freebsd-nq/sys/dev/isci/scil/scic_sds_controller.c
Pedro F. Giffuni 453130d9bf sys/dev: minor spelling fixes.
Most affect comments, very few have user-visible effects.
2016-05-03 03:41:25 +00:00

7043 lines
220 KiB
C

/*-
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* BSD LICENSE
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/**
* @file
*
* @brief This file contains the implementation of the SCIC_SDS_CONTROLLER
* public, protected, and private methods.
*/
#include <dev/isci/types.h>
#include <dev/isci/scil/sci_util.h>
#include <dev/isci/scil/scic_controller.h>
#include <dev/isci/scil/scic_port.h>
#include <dev/isci/scil/scic_phy.h>
#include <dev/isci/scil/scic_remote_device.h>
#include <dev/isci/scil/scic_user_callback.h>
#include <dev/isci/scil/scic_sds_pci.h>
#include <dev/isci/scil/scic_sds_library.h>
#include <dev/isci/scil/scic_sds_controller.h>
#include <dev/isci/scil/scic_sds_controller_registers.h>
#include <dev/isci/scil/scic_sds_port.h>
#include <dev/isci/scil/scic_sds_phy.h>
#include <dev/isci/scil/scic_sds_remote_device.h>
#include <dev/isci/scil/scic_sds_request.h>
#include <dev/isci/scil/scic_sds_logger.h>
#include <dev/isci/scil/scic_sds_port_configuration_agent.h>
#include <dev/isci/scil/scu_constants.h>
#include <dev/isci/scil/scu_event_codes.h>
#include <dev/isci/scil/scu_completion_codes.h>
#include <dev/isci/scil/scu_task_context.h>
#include <dev/isci/scil/scu_remote_node_context.h>
#include <dev/isci/scil/scu_unsolicited_frame.h>
#include <dev/isci/scil/intel_pci.h>
#include <dev/isci/scil/scic_sgpio.h>
#include <dev/isci/scil/scic_sds_phy_registers.h>
#define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
#define SCIC_SDS_CONTROLLER_MIN_TIMER_COUNT 3
#define SCIC_SDS_CONTROLLER_MAX_TIMER_COUNT 3
#define SCU_MAX_ZPT_DWORD_INDEX 131
/**
* The number of milliseconds to wait for a phy to start.
*/
#define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
/**
* The number of milliseconds to wait while a given phy is consuming
* power before allowing another set of phys to consume power.
* Ultimately, this will be specified by OEM parameter.
*/
#define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
/**
* This macro will return the cycle bit of the completion queue entry
*/
#define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
/**
* This macro will normalize the completion queue get pointer so its value
* can be used as an index into an array
*/
#define NORMALIZE_GET_POINTER(x) \
((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
/**
* This macro will normalize the completion queue put pointer so its value
* can be used as an array inde
*/
#define NORMALIZE_PUT_POINTER(x) \
((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
/**
* This macro will normalize the completion queue cycle pointer so it
* matches the completion queue cycle bit
*/
#define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
(((U32)(SMU_CQGR_CYCLE_BIT & (x))) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
/**
* This macro will normalize the completion queue event entry so its value
* can be used as an index.
*/
#define NORMALIZE_EVENT_POINTER(x) \
( \
((U32)((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK)) \
>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
)
/**
* This macro will increment the controllers completion queue index value
* and possibly toggle the cycle bit if the completion queue index wraps
* back to 0.
*/
#define INCREMENT_COMPLETION_QUEUE_GET(controller, index, cycle) \
INCREMENT_QUEUE_GET( \
(index), \
(cycle), \
(controller)->completion_queue_entries, \
SMU_CQGR_CYCLE_BIT \
)
/**
* This macro will increment the controllers event queue index value and
* possibly toggle the event cycle bit if the event queue index wraps back
* to 0.
*/
#define INCREMENT_EVENT_QUEUE_GET(controller, index, cycle) \
INCREMENT_QUEUE_GET( \
(index), \
(cycle), \
(controller)->completion_event_entries, \
SMU_CQGR_EVENT_CYCLE_BIT \
)
//****************************************************************************-
//* SCIC SDS Controller Initialization Methods
//****************************************************************************-
/**
* @brief This timer is used to start another phy after we have given up on
* the previous phy to transition to the ready state.
*
* @param[in] controller
*/
static
void scic_sds_controller_phy_startup_timeout_handler(
void *controller
)
{
SCI_STATUS status;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
this_controller->phy_startup_timer_pending = FALSE;
status = SCI_FAILURE;
while (status != SCI_SUCCESS)
{
status = scic_sds_controller_start_next_phy(this_controller);
}
}
/**
* This method initializes the phy startup operations for controller start.
*
* @param this_controller
*/
static
SCI_STATUS scic_sds_controller_initialize_phy_startup(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
this_controller->phy_startup_timer = scic_cb_timer_create(
this_controller,
scic_sds_controller_phy_startup_timeout_handler,
this_controller
);
if (this_controller->phy_startup_timer == NULL)
{
return SCI_FAILURE_INSUFFICIENT_RESOURCES;
}
else
{
this_controller->next_phy_to_start = 0;
this_controller->phy_startup_timer_pending = FALSE;
}
return SCI_SUCCESS;
}
/**
* This method initializes the power control operations for the controller
* object.
*
* @param this_controller
*/
void scic_sds_controller_initialize_power_control(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
this_controller->power_control.timer = scic_cb_timer_create(
this_controller,
scic_sds_controller_power_control_timer_handler,
this_controller
);
memset(
this_controller->power_control.requesters,
0,
sizeof(this_controller->power_control.requesters)
);
this_controller->power_control.phys_waiting = 0;
this_controller->power_control.remote_devices_granted_power = 0;
}
// ---------------------------------------------------------------------------
#define SCU_REMOTE_NODE_CONTEXT_ALIGNMENT (32)
#define SCU_TASK_CONTEXT_ALIGNMENT (256)
#define SCU_UNSOLICITED_FRAME_ADDRESS_ALIGNMENT (64)
#define SCU_UNSOLICITED_FRAME_BUFFER_ALIGNMENT (1024)
#define SCU_UNSOLICITED_FRAME_HEADER_ALIGNMENT (64)
// ---------------------------------------------------------------------------
/**
* @brief This method builds the memory descriptor table for this
* controller.
*
* @param[in] this_controller This parameter specifies the controller
* object for which to build the memory table.
*
* @return none
*/
void scic_sds_controller_build_memory_descriptor_table(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
sci_base_mde_construct(
&this_controller->memory_descriptors[SCU_MDE_COMPLETION_QUEUE],
SCU_COMPLETION_RAM_ALIGNMENT,
(sizeof(U32) * this_controller->completion_queue_entries),
(SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS)
);
sci_base_mde_construct(
&this_controller->memory_descriptors[SCU_MDE_REMOTE_NODE_CONTEXT],
SCU_REMOTE_NODE_CONTEXT_ALIGNMENT,
this_controller->remote_node_entries * sizeof(SCU_REMOTE_NODE_CONTEXT_T),
SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
);
sci_base_mde_construct(
&this_controller->memory_descriptors[SCU_MDE_TASK_CONTEXT],
SCU_TASK_CONTEXT_ALIGNMENT,
this_controller->task_context_entries * sizeof(SCU_TASK_CONTEXT_T),
SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
);
// The UF buffer address table size must be programmed to a power
// of 2. Find the first power of 2 that is equal to or greater then
// the number of unsolicited frame buffers to be utilized.
scic_sds_unsolicited_frame_control_set_address_table_count(
&this_controller->uf_control
);
sci_base_mde_construct(
&this_controller->memory_descriptors[SCU_MDE_UF_BUFFER],
SCU_UNSOLICITED_FRAME_BUFFER_ALIGNMENT,
scic_sds_unsolicited_frame_control_get_mde_size(this_controller->uf_control),
SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
);
}
/**
* @brief This method validates the driver supplied memory descriptor
* table.
