC_GET_SHN(ccreg)) {
/* perform shutdown - flush out data to backend */
sc->regs.csts &= ~(NVME_CSTS_REG_SHST_MASK <<
NVME_CSTS_REG_SHST_SHIFT);
sc->regs.csts |= NVME_SHST_COMPLETE <<
NVME_CSTS_REG_SHST_SHIFT;
}
if (NVME_CC_GET_EN(ccreg) != NVME_CC_GET_EN(sc->regs.cc)) {
if (NVME_CC_GET_EN(ccreg) == 0)
/* transition 1-> causes controller reset */
pci_nvme_reset_locked(sc);
else
pci_nvme_init_controller(ctx, sc);
}
/* Insert the iocqes, iosqes and en bits from the write */
sc->regs.cc &= ~NVME_CC_WRITE_MASK;
sc->regs.cc |= ccreg & NVME_CC_WRITE_MASK;
if (NVME_CC_GET_EN(ccreg) == 0) {
/* Insert the ams, mps and css bit fields */
sc->regs.cc &= ~NVME_CC_NEN_WRITE_MASK;
sc->regs.cc |= ccreg & NVME_CC_NEN_WRITE_MASK;
sc->regs.csts &= ~NVME_CSTS_RDY;
} else if (sc->pending_ios == 0) {
sc->regs.csts |= NVME_CSTS_RDY;
}
break;
case NVME_CR_CSTS:
break;
case NVME_CR_NSSR:
/* ignore writes; don't support subsystem reset */
break;
case NVME_CR_AQA:
sc->regs.aqa = (uint32_t)value;
break;
case NVME_CR_ASQ_LOW:
sc->regs.asq = (sc->regs.asq & (0xFFFFFFFF00000000)) |
(0xFFFFF000 & value);
break;
case NVME_CR_ASQ_HI:
sc->regs.asq = (sc->regs.asq & (0x00000000FFFFFFFF)) |
(value << 32);
break;
case NVME_CR_ACQ_LOW:
sc->regs.acq = (sc->regs.acq & (0xFFFFFFFF00000000)) |
(0xFFFFF000 & value);
break;
case NVME_CR_ACQ_HI:
sc->regs.acq = (sc->regs.acq & (0x00000000FFFFFFFF)) |
(value << 32);
break;
default:
DPRINTF("%s unknown offset 0x%lx, value 0x%lx size %d",
__func__, offset, value, size);
}
pthread_mutex_unlock(&sc->mtx);
}
static void
pci_nvme_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi,
int baridx, uint64_t offset, int size, uint64_t value)
{
struct pci_nvme_softc* sc = pi->pi_arg;
if (baridx == pci_msix_table_bar(pi) ||
baridx == pci_msix_pba_bar(pi)) {
DPRINTF("nvme-write baridx %d, msix: off 0x%lx, size %d, "
" value 0x%lx", baridx, offset, size, value);
pci_emul_msix_twrite(pi, offset, size, value);
return;
}
switch (baridx) {
case 0:
pci_nvme_write_bar_0(ctx, sc, offset, size, value);
break;
default:
DPRINTF("%s unknown baridx %d, val 0x%lx",
__func__, baridx, value);
}
}
static uint64_t pci_nvme_read_bar_0(struct pci_nvme_softc* sc,
uint64_t offset, int size)
{
uint64_t value;
pci_nvme_bar0_reg_dumps(__func__, offset, 0);
if (offset < NVME_DOORBELL_OFFSET) {
void *p = &(sc->regs);
pthread_mutex_lock(&sc->mtx);
memcpy(&value, (void *)((uintptr_t)p + offset), size);
pthread_mutex_unlock(&sc->mtx);
} else {
value = 0;
WPRINTF("pci_nvme: read invalid offset %ld", offset);
}
switch (size) {
case 1:
value &= 0xFF;
break;
case 2:
value &= 0xFFFF;
break;
case 4:
value &= 0xFFFFFFFF;
break;
}
DPRINTF(" nvme-read offset 0x%lx, size %d -> value 0x%x",
offset, size, (uint32_t)value);
return (value);
}
static uint64_t
pci_nvme_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
uint64_t offset, int size)
{
struct pci_nvme_softc* sc = pi->pi_arg;
if (baridx == pci_msix_table_bar(pi) ||
baridx == pci_msix_pba_bar(pi)) {
DPRINTF("nvme-read bar: %d, msix: regoff 0x%lx, size %d",
baridx, offset, size);
return pci_emul_msix_tread(pi, offset, size);
}
switch (baridx) {
case 0:
return pci_nvme_read_bar_0(sc, offset, size);
default:
DPRINTF("unknown bar %d, 0x%lx", baridx, offset);
}
return (0);
}
static int
pci_nvme_parse_config(struct pci_nvme_softc *sc, nvlist_t *nvl)
{
char bident[sizeof("XX:X:X")];
const char *value;
uint32_t sectsz;
sc->max_queues = NVME_QUEUES;
sc->max_qentries = NVME_MAX_QENTRIES;
sc->ioslots = NVME_IOSLOTS;
sc->num_squeues = sc->max_queues;
sc->num_cqueues = sc->max_queues;
sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO;
sectsz = 0;
snprintf(sc->ctrldata.sn, sizeof(sc->ctrldata.sn),
"NVME-%d-%d", sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
value = get_config_value_node(nvl, "maxq");
if (value != NULL)
sc->max_queues = atoi(value);
value = get_config_value_node(nvl, "qsz");
if (value != NULL) {
sc->max_qentries = atoi(value);
if (sc->max_qentries <= 0) {
EPRINTLN("nvme: Invalid qsz option %d",
sc->max_qentries);
return (-1);
}
}
value = get_config_value_node(nvl, "ioslots");
if (value != NULL) {
sc->ioslots = atoi(value);
if (sc->ioslots <= 0) {
EPRINTLN("Invalid ioslots option %d", sc->ioslots);
return (-1);
}
}
value = get_config_value_node(nvl, "sectsz");
if (value != NULL)
sectsz = atoi(value);
value = get_config_value_node(nvl, "ser");
if (value != NULL) {
/*
* This field indicates the Product Serial Number in
* 7-bit ASCII, unused bytes should be space characters.
* Ref: NVMe v1.3c.
*/
cpywithpad((char *)sc->ctrldata.sn,
sizeof(sc->ctrldata.sn), value, ' ');
}
value = get_config_value_node(nvl, "eui64");
if (value != NULL)
sc->nvstore.eui64 = htobe64(strtoull(value, NULL, 0));
value = get_config_value_node(nvl, "dsm");
if (value != NULL) {
if (strcmp(value, "auto") == 0)
sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO;
else if (strcmp(value, "enable") == 0)
sc->dataset_management = NVME_DATASET_MANAGEMENT_ENABLE;
else if (strcmp(value, "disable") == 0)
sc->dataset_management = NVME_DATASET_MANAGEMENT_DISABLE;
}
value = get_config_value_node(nvl, "ram");
if (value != NULL) {
uint64_t sz = strtoull(value, NULL, 10);
sc->nvstore.type = NVME_STOR_RAM;
sc->nvstore.size = sz * 1024 * 1024;
sc->nvstore.ctx = calloc(1, sc->nvstore.size);
sc->nvstore.sectsz = 4096;
sc->nvstore.sectsz_bits = 12;
if (sc->nvstore.ctx == NULL) {
EPRINTLN("nvme: Unable to allocate RAM");
return (-1);
}
} else {
snprintf(bident, sizeof(bident), "%d:%d",
sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
sc->nvstore.ctx = blockif_open(nvl, bident);
if (sc->nvstore.ctx == NULL) {
EPRINTLN("nvme: Could not open backing file: %s",
strerror(errno));
return (-1);
}
sc->nvstore.type = NVME_STOR_BLOCKIF;
sc->nvstore.size = blockif_size(sc->nvstore.ctx);
}
if (sectsz == 512 || sectsz == 4096 || sectsz == 8192)
sc->nvstore.sectsz = sectsz;
else if (sc->nvstore.type != NVME_STOR_RAM)
sc->nvstore.sectsz = blockif_sectsz(sc->nvstore.ctx);
for (sc->nvstore.sectsz_bits = 9;
(1 << sc->nvstore.sectsz_bits) < sc->nvstore.sectsz;
sc->nvstore.sectsz_bits++);
if (sc->max_queues <= 0 || sc->max_queues > NVME_QUEUES)
sc->max_queues = NVME_QUEUES;
return (0);
}
static void
pci_nvme_resized(struct blockif_ctxt *bctxt, void *arg, size_t new_size)
{
struct pci_nvme_softc *sc;
struct pci_nvme_blockstore *nvstore;
struct nvme_namespace_data *nd;
