Steven Hartland 85c9dd9d89 Prevent overflow issues in timeout processing
Previously, any timeout value for which (timeout * hz) will overflow the
signed integer, will give weird results, since callout(9) routines will
convert negative values of ticks to '1'. For unsigned integer overflow we
will get sufficiently smaller timeout values than expected.

Switch from callout_reset, which requires conversion to int based ticks
to callout_reset_sbt to avoid this.

Also correct isci to correctly resolve ccb timeout.

This was based on the original work done by Eygene Ryabinkin
<rea@freebsd.org> back in 5 Aug 2011 which used a macro to help avoid
the overlow.

Differential Revision:	https://reviews.freebsd.org/D1157
Reviewed by:	mav, davide
MFC after:	1 month
Sponsored by:	Multiplay
2014-11-21 21:01:24 +00:00

1505 lines
38 KiB
C

/*-
* CAM SCSI interface for the Advanced Systems Inc.
* Second Generation SCSI controllers.
*
* Product specific probe and attach routines can be found in:
*
* adw_pci.c ABP[3]940UW, ABP950UW, ABP3940U2W
*
* Copyright (c) 1998, 1999, 2000 Justin Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Ported from:
* advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
*
* Copyright (c) 1995-1998 Advanced System Products, Inc.
* All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that redistributions of source
* code retain the above copyright notice and this comment without
* modification.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_message.h>
#include <dev/advansys/adwvar.h>
/* Definitions for our use of the SIM private CCB area */
#define ccb_acb_ptr spriv_ptr0
#define ccb_adw_ptr spriv_ptr1
static __inline struct acb* adwgetacb(struct adw_softc *adw);
static __inline void adwfreeacb(struct adw_softc *adw,
struct acb *acb);
static void adwmapmem(void *arg, bus_dma_segment_t *segs,
int nseg, int error);
static struct sg_map_node*
adwallocsgmap(struct adw_softc *adw);
static int adwallocacbs(struct adw_softc *adw);
static void adwexecuteacb(void *arg, bus_dma_segment_t *dm_segs,
int nseg, int error);
static void adw_action(struct cam_sim *sim, union ccb *ccb);
static void adw_intr_locked(struct adw_softc *adw);
static void adw_poll(struct cam_sim *sim);
static void adw_async(void *callback_arg, u_int32_t code,
struct cam_path *path, void *arg);
static void adwprocesserror(struct adw_softc *adw, struct acb *acb);
static void adwtimeout(void *arg);
static void adw_handle_device_reset(struct adw_softc *adw,
u_int target);
static void adw_handle_bus_reset(struct adw_softc *adw,
int initiated);
static __inline struct acb*
adwgetacb(struct adw_softc *adw)
{
struct acb* acb;
if (!dumping)
mtx_assert(&adw->lock, MA_OWNED);
if ((acb = SLIST_FIRST(&adw->free_acb_list)) != NULL) {
SLIST_REMOVE_HEAD(&adw->free_acb_list, links);
} else if (adw->num_acbs < adw->max_acbs) {
adwallocacbs(adw);
acb = SLIST_FIRST(&adw->free_acb_list);
if (acb == NULL)
device_printf(adw->device, "Can't malloc ACB\n");
else {
SLIST_REMOVE_HEAD(&adw->free_acb_list, links);
}
}
return (acb);
}
static __inline void
adwfreeacb(struct adw_softc *adw, struct acb *acb)
{
if (!dumping)
mtx_assert(&adw->lock, MA_OWNED);
if ((acb->state & ACB_ACTIVE) != 0)
LIST_REMOVE(&acb->ccb->ccb_h, sim_links.le);
if ((acb->state & ACB_RELEASE_SIMQ) != 0)
acb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
else if ((adw->state & ADW_RESOURCE_SHORTAGE) != 0
&& (acb->ccb->ccb_h.status & CAM_RELEASE_SIMQ) == 0) {
acb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
adw->state &= ~ADW_RESOURCE_SHORTAGE;
}
acb->state = ACB_FREE;
SLIST_INSERT_HEAD(&adw->free_acb_list, acb, links);
}
static void
adwmapmem(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *busaddrp;
busaddrp = (bus_addr_t *)arg;
*busaddrp = segs->ds_addr;
}
static struct sg_map_node *
adwallocsgmap(struct adw_softc *adw)
{
struct sg_map_node *sg_map;
sg_map = malloc(sizeof(*sg_map), M_DEVBUF, M_NOWAIT);
if (sg_map == NULL)
return (NULL);
/* Allocate S/G space for the next batch of ACBS */
if (bus_dmamem_alloc(adw->sg_dmat, (void **)&sg_map->sg_vaddr,
BUS_DMA_NOWAIT, &sg_map->sg_dmamap) != 0) {
free(sg_map, M_DEVBUF);
return (NULL);
}
SLIST_INSERT_HEAD(&adw->sg_maps, sg_map, links);
bus_dmamap_load(adw->sg_dmat, sg_map->sg_dmamap, sg_map->sg_vaddr,
PAGE_SIZE, adwmapmem, &sg_map->sg_physaddr, /*flags*/0);
bzero(sg_map->sg_vaddr, PAGE_SIZE);
return (sg_map);
}
/*
* Allocate another chunk of CCB's. Return count of entries added.