*
* @param[in] this_controller
*
* @return SCI_STATUS
*/
SCI_STATUS scic_sds_controller_validate_memory_descriptor_table(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
BOOL mde_list_valid;
mde_list_valid = sci_base_mde_is_valid(
&this_controller->memory_descriptors[SCU_MDE_COMPLETION_QUEUE],
SCU_COMPLETION_RAM_ALIGNMENT,
(sizeof(U32) * this_controller->completion_queue_entries),
(SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS)
);
if (mde_list_valid == FALSE)
return SCI_FAILURE_UNSUPPORTED_INFORMATION_FIELD;
mde_list_valid = sci_base_mde_is_valid(
&this_controller->memory_descriptors[SCU_MDE_REMOTE_NODE_CONTEXT],
SCU_REMOTE_NODE_CONTEXT_ALIGNMENT,
this_controller->remote_node_entries * sizeof(SCU_REMOTE_NODE_CONTEXT_T),
SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
);
if (mde_list_valid == FALSE)
return SCI_FAILURE_UNSUPPORTED_INFORMATION_FIELD;
mde_list_valid = sci_base_mde_is_valid(
&this_controller->memory_descriptors[SCU_MDE_TASK_CONTEXT],
SCU_TASK_CONTEXT_ALIGNMENT,
this_controller->task_context_entries * sizeof(SCU_TASK_CONTEXT_T),
SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
);
if (mde_list_valid == FALSE)
return SCI_FAILURE_UNSUPPORTED_INFORMATION_FIELD;
mde_list_valid = sci_base_mde_is_valid(
&this_controller->memory_descriptors[SCU_MDE_UF_BUFFER],
SCU_UNSOLICITED_FRAME_BUFFER_ALIGNMENT,
scic_sds_unsolicited_frame_control_get_mde_size(this_controller->uf_control),
SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
);
if (mde_list_valid == FALSE)
return SCI_FAILURE_UNSUPPORTED_INFORMATION_FIELD;
return SCI_SUCCESS;
}
/**
* @brief This method initializes the controller with the physical memory
* addresses that are used to communicate with the driver.
*
* @param[in] this_controller
*
* @return none
*/
void scic_sds_controller_ram_initialization(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
SCI_PHYSICAL_MEMORY_DESCRIPTOR_T *mde;
// The completion queue is actually placed in cacheable memory
// Therefore it no longer comes out of memory in the MDL.
mde = &this_controller->memory_descriptors[SCU_MDE_COMPLETION_QUEUE];
this_controller->completion_queue = (U32*) mde->virtual_address;
SMU_CQBAR_WRITE(this_controller, mde->physical_address);
// Program the location of the Remote Node Context table
// into the SCU.
mde = &this_controller->memory_descriptors[SCU_MDE_REMOTE_NODE_CONTEXT];
this_controller->remote_node_context_table = (SCU_REMOTE_NODE_CONTEXT_T *)
mde->virtual_address;
SMU_RNCBAR_WRITE(this_controller, mde->physical_address);
// Program the location of the Task Context table into the SCU.
mde = &this_controller->memory_descriptors[SCU_MDE_TASK_CONTEXT];
this_controller->task_context_table = (SCU_TASK_CONTEXT_T *)
mde->virtual_address;
SMU_HTTBAR_WRITE(this_controller, mde->physical_address);
mde = &this_controller->memory_descriptors[SCU_MDE_UF_BUFFER];
scic_sds_unsolicited_frame_control_construct(
&this_controller->uf_control, mde, this_controller
);
// Inform the silicon as to the location of the UF headers and
// address table.
SCU_UFHBAR_WRITE(
this_controller,
this_controller->uf_control.headers.physical_address);
SCU_PUFATHAR_WRITE(
this_controller,
this_controller->uf_control.address_table.physical_address);
//enable the ECC correction and detection.
SCU_SECR0_WRITE(
this_controller,
(SIGNLE_BIT_ERROR_CORRECTION_ENABLE
| MULTI_BIT_ERROR_REPORTING_ENABLE
| SINGLE_BIT_ERROR_REPORTING_ENABLE) );
SCU_SECR1_WRITE(
this_controller,
(SIGNLE_BIT_ERROR_CORRECTION_ENABLE
| MULTI_BIT_ERROR_REPORTING_ENABLE
| SINGLE_BIT_ERROR_REPORTING_ENABLE) );
}
/**
* @brief This method initializes the task context data for the controller.
*
* @param[in] this_controller
*
* @return none
*/
void scic_sds_controller_assign_task_entries(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
U32 task_assignment;
// Assign all the TCs to function 0
// TODO: Do we actually need to read this register to write it back?
task_assignment = SMU_TCA_READ(this_controller, 0);
task_assignment =
(
task_assignment
| (SMU_TCA_GEN_VAL(STARTING, 0))
| (SMU_TCA_GEN_VAL(ENDING, this_controller->task_context_entries - 1))
| (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE))
);
SMU_TCA_WRITE(this_controller, 0, task_assignment);
}
/**
* @brief This method initializes the hardware completion queue.
*
* @param[in] this_controller
*/
void scic_sds_controller_initialize_completion_queue(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
U32 index;
U32 completion_queue_control_value;
U32 completion_queue_get_value;
U32 completion_queue_put_value;
this_controller->completion_queue_get = 0;
completion_queue_control_value = (
SMU_CQC_QUEUE_LIMIT_SET(this_controller->completion_queue_entries - 1)
| SMU_CQC_EVENT_LIMIT_SET(this_controller->completion_event_entries - 1)
);
SMU_CQC_WRITE(this_controller, completion_queue_control_value);
// Set the completion queue get pointer and enable the queue
completion_queue_get_value = (
(SMU_CQGR_GEN_VAL(POINTER, 0))
| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
| (SMU_CQGR_GEN_BIT(ENABLE))
| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
);
SMU_CQGR_WRITE(this_controller, completion_queue_get_value);
this_controller->completion_queue_get = completion_queue_get_value;
// Set the completion queue put pointer
completion_queue_put_value = (
(SMU_CQPR_GEN_VAL(POINTER, 0))
| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
);
SMU_CQPR_WRITE(this_controller, completion_queue_put_value);
// Initialize the cycle bit of the completion queue entries
for (index = 0; index < this_controller->completion_queue_entries; index++)
{
// If get.cycle_bit != completion_queue.cycle_bit
// its not a valid completion queue entry
// so at system start all entries are invalid
this_controller->completion_queue[index] = 0x80000000;
}
}
/**
* @brief This method initializes the hardware unsolicited frame queue.