sc = arg;
nvstore = &sc->nvstore;
nd = &sc->nsdata;
nvstore->size = new_size;
pci_nvme_init_nsdata_size(nvstore, nd);
/* Add changed NSID to list */
sc->ns_log.ns[0] = 1;
sc->ns_log.ns[1] = 0;
pci_nvme_aen_post(sc, PCI_NVME_AE_TYPE_NOTICE,
PCI_NVME_AE_INFO_NS_ATTR_CHANGED);
}
static int
pci_nvme_init(struct vmctx *ctx, struct pci_devinst *pi, nvlist_t *nvl)
{
struct pci_nvme_softc *sc;
uint32_t pci_membar_sz;
int error;
error = 0;
sc = calloc(1, sizeof(struct pci_nvme_softc));
pi->pi_arg = sc;
sc->nsc_pi = pi;
error = pci_nvme_parse_config(sc, nvl);
if (error < 0)
goto done;
else
error = 0;
STAILQ_INIT(&sc->ioreqs_free);
sc->ioreqs = calloc(sc->ioslots, sizeof(struct pci_nvme_ioreq));
for (int i = 0; i < sc->ioslots; i++) {
STAILQ_INSERT_TAIL(&sc->ioreqs_free, &sc->ioreqs[i], link);
}
pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0A0A);
pci_set_cfgdata16(pi, PCIR_VENDOR, 0xFB5D);
pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_STORAGE);
pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_STORAGE_NVM);
pci_set_cfgdata8(pi, PCIR_PROGIF,
PCIP_STORAGE_NVM_ENTERPRISE_NVMHCI_1_0);
/*
* Allocate size of NVMe registers + doorbell space for all queues.
*
* The specification requires a minimum memory I/O window size of 16K.
* The Windows driver will refuse to start a device with a smaller
* window.
*/
pci_membar_sz = sizeof(struct nvme_registers) +
2 * sizeof(uint32_t) * (sc->max_queues + 1);
pci_membar_sz = MAX(pci_membar_sz, NVME_MMIO_SPACE_MIN);
DPRINTF("nvme membar size: %u", pci_membar_sz);
error = pci_emul_alloc_bar(pi, 0, PCIBAR_MEM64, pci_membar_sz);
if (error) {
WPRINTF("%s pci alloc mem bar failed", __func__);
goto done;
}
error = pci_emul_add_msixcap(pi, sc->max_queues + 1, NVME_MSIX_BAR);
if (error) {
WPRINTF("%s pci add msixcap failed", __func__);
goto done;
}
error = pci_emul_add_pciecap(pi, PCIEM_TYPE_ROOT_INT_EP);
if (error) {
WPRINTF("%s pci add Express capability failed", __func__);
goto done;
}
pthread_mutex_init(&sc->mtx, NULL);
sem_init(&sc->iosemlock, 0, sc->ioslots);
blockif_register_resize_callback(sc->nvstore.ctx, pci_nvme_resized, sc);
pci_nvme_init_queues(sc, sc->max_queues, sc->max_queues);
/*
* Controller data depends on Namespace data so initialize Namespace
* data first.
*/
pci_nvme_init_nsdata(sc, &sc->nsdata, 1, &sc->nvstore);
pci_nvme_init_ctrldata(sc);
pci_nvme_init_logpages(sc);
pci_nvme_init_features(sc);
pci_nvme_aer_init(sc);
pci_nvme_aen_init(sc);
pci_nvme_reset(sc);
pci_lintr_request(pi);
done:
return (error);
}
static int
pci_nvme_legacy_config(nvlist_t *nvl, const char *opts)
{
char *cp, *ram;
if (opts == NULL)
return (0);
if (strncmp(opts, "ram=", 4) == 0) {
cp = strchr(opts, ',');
if (cp == NULL) {
set_config_value_node(nvl, "ram", opts + 4);
return (0);
}
ram = strndup(opts + 4, cp - opts - 4);
set_config_value_node(nvl, "ram", ram);
free(ram);
return (pci_parse_legacy_config(nvl, cp + 1));
} else
return (blockif_legacy_config(nvl, opts));
}
struct pci_devemu pci_de_nvme = {
.pe_emu = "nvme",
.pe_init = pci_nvme_init,
.pe_legacy_config = pci_nvme_legacy_config,
.pe_barwrite = pci_nvme_write,
.pe_barread = pci_nvme_read
};
PCI_EMUL_SET(pci_de_nvme);