*/
static int
adwallocacbs(struct adw_softc *adw)
{
struct acb *next_acb;
struct sg_map_node *sg_map;
bus_addr_t busaddr;
struct adw_sg_block *blocks;
int newcount;
int i;
next_acb = &adw->acbs[adw->num_acbs];
sg_map = adwallocsgmap(adw);
if (sg_map == NULL)
return (0);
blocks = sg_map->sg_vaddr;
busaddr = sg_map->sg_physaddr;
newcount = (PAGE_SIZE / (ADW_SG_BLOCKCNT * sizeof(*blocks)));
for (i = 0; adw->num_acbs < adw->max_acbs && i < newcount; i++) {
int error;
error = bus_dmamap_create(adw->buffer_dmat, /*flags*/0,
&next_acb->dmamap);
if (error != 0)
break;
next_acb->queue.scsi_req_baddr = acbvtob(adw, next_acb);
next_acb->queue.scsi_req_bo = acbvtobo(adw, next_acb);
next_acb->queue.sense_baddr =
acbvtob(adw, next_acb) + offsetof(struct acb, sense_data);
next_acb->sg_blocks = blocks;
next_acb->sg_busaddr = busaddr;
next_acb->state = ACB_FREE;
callout_init_mtx(&next_acb->timer, &adw->lock, 0);
SLIST_INSERT_HEAD(&adw->free_acb_list, next_acb, links);
blocks += ADW_SG_BLOCKCNT;
busaddr += ADW_SG_BLOCKCNT * sizeof(*blocks);
next_acb++;
adw->num_acbs++;
}
return (i);
}
static void
adwexecuteacb(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
struct acb *acb;
union ccb *ccb;
struct adw_softc *adw;
acb = (struct acb *)arg;
ccb = acb->ccb;
adw = (struct adw_softc *)ccb->ccb_h.ccb_adw_ptr;
if (!dumping)
mtx_assert(&adw->lock, MA_OWNED);
if (error != 0) {
if (error != EFBIG)
device_printf(adw->device, "Unexepected error 0x%x "
"returned from bus_dmamap_load\n", error);
if (ccb->ccb_h.status == CAM_REQ_INPROG) {
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
ccb->ccb_h.status = CAM_REQ_TOO_BIG|CAM_DEV_QFRZN;
}
adwfreeacb(adw, acb);
xpt_done(ccb);
return;
}
if (nseg != 0) {
bus_dmasync_op_t op;
acb->queue.data_addr = dm_segs[0].ds_addr;
acb->queue.data_cnt = ccb->csio.dxfer_len;
if (nseg > 1) {
struct adw_sg_block *sg_block;
struct adw_sg_elm *sg;
bus_addr_t sg_busaddr;
u_int sg_index;
bus_dma_segment_t *end_seg;
end_seg = dm_segs + nseg;
sg_busaddr = acb->sg_busaddr;
sg_index = 0;
/* Copy the segments into our SG list */
for (sg_block = acb->sg_blocks;; sg_block++) {
u_int i;
sg = sg_block->sg_list;
for (i = 0; i < ADW_NO_OF_SG_PER_BLOCK; i++) {
if (dm_segs >= end_seg)
break;
sg->sg_addr = dm_segs->ds_addr;
sg->sg_count = dm_segs->ds_len;
sg++;
dm_segs++;
}
sg_block->sg_cnt = i;
sg_index += i;
if (dm_segs == end_seg) {
sg_block->sg_busaddr_next = 0;
break;
} else {
sg_busaddr +=
sizeof(struct adw_sg_block);
sg_block->sg_busaddr_next = sg_busaddr;
}
}
acb->queue.sg_real_addr = acb->sg_busaddr;
} else {
acb->queue.sg_real_addr = 0;
}
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_PREREAD;
else
op = BUS_DMASYNC_PREWRITE;
bus_dmamap_sync(adw->buffer_dmat, acb->dmamap, op);
} else {
acb->queue.data_addr = 0;
acb->queue.data_cnt = 0;
acb->queue.sg_real_addr = 0;
}
/*
* Last time we need to check if this CCB needs to
* be aborted.
*/
if (ccb->ccb_h.status != CAM_REQ_INPROG) {
if (nseg != 0)
bus_dmamap_unload(adw->buffer_dmat, acb->dmamap);
adwfreeacb(adw, acb);
xpt_done(ccb);
return;
}
acb->state |= ACB_ACTIVE;
ccb->ccb_h.status |= CAM_SIM_QUEUED;
LIST_INSERT_HEAD(&adw->pending_ccbs, &ccb->ccb_h, sim_links.le);
callout_reset_sbt(&acb->timer, SBT_1MS * ccb->ccb_h.timeout, 0,
adwtimeout, acb, 0);
adw_send_acb(adw, acb, acbvtob(adw, acb));
}
static void
adw_action(struct cam_sim *sim, union ccb *ccb)
{
struct adw_softc *adw;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("adw_action\n"));
adw = (struct adw_softc *)cam_sim_softc(sim);
if (!dumping)
mtx_assert(&adw->lock, MA_OWNED);
switch (ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_SCSI_IO: /* Execute the requested I/O operation */
{
struct ccb_scsiio *csio;
struct acb *acb;
int error;
csio = &ccb->csio;
/* Max supported CDB length is 12 bytes */
if (csio->cdb_len > 12) {
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
return;
}
if ((acb = adwgetacb(adw)) == NULL) {
adw->state |= ADW_RESOURCE_SHORTAGE;
xpt_freeze_simq(sim, /*count*/1);
ccb->ccb_h.status = CAM_REQUEUE_REQ;
xpt_done(ccb);
return;
}
/* Link acb and ccb so we can find one from the other */
acb->ccb = ccb;
ccb->ccb_h.ccb_acb_ptr = acb;
ccb->ccb_h.ccb_adw_ptr = adw;
acb->queue.cntl = 0;
acb->queue.target_cmd = 0;
acb->queue.target_id = ccb->ccb_h.target_id;
acb->queue.target_lun = ccb->ccb_h.target_lun;
acb->queue.mflag = 0;
acb->queue.sense_len =
MIN(csio->sense_len, sizeof(acb->sense_data));
acb->queue.cdb_len = csio->cdb_len;
if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) {
switch (csio->tag_action) {
case MSG_SIMPLE_Q_TAG:
acb->queue.scsi_cntl = ADW_QSC_SIMPLE_Q_TAG;
break;
case MSG_HEAD_OF_Q_TAG:
acb->queue.scsi_cntl = ADW_QSC_HEAD_OF_Q_TAG;