*
* @param[in] this_controller
*/
void scic_sds_controller_initialize_unsolicited_frame_queue(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
U32 frame_queue_control_value;
U32 frame_queue_get_value;
U32 frame_queue_put_value;
// Write the queue size
frame_queue_control_value =
SCU_UFQC_GEN_VAL(QUEUE_SIZE, this_controller->uf_control.address_table.count);
SCU_UFQC_WRITE(this_controller, frame_queue_control_value);
// Setup the get pointer for the unsolicited frame queue
frame_queue_get_value = (
SCU_UFQGP_GEN_VAL(POINTER, 0)
| SCU_UFQGP_GEN_BIT(ENABLE_BIT)
);
SCU_UFQGP_WRITE(this_controller, frame_queue_get_value);
// Setup the put pointer for the unsolicited frame queue
frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
SCU_UFQPP_WRITE(this_controller, frame_queue_put_value);
}
/**
* @brief This method enables the hardware port task scheduler.
*
* @param[in] this_controller
*/
void scic_sds_controller_enable_port_task_scheduler(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
U32 port_task_scheduler_value;
port_task_scheduler_value = SCU_PTSGCR_READ(this_controller);
port_task_scheduler_value |=
(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) | SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
SCU_PTSGCR_WRITE(this_controller, port_task_scheduler_value);
}
// ---------------------------------------------------------------------------
#ifdef ARLINGTON_BUILD
/**
* This method will read from the lexington status register. This is required
* as a read fence to the lexington register writes.
*
* @param this_controller
*/
void scic_sds_controller_lex_status_read_fence(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
U32 lex_status;
// Read Fence
lex_status = lex_register_read(
this_controller, this_controller->lex_registers + 0xC4);
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"Controller 0x%x lex_status = 0x%08x\n",
this_controller, lex_status
));
}
/**
* This method will initialize the arlington through the LEX_BAR.
*
* @param this_controller
*/
void scic_sds_controller_lex_atux_initialization(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
// 1. Reset all SCU PHY
lex_register_write(
this_controller, this_controller->lex_registers + 0x28, 0x0020FFFF) ;
// 2. Write to LEX_CTRL
lex_register_write(
this_controller, this_controller->lex_registers + 0xC0, 0x00000700);
scic_sds_controller_lex_status_read_fence(this_controller);
// 3. Enable PCI Master
lex_register_write(
this_controller, this_controller->lex_registers + 0x70, 0x00000002);
// 4. Enable SCU Register Clock Domain
lex_register_write(
this_controller, this_controller->lex_registers + 0xC0, 0x00000300);
scic_sds_controller_lex_status_read_fence(this_controller);
// 5.1 Release PHY-A Reg Reset
lex_register_write(
this_controller, this_controller->lex_registers + 0x28, 0x0000FFFF);
// 5.2 Initialize the AFE for PHY-A
scic_sds_controller_afe_initialization(this_controller);
scic_sds_controller_lex_status_read_fence(this_controller);
#if 0
// 5.3 Release PHY Reg Reset
lex_register_write(
this_controller, this_controller->lex_registers + 0x28, 0x0000FFFF);
#endif
// 6.1 Release PHY-B Reg Reset
lex_register_write(
this_controller, this_controller->lex_registers + 0x28, 0x0040FFFF) ;
// 6.2 Initialize the AFE for PHY-B
scic_sds_controller_afe_initialization(this_controller);
scic_sds_controller_lex_status_read_fence(this_controller);
#if 0
// 6.3 Release PHY-B Reg Reset
lex_register_write(
this_controller, this_controller->lex_registers + 0x28, 0x0040FFFF) ;
#endif
// 7. Enable SCU clock domaion
lex_register_write(
this_controller, this_controller->lex_registers + 0xC0, 0x00000100);
scic_sds_controller_lex_status_read_fence(this_controller);
// 8. Release LEX SCU Reset
lex_register_write(
this_controller, this_controller->lex_registers + 0xC0, 0x00000000);
scic_sds_controller_lex_status_read_fence(this_controller);
#if !defined(DISABLE_INTERRUPTS)
// 8a. Set legacy interrupts (SCU INTx to PCI-x INTA)
lex_register_write(
this_controller, this_controller->lex_registers + 0xC0, 0x00000800);
scic_sds_controller_lex_status_read_fence(this_controller);
#endif
#if 0
// 9. Override TXOLVL
//write to lex_ctrl
lex_register_write(
this_controller, this_controller->lex_registers + 0xC0, 0x27800000);
#endif
// 10. Release PHY-A & PHY-B Resets
lex_register_write(
this_controller, this_controller->lex_registers + 0x28, 0x0000FF77);
lex_register_write(
this_controller, this_controller->lex_registers + 0x28, 0x0000FF55);
lex_register_write(
this_controller, this_controller->lex_registers + 0x28, 0x0000FF11);
lex_register_write(
this_controller, this_controller->lex_registers + 0x28, 0x0000FF00);
lex_register_write(
this_controller, this_controller->lex_registers + 0x28, 0x0003FF00);
}
#endif // ARLINGTON_BUILD
// ---------------------------------------------------------------------------
#ifdef ARLINGTON_BUILD
/**
* This method enables chipwatch on the arlington board
*
* @param[in] this_controller
*/
void scic_sds_controller_enable_chipwatch(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
lex_register_write(
this_controller, this_controller->lex_registers + 0x88, 0x09090909);
lex_register_write(
this_controller, this_controller->lex_registers + 0x8C, 0xcac9c862);
}
#endif
/**
* This macro is used to delay between writes to the AFE registers
* during AFE initialization.
*/
#define AFE_REGISTER_WRITE_DELAY 10
/**
* Initialize the AFE for this phy index.
*
* @todo We need to read the AFE setup from the OEM parameters
*
* @param[in] this_controller
*
* @return none
*/
#if defined(ARLINGTON_BUILD)
void scic_sds_controller_afe_initialization(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
// 1. Establish Power
// Hold Bias, PLL, and RX TX in reset and powerdown
// pe_afe0_rst_n = 0
// pe_afe0_txpdn0,1,2,3 = 1
// pe_afe0_rxpdn0,1,2,3 = 1
// pe_afe0_txrst0,1,2,3_n = 0
// pe_afe0_rxrst0,1,2,3_n = 0
// wait 1us
// pe_afe0_rst_n = 1
// wait 1us
scu_afe_register_write(
this_controller, afe_pll_control, 0x00247506);
// 2. Write 0x00000000 to AFE XCVR Ctrl2
scu_afe_register_write(
this_controller, afe_dfx_transceiver_status_clear, 0x00000000);
// 3. afe0_override_en = 0
// afe0_pll_dis_override = 0
// afe0_tx_rst_override = 0
// afe0_pll_dis = 1
// pe_afe0_txrate = 01
// pe_afe0_rxrate = 01
// pe_afe0_txdis = 11
// pe_afe0_txoob = 1
// pe_afe0_txovlv = 9'b001110000
scu_afe_register_write(
this_controller, afe_transceiver_control0[0], 0x0700141e);
// 4. Configure PLL Unit
// Write 0x00200506 to AFE PLL Ctrl Register 0
scu_afe_register_write(this_controller, afe_pll_control, 0x00200506);
scu_afe_register_write(this_controller, afe_pll_dfx_control, 0x10000080);
// 5. Configure Bias Unit
scu_afe_register_write(this_controller, afe_bias_control[0], 0x00124814);
scu_afe_register_write(this_controller, afe_bias_control[1], 0x24900000);
// 6. Configure Transceiver Units
scu_afe_register_write(
this_controller, afe_transceiver_control0[0], 0x0702941e);
scu_afe_register_write(
this_controller, afe_transceiver_control1[0], 0x0000000a);
// 7. Configure RX Units
scu_afe_register_write(
this_controller, afe_transceiver_equalization_control[0], 0x00ba2223);
scu_afe_register_write(
this_controller, reserved_0028_003c[2], 0x00000000);
// 8. Configure TX Units
scu_afe_register_write(
this_controller, afe_dfx_transmit_control_register[0], 0x03815428);
// 9. Transfer control to PE signals
scu_afe_register_write(
this_controller, afe_dfx_transceiver_status_clear, 0x00000010);
// 10. Release PLL Powerdown
scu_afe_register_write(this_controller, afe_pll_control, 0x00200504);
// 11. Release PLL Reset
scu_afe_register_write(this_controller, afe_pll_control, 0x00200505);
// 12. Wait for PLL to Lock
// (afe0_comm_sta [1:0] should go to 1'b11, and
// [5:2] is 0x5, 0x6, 0x7, 0x8, or 0x9
scu_afe_register_write(this_controller, afe_pll_control, 0x00200501);
while ((scu_afe_register_read(this_controller, afe_common_status) & 0x03) != 0x03)
{
// Give time for the PLLs to lock
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
// 13. pe_afe0_rxpdn0 = 0
// pe_afe0_rxrst0 = 1
// pe_afe0_txrst0_n = 1
// pe_afe_txoob0_n = 0
scu_afe_register_write(
this_controller, afe_transceiver_control0[0], 0x07028c11);
}
#elif defined(PLEASANT_RIDGE_BUILD)
void scic_sds_controller_afe_initialization(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
U32 afe_status;
U32 phy_id;
#if defined(SPREADSHEET_AFE_SETTINGS)
// Clear DFX Status registers
scu_afe_register_write(
this_controller, afe_dfx_master_control0, 0x0000000f);
// Configure bias currents to normal
scu_afe_register_write(
this_controller, afe_bias_control, 0x0000aa00);
// Enable PLL
scu_afe_register_write(
this_controller, afe_pll_control0, 0x80000908);
// Wait for the PLL to lock
do
{
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
afe_status = scu_afe_register_read(
this_controller, afe_common_block_status);
}
while((afe_status & 0x00001000) == 0);
for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++)
{
// Initialize transceiver channels
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_channel_control, 0x00000157);
// Configure transceiver modes
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x38016d1a);
// Configure receiver parameters
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control1, 0x01501014);
// Configure transmitter parameters
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_control, 0x00000000);
// Configure transmitter equalization
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_amp_control0, 0x000bdd08);
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_amp_control1, 0x000ffc00);
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_amp_control2, 0x000b7c09);
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_amp_control3, 0x000afc6e);
// Configure transmitter SSC parameters
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_ssc_control, 0x00000000);
// Configure receiver parameters
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_rx_ssc_control0, 0x3208903f);
// Start power on sequence
// Enable bias currents to transceivers and wait 200ns
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_channel_control, 0x00000154);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// Take receiver out of power down and wait 200ns
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x3801611a);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// Take receiver out of reset and wait 200ns
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x3801631a);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// Take transmitter out of power down and wait 200ns
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x38016318);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// Take transmitter out of reset and wait 200ns
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x38016319);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// Take transmitter out of DC idle
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x38016319);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
// Transfer control to the PEs
scu_afe_register_write(
this_controller, afe_dfx_master_control0, 0x00010f00);
#else // !defined(SPREADSHEET_AFE_SETTINGS)
// These are the AFEE settings used by the SV group
// Clear DFX Status registers
scu_afe_register_write(
this_controller, afe_dfx_master_control0, 0x0081000f);
// Configure bias currents to normal
scu_afe_register_write(
this_controller, afe_bias_control, 0x0000aa00);
// Enable PLL
scu_afe_register_write(
this_controller, afe_pll_control0, 0x80000908);
// Wait for the PLL to lock
// Note: this is done later in the SV shell script however this looks
// like the location to do this since we have enabled the PLL.
do
{
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
afe_status = scu_afe_register_read(
this_controller, afe_common_block_status);
}
while((afe_status & 0x00001000) == 0);
// Make sure BIST is disabled
scu_afe_register_write(
this_controller, afe_dfx_master_control1, 0x00000000);
// Shorten SAS SNW lock time
scu_afe_register_write(
this_controller, afe_pmsn_master_control0, 0x7bd316ad);
for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++)
{
// Initialize transceiver channels
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_channel_control, 0x00000174);
// Configure SSC control
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_ssc_control, 0x00030000);
// Configure transceiver modes
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x0000651a);
// Power up TX RX and RX OOB
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x00006518);
// Enable RX OOB Detect
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x00006518);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
#if 0
// Configure transmitter parameters
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_control, 0x00000000);
// Configure transmitter equalization
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_amp_control0, 0x000bdd08);
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_amp_control1, 0x000ffc00);
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_amp_control2, 0x000b7c09);
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_amp_control3, 0x000afc6e);
// Configure transmitter SSC parameters
// Power up TX RX
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_channel_control, 0x00000154);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// FFE = Max
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_dfx_rx_control1, 0x00000080);
// DFE1-5 = small
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_dfx_rx_control1, 0x01041042);
// Enable DFE/FFE and freeze
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_rx_ssc_control0, 0x320891bf);
#endif
// Take receiver out of power down and wait 200ns
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x00006118);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// TX Electrical Idle
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x00006108);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// Leave DFE/FFE on
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_rx_ssc_control0, 0x0317108f);
// Configure receiver parameters
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control1, 0x01e00021);
// Bring RX out of reset
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x00006109);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x00006009);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x00006209);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
// Transfer control to the PEs
scu_afe_register_write(
this_controller, afe_dfx_master_control0, 0x00010f00);
#endif
}
#elif defined(PBG_HBA_A0_BUILD) || defined(PBG_HBA_A2_BUILD) || defined(PBG_HBA_BETA_BUILD) || defined(PBG_BUILD)
void scic_sds_controller_afe_initialization(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
U32 afe_status;
U32 phy_id;
U8 cable_selection_mask;
if (
(this_controller->pci_revision != SCIC_SDS_PCI_REVISION_A0)
&& (this_controller->pci_revision != SCIC_SDS_PCI_REVISION_A2)
&& (this_controller->pci_revision != SCIC_SDS_PCI_REVISION_B0)
&& (this_controller->pci_revision != SCIC_SDS_PCI_REVISION_C0)
&& (this_controller->pci_revision != SCIC_SDS_PCI_REVISION_C1)
)
{
// A programming bug has occurred if we are attempting to
// support a PCI revision other than those listed. Default
// to B0, and attempt to limp along if it isn't B0.