break;
case MSG_ORDERED_Q_TAG:
acb->queue.scsi_cntl = ADW_QSC_ORDERED_Q_TAG;
break;
default:
acb->queue.scsi_cntl = ADW_QSC_NO_TAGMSG;
break;
}
} else
acb->queue.scsi_cntl = ADW_QSC_NO_TAGMSG;
if ((ccb->ccb_h.flags & CAM_DIS_DISCONNECT) != 0)
acb->queue.scsi_cntl |= ADW_QSC_NO_DISC;
acb->queue.done_status = 0;
acb->queue.scsi_status = 0;
acb->queue.host_status = 0;
acb->queue.sg_wk_ix = 0;
if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
if ((ccb->ccb_h.flags & CAM_CDB_PHYS) == 0) {
bcopy(csio->cdb_io.cdb_ptr,
acb->queue.cdb, csio->cdb_len);
} else {
/* I guess I could map it in... */
ccb->ccb_h.status = CAM_REQ_INVALID;
adwfreeacb(adw, acb);
xpt_done(ccb);
return;
}
} else {
bcopy(csio->cdb_io.cdb_bytes,
acb->queue.cdb, csio->cdb_len);
}
error = bus_dmamap_load_ccb(adw->buffer_dmat,
acb->dmamap,
ccb,
adwexecuteacb,
acb, /*flags*/0);
if (error == EINPROGRESS) {
/*
* So as to maintain ordering, freeze the controller
* queue until our mapping is returned.
*/
xpt_freeze_simq(sim, 1);
acb->state |= CAM_RELEASE_SIMQ;
}
break;
}
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
{
adw_idle_cmd_status_t status;
status = adw_idle_cmd_send(adw, ADW_IDLE_CMD_DEVICE_RESET,
ccb->ccb_h.target_id);
if (status == ADW_IDLE_CMD_SUCCESS) {
ccb->ccb_h.status = CAM_REQ_CMP;
if (bootverbose) {
xpt_print_path(ccb->ccb_h.path);
printf("BDR Delivered\n");
}
} else
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
xpt_done(ccb);
break;
}
case XPT_ABORT: /* Abort the specified CCB */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_SET_TRAN_SETTINGS:
{
struct ccb_trans_settings_scsi *scsi;
struct ccb_trans_settings_spi *spi;
struct ccb_trans_settings *cts;
u_int target_mask;
cts = &ccb->cts;
target_mask = 0x01 << ccb->ccb_h.target_id;
scsi = &cts->proto_specific.scsi;
spi = &cts->xport_specific.spi;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
u_int sdtrdone;
sdtrdone = adw_lram_read_16(adw, ADW_MC_SDTR_DONE);
if ((spi->valid & CTS_SPI_VALID_DISC) != 0) {
u_int discenb;
discenb =
adw_lram_read_16(adw, ADW_MC_DISC_ENABLE);
if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
discenb |= target_mask;
else
discenb &= ~target_mask;
adw_lram_write_16(adw, ADW_MC_DISC_ENABLE,
discenb);
}
if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
adw->tagenb |= target_mask;
else
adw->tagenb &= ~target_mask;
}
if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) {
u_int wdtrenb_orig;
u_int wdtrenb;
u_int wdtrdone;
wdtrenb_orig =
adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
wdtrenb = wdtrenb_orig;
wdtrdone = adw_lram_read_16(adw,
ADW_MC_WDTR_DONE);
switch (spi->bus_width) {
case MSG_EXT_WDTR_BUS_32_BIT:
case MSG_EXT_WDTR_BUS_16_BIT:
wdtrenb |= target_mask;
break;
case MSG_EXT_WDTR_BUS_8_BIT:
default:
wdtrenb &= ~target_mask;
break;
}
if (wdtrenb != wdtrenb_orig) {
adw_lram_write_16(adw,
ADW_MC_WDTR_ABLE,
wdtrenb);
wdtrdone &= ~target_mask;
adw_lram_write_16(adw,
ADW_MC_WDTR_DONE,
wdtrdone);
/* Wide negotiation forces async */
sdtrdone &= ~target_mask;
adw_lram_write_16(adw,
ADW_MC_SDTR_DONE,
sdtrdone);
}
}
if (((spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
|| ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)) {
u_int sdtr_orig;
u_int sdtr;
u_int sdtrable_orig;
u_int sdtrable;
sdtr = adw_get_chip_sdtr(adw,
ccb->ccb_h.target_id);
sdtr_orig = sdtr;
sdtrable = adw_lram_read_16(adw,
ADW_MC_SDTR_ABLE);
sdtrable_orig = sdtrable;
if ((spi->valid
& CTS_SPI_VALID_SYNC_RATE) != 0) {
sdtr =
adw_find_sdtr(adw,
spi->sync_period);
}
if ((spi->valid
& CTS_SPI_VALID_SYNC_OFFSET) != 0) {
if (spi->sync_offset == 0)
sdtr = ADW_MC_SDTR_ASYNC;
}
if (sdtr == ADW_MC_SDTR_ASYNC)
sdtrable &= ~target_mask;
else
sdtrable |= target_mask;
if (sdtr != sdtr_orig
|| sdtrable != sdtrable_orig) {
adw_set_chip_sdtr(adw,
ccb->ccb_h.target_id,
sdtr);
sdtrdone &= ~target_mask;
adw_lram_write_16(adw, ADW_MC_SDTR_ABLE,
sdtrable);
adw_lram_write_16(adw, ADW_MC_SDTR_DONE,
sdtrdone);
}
}
}
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_GET_TRAN_SETTINGS:
/* Get default/user set transfer settings for the target */
{
struct ccb_trans_settings_scsi *scsi;
struct ccb_trans_settings_spi *spi;
struct ccb_trans_settings *cts;
u_int target_mask;
cts = &ccb->cts;
target_mask = 0x01 << ccb->ccb_h.target_id;
cts->protocol = PROTO_SCSI;
cts->protocol_version = SCSI_REV_2;
cts->transport = XPORT_SPI;
cts->transport_version = 2;
scsi = &cts->proto_specific.scsi;
spi = &cts->xport_specific.spi;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
u_int mc_sdtr;
spi->flags = 0;
if ((adw->user_discenb & target_mask) != 0)
spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
if ((adw->user_tagenb & target_mask) != 0)
scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
if ((adw->user_wdtr & target_mask) != 0)
spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
else
spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
mc_sdtr = adw_get_user_sdtr(adw, ccb->ccb_h.target_id);
spi->sync_period = adw_find_period(adw, mc_sdtr);
if (spi->sync_period != 0)
spi->sync_offset = 15; /* XXX ??? */
else
spi->sync_offset = 0;
} else {
u_int targ_tinfo;
spi->flags = 0;
if ((adw_lram_read_16(adw, ADW_MC_DISC_ENABLE)
& target_mask) != 0)
spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
if ((adw->tagenb & target_mask) != 0)
scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
targ_tinfo =
adw_lram_read_16(adw,
ADW_MC_DEVICE_HSHK_CFG_TABLE
+ (2 * ccb->ccb_h.target_id));
if ((targ_tinfo & ADW_HSHK_CFG_WIDE_XFR) != 0)
spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
else
spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
spi->sync_period =
adw_hshk_cfg_period_factor(targ_tinfo);
spi->sync_offset = targ_tinfo & ADW_HSHK_CFG_OFFSET;
if (spi->sync_period == 0)
spi->sync_offset = 0;
if (spi->sync_offset == 0)
spi->sync_period = 0;
}
spi->valid = CTS_SPI_VALID_SYNC_RATE
| CTS_SPI_VALID_SYNC_OFFSET
| CTS_SPI_VALID_BUS_WIDTH
| CTS_SPI_VALID_DISC;
scsi->valid = CTS_SCSI_VALID_TQ;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_CALC_GEOMETRY:
{
/*
* XXX Use Adaptec translation until I find out how to
* get this information from the card.
*/
cam_calc_geometry(&ccb->ccg, /*extended*/1);
xpt_done(ccb);
break;
}
case XPT_RESET_BUS: /* Reset the specified SCSI bus */
{
int failure;
failure = adw_reset_bus(adw);
if (failure != 0) {
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
} else {
if (bootverbose) {
xpt_print_path(adw->path);
printf("Bus Reset Delivered\n");
}
ccb->ccb_h.status = CAM_REQ_CMP;
}
xpt_done(ccb);
break;
}
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->hba_inquiry = PI_WIDE_16|PI_SDTR_ABLE|PI_TAG_ABLE;
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = ADW_MAX_TID;
cpi->max_lun = ADW_MAX_LUN;
cpi->initiator_id = adw->initiator_id;
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "AdvanSys", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->transport = XPORT_SPI;
cpi->transport_version = 2;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_2;
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
static void
adw_poll(struct cam_sim *sim)
{
adw_intr_locked(cam_sim_softc(sim));
}
static void
adw_async(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
{
}
struct adw_softc *
adw_alloc(device_t dev, struct resource *regs, int regs_type, int regs_id)
{
struct adw_softc *adw;
adw = device_get_softc(dev);
LIST_INIT(&adw->pending_ccbs);
SLIST_INIT(&adw->sg_maps);
mtx_init(&adw->lock, "adw", NULL, MTX_DEF);
adw->device = dev;
adw->regs_res_type = regs_type;
adw->regs_res_id = regs_id;
adw->regs = regs;
return(adw);
}
void
adw_free(struct adw_softc *adw)
{
switch (adw->init_level) {
case 9:
{
struct sg_map_node *sg_map;
while ((sg_map = SLIST_FIRST(&adw->sg_maps)) != NULL) {
SLIST_REMOVE_HEAD(&adw->sg_maps, links);
bus_dmamap_unload(adw->sg_dmat,
sg_map->sg_dmamap);
bus_dmamem_free(adw->sg_dmat, sg_map->sg_vaddr,
sg_map->sg_dmamap);
free(sg_map, M_DEVBUF);
}
bus_dma_tag_destroy(adw->sg_dmat);
}
case 8:
bus_dmamap_unload(adw->acb_dmat, adw->acb_dmamap);
case 7:
bus_dmamem_free(adw->acb_dmat, adw->acbs,
adw->acb_dmamap);
case 6:
bus_dma_tag_destroy(adw->acb_dmat);
case 5:
bus_dmamap_unload(adw->carrier_dmat, adw->carrier_dmamap);
case 4:
bus_dmamem_free(adw->carrier_dmat, adw->carriers,
adw->carrier_dmamap);
case 3:
bus_dma_tag_destroy(adw->carrier_dmat);
case 2:
bus_dma_tag_destroy(adw->buffer_dmat);
case 1:
bus_dma_tag_destroy(adw->parent_dmat);
case 0:
break;
}
if (adw->regs != NULL)
bus_release_resource(adw->device,
adw->regs_res_type,
adw->regs_res_id,
adw->regs);
if (adw->irq != NULL)
bus_release_resource(adw->device,
adw->irq_res_type,
0, adw->irq);
if (adw->sim != NULL) {
if (adw->path != NULL) {
xpt_async(AC_LOST_DEVICE, adw->path, NULL);
xpt_free_path(adw->path);
}
xpt_bus_deregister(cam_sim_path(adw->sim));
cam_sim_free(adw->sim, /*free_devq*/TRUE);
}
mtx_destroy(&adw->lock);
}
int
adw_init(struct adw_softc *adw)
{
struct adw_eeprom eep_config;
u_int tid;
u_int i;
u_int16_t checksum;
u_int16_t scsicfg1;
checksum = adw_eeprom_read(adw, &eep_config);
bcopy(eep_config.serial_number, adw->serial_number,
sizeof(adw->serial_number));
if (checksum != eep_config.checksum) {
u_int16_t serial_number[3];
adw->flags |= ADW_EEPROM_FAILED;
device_printf(adw->device,
"EEPROM checksum failed. Restoring Defaults\n");
/*
* Restore the default EEPROM settings.