ASSERT(FALSE);
this_controller->pci_revision = SCIC_SDS_PCI_REVISION_C1;
}
cable_selection_mask =
this_controller->oem_parameters.sds1.controller.cable_selection_mask;
// These are the AFEE settings used by the SV group
// Clear DFX Status registers
scu_afe_register_write(
this_controller, afe_dfx_master_control0, 0x0081000f);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
if (
(this_controller->pci_revision == SCIC_SDS_PCI_REVISION_B0)
|| (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_C0)
|| (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_C1)
)
{
// PM Rx Equalization Save, PM SPhy Rx Acknowledgement Timer, PM Stagger Timer
scu_afe_register_write(
this_controller, afe_pmsn_master_control2, 0x0007FFFF);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
// Configure bias currents to normal
if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A0)
scu_afe_register_write(this_controller, afe_bias_control, 0x00005500);
else if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A2)
scu_afe_register_write(this_controller, afe_bias_control, 0x00005A00);
else if ( (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_B0)
|| (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_C0) )
scu_afe_register_write(this_controller, afe_bias_control, 0x00005F00);
else if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_C1)
scu_afe_register_write(this_controller, afe_bias_control, 0x00005500);
// For C0 the AFE BIAS Control is unchanged
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// Enable PLL
if ( (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A0)
|| (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A2) )
{
scu_afe_register_write(this_controller, afe_pll_control0, 0x80040908);
}
else if ( (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_B0)
|| (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_C0) )
{
scu_afe_register_write(this_controller, afe_pll_control0, 0x80040A08);
}
else if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_C1)
{
scu_afe_register_write(this_controller, afe_pll_control0, 0x80000b08);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
scu_afe_register_write(this_controller, afe_pll_control0, 0x00000b08);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
scu_afe_register_write(this_controller, afe_pll_control0, 0x80000b08);
}
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// Wait for the PLL to lock
// Note: this is done later in the SV shell script however this looks
// like the location to do this since we have enabled the PLL.
do
{
afe_status = scu_afe_register_read(
this_controller, afe_common_block_status);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
while((afe_status & 0x00001000) == 0);
if ( (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A0)
|| (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A2) )
{
// Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us)
scu_afe_register_write(
this_controller, afe_pmsn_master_control0, 0x7bcc96ad);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++)
{
U8 cable_length_long = (cable_selection_mask >> phy_id) & 1;
U8 cable_length_medium = (cable_selection_mask >> (phy_id + 4)) & 1;
if ( (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A0)
|| (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A2) )
{
// All defaults, except the Receive Word Alignament/Comma Detect
// Enable....(0xe800)
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x00004512
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control1, 0x0050100F
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
else if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_B0)
{
// Configure transmitter SSC parameters
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_ssc_control, 0x00030000
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
else if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_C0)
{
// Configure transmitter SSC parameters
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_ssc_control, 0x00010202
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// All defaults, except the Receive Word Alignament/Comma Detect
// Enable....(0xe800)
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x00014500
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
else if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_C1)
{
// Configure transmitter SSC parameters
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_ssc_control, 0x00010202
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// All defaults, except the Receive Word Alignament/Comma Detect
// Enable....(0xe800)
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x0001C500
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
// Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
// & increase TX int & ext bias 20%....(0xe85c)
if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A0)
{
scu_afe_register_write(
this_controller,
scu_afe_xcvr[phy_id].afe_channel_control,
0x000003D4
);
}
else if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A2)
{
scu_afe_register_write(
this_controller,
scu_afe_xcvr[phy_id].afe_channel_control,
0x000003F0
);
}
else if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_B0)
{
// Power down TX and RX (PWRDNTX and PWRDNRX)
scu_afe_register_write(
this_controller,
scu_afe_xcvr[phy_id].afe_channel_control,
0x000003d7
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
// & increase TX int & ext bias 20%....(0xe85c)
scu_afe_register_write(
this_controller,
scu_afe_xcvr[phy_id].afe_channel_control,
0x000003d4
);
}
else if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_C0)
{
scu_afe_register_write(
this_controller,
scu_afe_xcvr[phy_id].afe_channel_control,
0x000001e7
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
// & increase TX int & ext bias 20%....(0xe85c)
scu_afe_register_write(
this_controller,
scu_afe_xcvr[phy_id].afe_channel_control,
0x000001e4
);
}
else if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_C1)
{
scu_afe_register_write(
this_controller,
scu_afe_xcvr[phy_id].afe_channel_control,
cable_length_long ? 0x000002F7 :
cable_length_medium ? 0x000001F7 : 0x000001F7
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
// & increase TX int & ext bias 20%....(0xe85c)
scu_afe_register_write(
this_controller,
scu_afe_xcvr[phy_id].afe_channel_control,
cable_length_long ? 0x000002F4 :
cable_length_medium ? 0x000001F4 : 0x000001F4
);
}
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
if ( (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A0)
|| (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A2) )
{
// Enable TX equalization (0xe824)
scu_afe_register_write(
this_controller,
scu_afe_xcvr[phy_id].afe_tx_control,
0x00040000
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
if ( (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A0)
|| (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A2)
|| (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_B0) )
{
// RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
// RDD=0x0(RX Detect Enabled) ....(0xe800)
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x00004100);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
else if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_C0)
{
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x00014100);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
else if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_C1)
{
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control0, 0x0001c100);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
// Leave DFE/FFE on
if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A0)
{
scu_afe_register_write(
this_controller,
scu_afe_xcvr[phy_id].afe_rx_ssc_control0,
0x3F09983F
);
}
else if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A2)
{
scu_afe_register_write(
this_controller,
scu_afe_xcvr[phy_id].afe_rx_ssc_control0,
0x3F11103F
);
}
else if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_B0)
{
scu_afe_register_write(
this_controller,
scu_afe_xcvr[phy_id].afe_rx_ssc_control0,
0x3F11103F
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// Enable TX equalization (0xe824)
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_control, 0x00040000);
}
else if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_C0)
{
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control1, 0x01400c0f);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_rx_ssc_control0, 0x3f6f103f);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// Enable TX equalization (0xe824)
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_control, 0x00040000);
}
else if (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_C1)
{
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_xcvr_control1,
cable_length_long ? 0x01500C0C :
cable_length_medium ? 0x01400C0D : 0x02400C0D
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_dfx_rx_control1, 0x000003e0);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_rx_ssc_control0,
cable_length_long ? 0x33091C1F :
cable_length_medium ? 0x3315181F : 0x2B17161F
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
// Enable TX equalization (0xe824)
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_control, 0x00040000);
}
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_amp_control0,
this_controller->oem_parameters.sds1.phys[phy_id].afe_tx_amp_control0
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_amp_control1,
this_controller->oem_parameters.sds1.phys[phy_id].afe_tx_amp_control1
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_amp_control2,
this_controller->oem_parameters.sds1.phys[phy_id].afe_tx_amp_control2
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
scu_afe_register_write(
this_controller, scu_afe_xcvr[phy_id].afe_tx_amp_control3,
this_controller->oem_parameters.sds1.phys[phy_id].afe_tx_amp_control3
);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
// Transfer control to the PEs
scu_afe_register_write(
this_controller, afe_dfx_master_control0, 0x00010f00);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
#else
#error "Unsupported board type"
#endif
//****************************************************************************-
//* SCIC SDS Controller Internal Start/Stop Routines
//****************************************************************************-
/**
* @brief This method will attempt to transition into the ready state
* for the controller and indicate that the controller start
* operation has completed if all criteria are met.
*
* @param[in,out] this_controller This parameter indicates the controller
* object for which to transition to ready.
* @param[in] status This parameter indicates the status value to be
* pass into the call to scic_cb_controller_start_complete().
*
* @return none.
*/
static
void scic_sds_controller_transition_to_ready(
SCIC_SDS_CONTROLLER_T *this_controller,
SCI_STATUS status
)
{
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_sds_controller_transition_to_ready(0x%x, 0x%x) enter\n",
this_controller, status
));
if (this_controller->parent.state_machine.current_state_id
== SCI_BASE_CONTROLLER_STATE_STARTING)
{
// We move into the ready state, because some of the phys/ports
// may be up and operational.
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_READY
);
scic_cb_controller_start_complete(this_controller, status);
}
}
/**
* @brief This method is the general timeout handler for the controller.
* It will take the correct timetout action based on the current
* controller state
*
* @param[in] controller This parameter indicates the controller on which
* a timeout occurred.
*
* @return none
*/
void scic_sds_controller_timeout_handler(
SCI_CONTROLLER_HANDLE_T controller
)
{
SCI_BASE_CONTROLLER_STATES current_state;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
current_state = sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(this_controller)
);
if (current_state == SCI_BASE_CONTROLLER_STATE_STARTING)
{
scic_sds_controller_transition_to_ready(
this_controller, SCI_FAILURE_TIMEOUT
);
}
else if (current_state == SCI_BASE_CONTROLLER_STATE_STOPPING)
{
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_FAILED
);
scic_cb_controller_stop_complete(controller, SCI_FAILURE_TIMEOUT);
}
else
{
/// @todo Now what do we want to do in this case?
SCIC_LOG_ERROR((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"Controller timer fired when controller was not in a state being timed.\n"
));
}
}
/**
* @brief
*
* @param[in] this_controller
*
* @return SCI_STATUS
*/
SCI_STATUS scic_sds_controller_stop_ports(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
U32 index;
SCI_STATUS status;
SCI_STATUS port_status;
status = SCI_SUCCESS;
for (index = 0; index < this_controller->logical_port_entries; index++)
{
port_status = this_controller->port_table[index].
state_handlers->parent.stop_handler(&this_controller->port_table[index].parent);
if (
(port_status != SCI_SUCCESS)
&& (port_status != SCI_FAILURE_INVALID_STATE)
)
{
status = SCI_FAILURE;
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER | SCIC_LOG_OBJECT_PORT,
"Controller stop operation failed to stop port %d because of status %d.\n",
this_controller->port_table[index].logical_port_index, port_status
));
}
}
return status;
}
/**
* @brief
*
* @param[in] this_controller
*/
static
void scic_sds_controller_phy_timer_start(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
scic_cb_timer_start(
this_controller,
this_controller->phy_startup_timer,
SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
);
this_controller->phy_startup_timer_pending = TRUE;
}
/**
* @brief
*
* @param[in] this_controller
*/
void scic_sds_controller_phy_timer_stop(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
scic_cb_timer_stop(
this_controller,
this_controller->phy_startup_timer
);
this_controller->phy_startup_timer_pending = FALSE;
}
/**
* @brief This method is called internally to determine whether the
* controller start process is complete. This is only true when:
* - all links have been given an opportunity to start
* - have no indication of a connected device
* - have an indication of a connected device and it has
* finished the link training process.
*
* @param[in] this_controller This parameter specifies the controller
* object for which to start the next phy.
*
* @return BOOL
*/
BOOL scic_sds_controller_is_start_complete(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
U8 index;
for (index = 0; index < SCI_MAX_PHYS; index++)
{
SCIC_SDS_PHY_T *the_phy = & this_controller->phy_table[index];
if (
(
this_controller->oem_parameters.sds1.controller.mode_type
== SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE
)
|| (
(
this_controller->oem_parameters.sds1.controller.mode_type
== SCIC_PORT_MANUAL_CONFIGURATION_MODE
)
&& (scic_sds_phy_get_port(the_phy) != SCI_INVALID_HANDLE)
)
)
{
/**
* The controller start operation is complete if and only
* if:
* - all links have been given an opportunity to start
* - have no indication of a connected device
* - have an indication of a connected device and it has
* finished the link training process.
*/
if (
(
(the_phy->is_in_link_training == FALSE)
&& (the_phy->parent.state_machine.current_state_id
== SCI_BASE_PHY_STATE_INITIAL)
)
|| (
(the_phy->is_in_link_training == FALSE)
&& (the_phy->parent.state_machine.current_state_id
== SCI_BASE_PHY_STATE_STOPPED)
)
|| (
(the_phy->is_in_link_training == TRUE)
&& (the_phy->parent.state_machine.current_state_id
== SCI_BASE_PHY_STATE_STARTING)
)
|| (
this_controller->port_agent.phy_ready_mask
!= this_controller->port_agent.phy_configured_mask
)
)
{
return FALSE;
}
}
}
return TRUE;
}
/**
* @brief This method is called internally by the controller object to
* start the next phy on the controller. If all the phys have
* been starte, then this method will attempt to transition the
* controller to the READY state and inform the user
* (scic_cb_controller_start_complete()).
*
* @param[in] this_controller This parameter specifies the controller
* object for which to start the next phy.
*
* @return SCI_STATUS
*/
SCI_STATUS scic_sds_controller_start_next_phy(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
SCI_STATUS status;
status = SCI_SUCCESS;
if (this_controller->phy_startup_timer_pending == FALSE)
{
if (this_controller->next_phy_to_start == SCI_MAX_PHYS)
{
// The controller has successfully finished the start process.
// Inform the SCI Core user and transition to the READY state.
if (scic_sds_controller_is_start_complete(this_controller) == TRUE)
{
scic_sds_controller_transition_to_ready(
this_controller, SCI_SUCCESS
);
}
}
else
{
SCIC_SDS_PHY_T * the_phy;
the_phy = &this_controller->phy_table[this_controller->next_phy_to_start];
if (
this_controller->oem_parameters.sds1.controller.mode_type
== SCIC_PORT_MANUAL_CONFIGURATION_MODE
)
{
if (scic_sds_phy_get_port(the_phy) == SCI_INVALID_HANDLE)
{
this_controller->next_phy_to_start++;
// Caution recursion ahead be forwarned
//
// The PHY was never added to a PORT in MPC mode so start the next phy in sequence
// This phy will never go link up and will not draw power the OEM parameters either
// configured the phy incorrectly for the PORT or it was never assigned to a PORT
return scic_sds_controller_start_next_phy(this_controller);
}
}
status = scic_phy_start(the_phy);
if (status == SCI_SUCCESS)
{
scic_sds_controller_phy_timer_start(this_controller);
}
else
{
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER | SCIC_LOG_OBJECT_PHY,
"Controller stop operation failed to stop phy %d because of status %d.\n",
this_controller->phy_table[this_controller->next_phy_to_start].phy_index,
status
));
}
this_controller->next_phy_to_start++;
}
}
return status;
}
/**
* @brief
*
* @param[in] this_controller
*
* @return SCI_STATUS
*/
SCI_STATUS scic_sds_controller_stop_phys(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
U32 index;
SCI_STATUS status;
SCI_STATUS phy_status;
status = SCI_SUCCESS;
for (index = 0; index < SCI_MAX_PHYS; index++)
{
phy_status = scic_phy_stop(&this_controller->phy_table[index]);
if (
(phy_status != SCI_SUCCESS)
&& (phy_status != SCI_FAILURE_INVALID_STATE)
)
{
status = SCI_FAILURE;
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER | SCIC_LOG_OBJECT_PHY,
"Controller stop operation failed to stop phy %d because of status %d.\n",
this_controller->phy_table[index].phy_index, phy_status
));
}
}
return status;
}
/**
* @brief
*
* @param[in] this_controller
*
* @return SCI_STATUS
*/
SCI_STATUS scic_sds_controller_stop_devices(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
U32 index;
SCI_STATUS status;
SCI_STATUS device_status;
status = SCI_SUCCESS;
for (index = 0; index < this_controller->remote_node_entries; index++)
{
if (this_controller->device_table[index] != SCI_INVALID_HANDLE)
{
/// @todo What timeout value do we want to provide to this request?