* Assume the 6 byte board serial number that was read
* from EEPROM is correct even if the EEPROM checksum
* failed.
*/
bcopy(adw->default_eeprom, &eep_config, sizeof(eep_config));
bcopy(adw->serial_number, eep_config.serial_number,
sizeof(serial_number));
adw_eeprom_write(adw, &eep_config);
}
/* Pull eeprom information into our softc. */
adw->bios_ctrl = eep_config.bios_ctrl;
adw->user_wdtr = eep_config.wdtr_able;
for (tid = 0; tid < ADW_MAX_TID; tid++) {
u_int mc_sdtr;
u_int16_t tid_mask;
tid_mask = 0x1 << tid;
if ((adw->features & ADW_ULTRA) != 0) {
/*
* Ultra chips store sdtr and ultraenb
* bits in their seeprom, so we must
* construct valid mc_sdtr entries for
* indirectly.
*/
if (eep_config.sync1.sync_enable & tid_mask) {
if (eep_config.sync2.ultra_enable & tid_mask)
mc_sdtr = ADW_MC_SDTR_20;
else
mc_sdtr = ADW_MC_SDTR_10;
} else
mc_sdtr = ADW_MC_SDTR_ASYNC;
} else {
switch (ADW_TARGET_GROUP(tid)) {
case 3:
mc_sdtr = eep_config.sync4.sdtr4;
break;
case 2:
mc_sdtr = eep_config.sync3.sdtr3;
break;
case 1:
mc_sdtr = eep_config.sync2.sdtr2;
break;
default: /* Shut up compiler */
case 0:
mc_sdtr = eep_config.sync1.sdtr1;
break;
}
mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
mc_sdtr &= 0xFF;
}
adw_set_user_sdtr(adw, tid, mc_sdtr);
}
adw->user_tagenb = eep_config.tagqng_able;
adw->user_discenb = eep_config.disc_enable;
adw->max_acbs = eep_config.max_host_qng;
adw->initiator_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
/*
* Sanity check the number of host openings.
*/
if (adw->max_acbs > ADW_DEF_MAX_HOST_QNG)
adw->max_acbs = ADW_DEF_MAX_HOST_QNG;
else if (adw->max_acbs < ADW_DEF_MIN_HOST_QNG) {
/* If the value is zero, assume it is uninitialized. */
if (adw->max_acbs == 0)
adw->max_acbs = ADW_DEF_MAX_HOST_QNG;
else
adw->max_acbs = ADW_DEF_MIN_HOST_QNG;
}
scsicfg1 = 0;
if ((adw->features & ADW_ULTRA2) != 0) {
switch (eep_config.termination_lvd) {
default:
device_printf(adw->device,
"Invalid EEPROM LVD Termination Settings.\n");
device_printf(adw->device,
"Reverting to Automatic LVD Termination\n");
/* FALLTHROUGH */
case ADW_EEPROM_TERM_AUTO:
break;
case ADW_EEPROM_TERM_BOTH_ON:
scsicfg1 |= ADW2_SCSI_CFG1_TERM_LVD_LO;
/* FALLTHROUGH */
case ADW_EEPROM_TERM_HIGH_ON:
scsicfg1 |= ADW2_SCSI_CFG1_TERM_LVD_HI;
/* FALLTHROUGH */
case ADW_EEPROM_TERM_OFF:
scsicfg1 |= ADW2_SCSI_CFG1_DIS_TERM_DRV;
break;
}
}
switch (eep_config.termination_se) {
default:
device_printf(adw->device,
"Invalid SE EEPROM Termination Settings.\n");
device_printf(adw->device,
"Reverting to Automatic SE Termination\n");
/* FALLTHROUGH */
case ADW_EEPROM_TERM_AUTO:
break;
case ADW_EEPROM_TERM_BOTH_ON:
scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
/* FALLTHROUGH */
case ADW_EEPROM_TERM_HIGH_ON:
scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
/* FALLTHROUGH */
case ADW_EEPROM_TERM_OFF:
scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_MANUAL;
break;
}
device_printf(adw->device, "SCSI ID %d, ", adw->initiator_id);
/* DMA tag for mapping buffers into device visible space. */
if (bus_dma_tag_create(
/* parent */ adw->parent_dmat,
/* alignment */ 1,
/* boundary */ 0,
/* lowaddr */ BUS_SPACE_MAXADDR_32BIT,
/* highaddr */ BUS_SPACE_MAXADDR,
/* filter */ NULL,
/* filterarg */ NULL,
/* maxsize */ MAXBSIZE,
/* nsegments */ ADW_SGSIZE,
/* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
/* flags */ BUS_DMA_ALLOCNOW,
/* lockfunc */ busdma_lock_mutex,
/* lockarg */ &adw->lock,
&adw->buffer_dmat) != 0) {
return (ENOMEM);
}
adw->init_level++;
/* DMA tag for our ccb carrier structures */
if (bus_dma_tag_create(
/* parent */ adw->parent_dmat,
/* alignment */ 0x10,
/* boundary */ 0,
/* lowaddr */ BUS_SPACE_MAXADDR_32BIT,
/* highaddr */ BUS_SPACE_MAXADDR,
/* filter */ NULL,
/* filterarg */ NULL,
/* maxsize */ (adw->max_acbs +
ADW_NUM_CARRIER_QUEUES + 1) *
sizeof(struct adw_carrier),
/* nsegments */ 1,
/* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
/* flags */ 0,
/* lockfunc */ NULL,
/* lockarg */ NULL,
&adw->carrier_dmat) != 0) {
return (ENOMEM);
}
adw->init_level++;
/* Allocation for our ccb carrier structures */
if (bus_dmamem_alloc(adw->carrier_dmat, (void **)&adw->carriers,
BUS_DMA_NOWAIT, &adw->carrier_dmamap) != 0) {
return (ENOMEM);
}
adw->init_level++;
/* And permanently map them */
bus_dmamap_load(adw->carrier_dmat, adw->carrier_dmamap,
adw->carriers,
(adw->max_acbs + ADW_NUM_CARRIER_QUEUES + 1)
* sizeof(struct adw_carrier),
adwmapmem, &adw->carrier_busbase, /*flags*/0);
/* Clear them out. */
bzero(adw->carriers, (adw->max_acbs + ADW_NUM_CARRIER_QUEUES + 1)
* sizeof(struct adw_carrier));
/* Setup our free carrier list */
adw->free_carriers = adw->carriers;
for (i = 0; i < adw->max_acbs + ADW_NUM_CARRIER_QUEUES; i++) {
adw->carriers[i].carr_offset =
carriervtobo(adw, &adw->carriers[i]);
adw->carriers[i].carr_ba =
carriervtob(adw, &adw->carriers[i]);
adw->carriers[i].areq_ba = 0;
adw->carriers[i].next_ba =
carriervtobo(adw, &adw->carriers[i+1]);
}
/* Terminal carrier. Never leaves the freelist */
adw->carriers[i].carr_offset =
carriervtobo(adw, &adw->carriers[i]);
adw->carriers[i].carr_ba =
carriervtob(adw, &adw->carriers[i]);
adw->carriers[i].areq_ba = 0;
adw->carriers[i].next_ba = ~0;
adw->init_level++;
/* DMA tag for our acb structures */
if (bus_dma_tag_create(
/* parent */ adw->parent_dmat,
/* alignment */ 1,
/* boundary */ 0,
/* lowaddr */ BUS_SPACE_MAXADDR,
/* highaddr */ BUS_SPACE_MAXADDR,
/* filter */ NULL,
/* filterarg */ NULL,
/* maxsize */ adw->max_acbs * sizeof(struct acb),
/* nsegments */ 1,
/* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
/* flags */ 0,
/* lockfunc */ NULL,
/* lockarg */ NULL,
&adw->acb_dmat) != 0) {
return (ENOMEM);
}
adw->init_level++;
/* Allocation for our ccbs */
if (bus_dmamem_alloc(adw->acb_dmat, (void **)&adw->acbs,
BUS_DMA_NOWAIT, &adw->acb_dmamap) != 0)
return (ENOMEM);
adw->init_level++;
/* And permanently map them */
bus_dmamap_load(adw->acb_dmat, adw->acb_dmamap,
adw->acbs,
adw->max_acbs * sizeof(struct acb),
adwmapmem, &adw->acb_busbase, /*flags*/0);
/* Clear them out. */
bzero(adw->acbs, adw->max_acbs * sizeof(struct acb));
/* DMA tag for our S/G structures. We allocate in page sized chunks */
if (bus_dma_tag_create(
/* parent */ adw->parent_dmat,
/* alignment */ 1,
/* boundary */ 0,
/* lowaddr */ BUS_SPACE_MAXADDR,
/* highaddr */ BUS_SPACE_MAXADDR,
/* filter */ NULL,
/* filterarg */ NULL,
/* maxsize */ PAGE_SIZE,
/* nsegments */ 1,
/* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
/* flags */ 0,
/* lockfunc */ NULL,
/* lockarg */ NULL,
&adw->sg_dmat) != 0) {
return (ENOMEM);
}
adw->init_level++;
/* Allocate our first batch of ccbs */
mtx_lock(&adw->lock);
if (adwallocacbs(adw) == 0) {
mtx_unlock(&adw->lock);
return (ENOMEM);
}
if (adw_init_chip(adw, scsicfg1) != 0) {
mtx_unlock(&adw->lock);
return (ENXIO);
}
printf("Queue Depth %d\n", adw->max_acbs);
mtx_unlock(&adw->lock);
return (0);
}
/*
* Attach all the sub-devices we can find
*/
int
adw_attach(struct adw_softc *adw)
{
struct ccb_setasync csa;
struct cam_devq *devq;
int error;
/* Hook up our interrupt handler */
error = bus_setup_intr(adw->device, adw->irq,
INTR_TYPE_CAM | INTR_ENTROPY | INTR_MPSAFE, NULL, adw_intr, adw,
&adw->ih);
if (error != 0) {
device_printf(adw->device, "bus_setup_intr() failed: %d\n",
error);
return (error);
}
/* Start the Risc processor now that we are fully configured. */
adw_outw(adw, ADW_RISC_CSR, ADW_RISC_CSR_RUN);
/*
* Create the device queue for our SIM.
*/
devq = cam_simq_alloc(adw->max_acbs);
if (devq == NULL)
return (ENOMEM);
/*
* Construct our SIM entry.
*/
adw->sim = cam_sim_alloc(adw_action, adw_poll, "adw", adw,
device_get_unit(adw->device), &adw->lock, 1, adw->max_acbs, devq);
if (adw->sim == NULL)
return (ENOMEM);
/*
* Register the bus.