device_status = scic_remote_device_stop(this_controller->device_table[index], 0);
if (
(device_status != SCI_SUCCESS)
&& (device_status != SCI_FAILURE_INVALID_STATE)
)
{
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER | SCIC_LOG_OBJECT_SSP_REMOTE_TARGET,
"Controller stop operation failed to stop device 0x%x because of status %d.\n",
this_controller->device_table[index], device_status
));
}
}
}
return status;
}
//****************************************************************************-
//* SCIC SDS Controller Power Control (Staggered Spinup)
//****************************************************************************-
/**
* This method starts the power control timer for this controller object.
*
* @param this_controller
*/
static
void scic_sds_controller_power_control_timer_start(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
scic_cb_timer_start(
this_controller, this_controller->power_control.timer,
SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL
);
this_controller->power_control.timer_started = TRUE;
}
/**
* This method stops the power control timer for this controller object.
*
* @param this_controller
*/
static
void scic_sds_controller_power_control_timer_stop(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
if (this_controller->power_control.timer_started)
{
scic_cb_timer_stop(
this_controller, this_controller->power_control.timer
);
this_controller->power_control.timer_started = FALSE;
}
}
/**
* This method stops and starts the power control timer for this controller object.
*
* @param this_controller
*/
static
void scic_sds_controller_power_control_timer_restart(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
scic_sds_controller_power_control_timer_stop(this_controller);
scic_sds_controller_power_control_timer_start(this_controller);
}
/**
* @brief
*
* @param[in] controller
*/
void scic_sds_controller_power_control_timer_handler(
void *controller
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
this_controller->power_control.remote_devices_granted_power = 0;
if (this_controller->power_control.phys_waiting == 0)
{
this_controller->power_control.timer_started = FALSE;
}
else
{
SCIC_SDS_PHY_T *the_phy = NULL;
U8 i;
for (i=0;
(i < SCI_MAX_PHYS)
&& (this_controller->power_control.phys_waiting != 0);
i++)
{
if (this_controller->power_control.requesters[i] != NULL)
{
if ( this_controller->power_control.remote_devices_granted_power <
this_controller->oem_parameters.sds1.controller.max_number_concurrent_device_spin_up
)
{
the_phy = this_controller->power_control.requesters[i];
this_controller->power_control.requesters[i] = NULL;
this_controller->power_control.phys_waiting--;
this_controller->power_control.remote_devices_granted_power ++;
scic_sds_phy_consume_power_handler(the_phy);
if (the_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS)
{
U8 j;
SCIC_SDS_PHY_T * current_requester_phy;
for (j = 0; j < SCI_MAX_PHYS; j++)
{
current_requester_phy = this_controller->power_control.requesters[j];
//Search the power_control queue to see if there are other phys attached to
//the same remote device. If found, take all of them out of await_sas_power state.
if (current_requester_phy != NULL &&
current_requester_phy != the_phy &&
current_requester_phy->phy_type.sas.identify_address_frame_buffer.sas_address.high
== the_phy->phy_type.sas.identify_address_frame_buffer.sas_address.high &&
current_requester_phy->phy_type.sas.identify_address_frame_buffer.sas_address.low
== the_phy->phy_type.sas.identify_address_frame_buffer.sas_address.low)
{
this_controller->power_control.requesters[j] = NULL;
this_controller->power_control.phys_waiting--;
scic_sds_phy_consume_power_handler(current_requester_phy);
}
}
}
}
else
{
break;
}
}
}
// It doesn't matter if the power list is empty, we need to start the
// timer in case another phy becomes ready.
scic_sds_controller_power_control_timer_start(this_controller);
}
}
/**
* @brief This method inserts the phy in the stagger spinup control queue.
*
* @param[in] this_controller
* @param[in] the_phy
*/
void scic_sds_controller_power_control_queue_insert(
SCIC_SDS_CONTROLLER_T *this_controller,
SCIC_SDS_PHY_T *the_phy
)
{
ASSERT (the_phy != NULL);
if( this_controller->power_control.remote_devices_granted_power <
this_controller->oem_parameters.sds1.controller.max_number_concurrent_device_spin_up
)
{
this_controller->power_control.remote_devices_granted_power ++;
scic_sds_phy_consume_power_handler(the_phy);
//stop and start the power_control timer. When the timer fires, the
//no_of_devices_granted_power will be set to 0
scic_sds_controller_power_control_timer_restart (this_controller);
}
else
{
//there are phys, attached to the same sas address as this phy, are already
//in READY state, this phy don't need wait.
U8 i;
SCIC_SDS_PHY_T * current_phy;
for(i = 0; i < SCI_MAX_PHYS; i++)
{
current_phy = &this_controller->phy_table[i];
if (current_phy->parent.state_machine.current_state_id == SCI_BASE_PHY_STATE_READY &&
current_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS &&
current_phy->phy_type.sas.identify_address_frame_buffer.sas_address.high
== the_phy->phy_type.sas.identify_address_frame_buffer.sas_address.high &&
current_phy->phy_type.sas.identify_address_frame_buffer.sas_address.low
== the_phy->phy_type.sas.identify_address_frame_buffer.sas_address.low)
{
scic_sds_phy_consume_power_handler(the_phy);
break;
}
}
if (i == SCI_MAX_PHYS)
{
//Add the phy in the waiting list
this_controller->power_control.requesters[the_phy->phy_index] = the_phy;
this_controller->power_control.phys_waiting++;
}
}
}
/**
* @brief This method removes the phy from the stagger spinup control
* queue.