*/
mtx_lock(&adw->lock);
if (xpt_bus_register(adw->sim, adw->device, 0) != CAM_SUCCESS) {
cam_sim_free(adw->sim, /*free devq*/TRUE);
error = ENOMEM;
goto fail;
}
if (xpt_create_path(&adw->path, /*periph*/NULL, cam_sim_path(adw->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)
== CAM_REQ_CMP) {
xpt_setup_ccb(&csa.ccb_h, adw->path, /*priority*/5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE;
csa.callback = adw_async;
csa.callback_arg = adw;
xpt_action((union ccb *)&csa);
}
fail:
mtx_unlock(&adw->lock);
return (error);
}
void
adw_intr(void *arg)
{
struct adw_softc *adw;
adw = arg;
mtx_lock(&adw->lock);
adw_intr_locked(adw);
mtx_unlock(&adw->lock);
}
void
adw_intr_locked(struct adw_softc *adw)
{
u_int int_stat;
if ((adw_inw(adw, ADW_CTRL_REG) & ADW_CTRL_REG_HOST_INTR) == 0)
return;
/* Reading the register clears the interrupt. */
int_stat = adw_inb(adw, ADW_INTR_STATUS_REG);
if ((int_stat & ADW_INTR_STATUS_INTRB) != 0) {
u_int intrb_code;
/* Async Microcode Event */
intrb_code = adw_lram_read_8(adw, ADW_MC_INTRB_CODE);
switch (intrb_code) {
case ADW_ASYNC_CARRIER_READY_FAILURE:
/*
* The RISC missed our update of
* the commandq.
*/
if (LIST_FIRST(&adw->pending_ccbs) != NULL)
adw_tickle_risc(adw, ADW_TICKLE_A);
break;
case ADW_ASYNC_SCSI_BUS_RESET_DET:
/*
* The firmware detected a SCSI Bus reset.
*/
device_printf(adw->device, "Someone Reset the Bus\n");
adw_handle_bus_reset(adw, /*initiated*/FALSE);
break;
case ADW_ASYNC_RDMA_FAILURE:
/*
* Handle RDMA failure by resetting the
* SCSI Bus and chip.
*/
#if 0 /* XXX */
AdvResetChipAndSB(adv_dvc_varp);
#endif
break;
case ADW_ASYNC_HOST_SCSI_BUS_RESET:
/*
* Host generated SCSI bus reset occurred.
*/
adw_handle_bus_reset(adw, /*initiated*/TRUE);
break;
default:
printf("adw_intr: unknown async code 0x%x\n",
intrb_code);
break;
}
}
/*
* Run down the RequestQ.
*/
while ((adw->responseq->next_ba & ADW_RQ_DONE) != 0) {
struct adw_carrier *free_carrier;
struct acb *acb;
union ccb *ccb;
#if 0
printf("0x%x, 0x%x, 0x%x, 0x%x\n",
adw->responseq->carr_offset,
adw->responseq->carr_ba,
adw->responseq->areq_ba,
adw->responseq->next_ba);
#endif
/*
* The firmware copies the adw_scsi_req_q.acb_baddr
* field into the areq_ba field of the carrier.
*/
acb = acbbotov(adw, adw->responseq->areq_ba);
/*
* The least significant four bits of the next_ba
* field are used as flags. Mask them out and then
* advance through the list.
*/
free_carrier = adw->responseq;
adw->responseq =
carrierbotov(adw, free_carrier->next_ba & ADW_NEXT_BA_MASK);
free_carrier->next_ba = adw->free_carriers->carr_offset;
adw->free_carriers = free_carrier;
/* Process CCB */
ccb = acb->ccb;
callout_stop(&acb->timer);
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
bus_dmasync_op_t op;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_POSTREAD;
else
op = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(adw->buffer_dmat, acb->dmamap, op);
bus_dmamap_unload(adw->buffer_dmat, acb->dmamap);
ccb->csio.resid = acb->queue.data_cnt;
} else
ccb->csio.resid = 0;
/* Common Cases inline... */
if (acb->queue.host_status == QHSTA_NO_ERROR
&& (acb->queue.done_status == QD_NO_ERROR
|| acb->queue.done_status == QD_WITH_ERROR)) {
ccb->csio.scsi_status = acb->queue.scsi_status;
ccb->ccb_h.status = 0;
switch (ccb->csio.scsi_status) {
case SCSI_STATUS_OK:
ccb->ccb_h.status |= CAM_REQ_CMP;
break;
case SCSI_STATUS_CHECK_COND:
case SCSI_STATUS_CMD_TERMINATED:
bcopy(&acb->sense_data, &ccb->csio.sense_data,
ccb->csio.sense_len);
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
ccb->csio.sense_resid = acb->queue.sense_len;
/* FALLTHROUGH */
default:
ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR
| CAM_DEV_QFRZN;
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
break;
}
adwfreeacb(adw, acb);
xpt_done(ccb);
} else {
adwprocesserror(adw, acb);
}
}
}
static void
adwprocesserror(struct adw_softc *adw, struct acb *acb)
{
union ccb *ccb;
ccb = acb->ccb;
if (acb->queue.done_status == QD_ABORTED_BY_HOST) {
ccb->ccb_h.status = CAM_REQ_ABORTED;
} else {
switch (acb->queue.host_status) {
case QHSTA_M_SEL_TIMEOUT:
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
break;
case QHSTA_M_SXFR_OFF_UFLW:
case QHSTA_M_SXFR_OFF_OFLW:
case QHSTA_M_DATA_OVER_RUN:
ccb->ccb_h.status = CAM_DATA_RUN_ERR;
break;
case QHSTA_M_SXFR_DESELECTED:
case QHSTA_M_UNEXPECTED_BUS_FREE:
ccb->ccb_h.status = CAM_UNEXP_BUSFREE;
break;
case QHSTA_M_SCSI_BUS_RESET:
case QHSTA_M_SCSI_BUS_RESET_UNSOL:
ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
break;
case QHSTA_M_BUS_DEVICE_RESET:
ccb->ccb_h.status = CAM_BDR_SENT;
break;
case QHSTA_M_QUEUE_ABORTED:
/* BDR or Bus Reset */
xpt_print_path(adw->path);
printf("Saw Queue Aborted\n");
ccb->ccb_h.status = adw->last_reset;
break;
case QHSTA_M_SXFR_SDMA_ERR:
case QHSTA_M_SXFR_SXFR_PERR:
case QHSTA_M_RDMA_PERR:
ccb->ccb_h.status = CAM_UNCOR_PARITY;
break;
case QHSTA_M_WTM_TIMEOUT:
case QHSTA_M_SXFR_WD_TMO:
{
/* The SCSI bus hung in a phase */
xpt_print_path(adw->path);
printf("Watch Dog timer expired. Resetting bus\n");
adw_reset_bus(adw);
break;
}
case QHSTA_M_SXFR_XFR_PH_ERR:
ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
break;
case QHSTA_M_SXFR_UNKNOWN_ERROR:
break;
case QHSTA_M_BAD_CMPL_STATUS_IN:
/* No command complete after a status message */
ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
break;
case QHSTA_M_AUTO_REQ_SENSE_FAIL:
ccb->ccb_h.status = CAM_AUTOSENSE_FAIL;
break;
case QHSTA_M_INVALID_DEVICE:
ccb->ccb_h.status = CAM_PATH_INVALID;
break;
case QHSTA_M_NO_AUTO_REQ_SENSE:
/*
* User didn't request sense, but we got a
* check condition.
*/
ccb->csio.scsi_status = acb->queue.scsi_status;
ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
break;
default:
panic("%s: Unhandled Host status error %x",
device_get_nameunit(adw->device),
acb->queue.host_status);
/* NOTREACHED */
}
}
if ((acb->state & ACB_RECOVERY_ACB) != 0) {
if (ccb->ccb_h.status == CAM_SCSI_BUS_RESET
|| ccb->ccb_h.status == CAM_BDR_SENT)
ccb->ccb_h.status = CAM_CMD_TIMEOUT;
}
if (ccb->ccb_h.status != CAM_REQ_CMP) {
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
ccb->ccb_h.status |= CAM_DEV_QFRZN;
}
adwfreeacb(adw, acb);
xpt_done(ccb);
}
static void
adwtimeout(void *arg)
{
struct acb *acb;
union ccb *ccb;
struct adw_softc *adw;
adw_idle_cmd_status_t status;
int target_id;
acb = (struct acb *)arg;
ccb = acb->ccb;
adw = (struct adw_softc *)ccb->ccb_h.ccb_adw_ptr;
xpt_print_path(ccb->ccb_h.path);
printf("ACB %p - timed out\n", (void *)acb);
mtx_assert(&adw->lock, MA_OWNED);
if ((acb->state & ACB_ACTIVE) == 0) {
xpt_print_path(ccb->ccb_h.path);
printf("ACB %p - timed out CCB already completed\n",
(void *)acb);
return;
}
acb->state |= ACB_RECOVERY_ACB;
target_id = ccb->ccb_h.target_id;
/* Attempt a BDR first */
status = adw_idle_cmd_send(adw, ADW_IDLE_CMD_DEVICE_RESET,
ccb->ccb_h.target_id);
if (status == ADW_IDLE_CMD_SUCCESS) {
device_printf(adw->device,
"BDR Delivered. No longer in timeout\n");
adw_handle_device_reset(adw, target_id);
} else {
adw_reset_bus(adw);
xpt_print_path(adw->path);
printf("Bus Reset Delivered. No longer in timeout\n");
}
}
static void
adw_handle_device_reset(struct adw_softc *adw, u_int target)
{
struct cam_path *path;
cam_status error;
error = xpt_create_path(&path, /*periph*/NULL, cam_sim_path(adw->sim),
target, CAM_LUN_WILDCARD);
if (error == CAM_REQ_CMP) {
xpt_async(AC_SENT_BDR, path, NULL);
xpt_free_path(path);
}
adw->last_reset = CAM_BDR_SENT;
}
static void
adw_handle_bus_reset(struct adw_softc *adw, int initiated)
{
if (initiated) {
/*
* The microcode currently sets the SCSI Bus Reset signal
* while handling the AscSendIdleCmd() IDLE_CMD_SCSI_RESET
* command above. But the SCSI Bus Reset Hold Time in the
* microcode is not deterministic (it may in fact be for less
* than the SCSI Spec. minimum of 25 us). Therefore on return
* the Adv Library sets the SCSI Bus Reset signal for
* ADW_SCSI_RESET_HOLD_TIME_US, which is defined to be greater
* than 25 us.
*/
u_int scsi_ctrl;
scsi_ctrl = adw_inw(adw, ADW_SCSI_CTRL) & ~ADW_SCSI_CTRL_RSTOUT;
adw_outw(adw, ADW_SCSI_CTRL, scsi_ctrl | ADW_SCSI_CTRL_RSTOUT);
DELAY(ADW_SCSI_RESET_HOLD_TIME_US);
adw_outw(adw, ADW_SCSI_CTRL, scsi_ctrl);
/*
* We will perform the async notification when the
* SCSI Reset interrupt occurs.
*/
} else
xpt_async(AC_BUS_RESET, adw->path, NULL);
adw->last_reset = CAM_SCSI_BUS_RESET;
}
MODULE_DEPEND(adw, cam, 1, 1, 1);