*
* @param[in] this_controller
* @param[in] the_phy
*/
void scic_sds_controller_power_control_queue_remove(
SCIC_SDS_CONTROLLER_T *this_controller,
SCIC_SDS_PHY_T *the_phy
)
{
ASSERT (the_phy != NULL);
if (this_controller->power_control.requesters[the_phy->phy_index] != NULL)
{
this_controller->power_control.phys_waiting--;
}
this_controller->power_control.requesters[the_phy->phy_index] = NULL;
}
//****************************************************************************-
//* SCIC SDS Controller Completion Routines
//****************************************************************************-
/**
* @brief This method returns a TRUE value if the completion queue has
* entries that can be processed
*
* @param[in] this_controller
*
* @return BOOL
* @retval TRUE if the completion queue has entries to process
* FALSE if the completion queue has no entries to process
*/
static
BOOL scic_sds_controller_completion_queue_has_entries(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
U32 get_value = this_controller->completion_queue_get;
U32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
if (
NORMALIZE_GET_POINTER_CYCLE_BIT(get_value)
== COMPLETION_QUEUE_CYCLE_BIT(this_controller->completion_queue[get_index])
)
{
return TRUE;
}
return FALSE;
}
// ---------------------------------------------------------------------------
/**
* @brief This method processes a task completion notification. This is
* called from within the controller completion handler.
*
* @param[in] this_controller
* @param[in] completion_entry
*
* @return none
*/
static
void scic_sds_controller_task_completion(
SCIC_SDS_CONTROLLER_T *this_controller,
U32 completion_entry
)
{
U32 index;
SCIC_SDS_REQUEST_T *io_request;
index = SCU_GET_COMPLETION_INDEX(completion_entry);
io_request = this_controller->io_request_table[index];
// Make sure that we really want to process this IO request
if (
(io_request != SCI_INVALID_HANDLE)
&& (io_request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG)
&& (
scic_sds_io_tag_get_sequence(io_request->io_tag)
== this_controller->io_request_sequence[index]
)
)
{
// Yep this is a valid io request pass it along to the io request handler
scic_sds_io_request_tc_completion(io_request, completion_entry);
}
}
/**
* @brief This method processes an SDMA completion event. This is called
* from within the controller completion handler.
*
* @param[in] this_controller
* @param[in] completion_entry
*
* @return none
*/
static
void scic_sds_controller_sdma_completion(
SCIC_SDS_CONTROLLER_T *this_controller,
U32 completion_entry
)
{
U32 index;
SCIC_SDS_REQUEST_T *io_request;
SCIC_SDS_REMOTE_DEVICE_T *device;
index = SCU_GET_COMPLETION_INDEX(completion_entry);
switch (scu_get_command_request_type(completion_entry))
{
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
io_request = this_controller->io_request_table[index];
SCIC_LOG_ERROR((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER
| SCIC_LOG_OBJECT_SMP_IO_REQUEST
| SCIC_LOG_OBJECT_SSP_IO_REQUEST
| SCIC_LOG_OBJECT_STP_IO_REQUEST,
"SCIC SDS Completion type SDMA %x for io request %x\n",
completion_entry,
io_request
));
/// @todo For a post TC operation we need to fail the IO request
break;
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
device = this_controller->device_table[index];
SCIC_LOG_ERROR((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER
| SCIC_LOG_OBJECT_SSP_REMOTE_TARGET
| SCIC_LOG_OBJECT_SMP_REMOTE_TARGET
| SCIC_LOG_OBJECT_STP_REMOTE_TARGET,
"SCIC SDS Completion type SDMA %x for remote device %x\n",
completion_entry,
device
));
/// @todo For a port RNC operation we need to fail the device
break;
default:
SCIC_LOG_ERROR((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC SDS Completion unknown SDMA completion type %x\n",
completion_entry
));
break;
}
/// This is an unexpected completion type and is un-recoverable
/// Transition to the failed state and wait for a controller reset
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_FAILED
);
}
/**
* This method processes an unsolicited frame message. This is called from
* within the controller completion handler.
*
* @param[in] this_controller
* @param[in] completion_entry
*
* @return none
*/
static
void scic_sds_controller_unsolicited_frame(
SCIC_SDS_CONTROLLER_T *this_controller,
U32 completion_entry
)
{
U32 index;
U32 frame_index;
SCU_UNSOLICITED_FRAME_HEADER_T * frame_header;
SCIC_SDS_PHY_T * phy;
SCIC_SDS_REMOTE_DEVICE_T * device;
SCI_STATUS result = SCI_FAILURE;
frame_index = SCU_GET_FRAME_INDEX(completion_entry);
frame_header
= this_controller->uf_control.buffers.array[frame_index].header;
this_controller->uf_control.buffers.array[frame_index].state
= UNSOLICITED_FRAME_IN_USE;
if (SCU_GET_FRAME_ERROR(completion_entry))
{
/// @todo If the IAF frame or SIGNATURE FIS frame has an error will
/// this cause a problem? We expect the phy initialization will
/// fail if there is an error in the frame.
scic_sds_controller_release_frame(this_controller, frame_index);
return;
}
if (frame_header->is_address_frame)
{
index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
phy = &this_controller->phy_table[index];
if (phy != NULL)
{
result = scic_sds_phy_frame_handler(phy, frame_index);
}
}
else
{
index = SCU_GET_COMPLETION_INDEX(completion_entry);
if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
{
// This is a signature fis or a frame from a direct attached SATA
// device that has not yet been created. In either case forwared
// the frame to the PE and let it take care of the frame data.
index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
phy = &this_controller->phy_table[index];
result = scic_sds_phy_frame_handler(phy, frame_index);
}
else
{
if (index < this_controller->remote_node_entries)
device = this_controller->device_table[index];
else
device = NULL;
if (device != NULL)
result = scic_sds_remote_device_frame_handler(device, frame_index);
else
scic_sds_controller_release_frame(this_controller, frame_index);
}
}
if (result != SCI_SUCCESS)
{
/// @todo Is there any reason to report some additional error message
/// when we get this failure notifiction?
}
}
/**
* @brief This method processes an event completion entry. This is called
* from within the controller completion handler.
*
* @param[in] this_controller
* @param[in] completion_entry
*
* @return none
*/
static
void scic_sds_controller_event_completion(
SCIC_SDS_CONTROLLER_T *this_controller,
U32 completion_entry
)
{
U32 index;
SCIC_SDS_REQUEST_T *io_request;
SCIC_SDS_REMOTE_DEVICE_T *device;
SCIC_SDS_PHY_T *phy;
index = SCU_GET_COMPLETION_INDEX(completion_entry);
switch (scu_get_event_type(completion_entry))
{
case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
/// @todo The driver did something wrong and we need to fix the condtion.
SCIC_LOG_ERROR((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller 0x%x received SMU command error 0x%x\n",
this_controller, completion_entry
));
break;
case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
// report fatal memory error
this_controller->parent.error = SCI_CONTROLLER_FATAL_MEMORY_ERROR;
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_FAILED
);
//continue as in following events
case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
case SCU_EVENT_TYPE_SMU_ERROR:
SCIC_LOG_ERROR((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller 0x%x received fatal controller event 0x%x\n",
this_controller, completion_entry
));
break;
case SCU_EVENT_TYPE_TRANSPORT_ERROR:
io_request = this_controller->io_request_table[index];
scic_sds_io_request_event_handler(io_request, completion_entry);
break;
case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
switch (scu_get_event_specifier(completion_entry))
{
case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
io_request = this_controller->io_request_table[index];
if (io_request != SCI_INVALID_HANDLE)
{
scic_sds_io_request_event_handler(io_request, completion_entry);
}
else
{
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER |
SCIC_LOG_OBJECT_SMP_IO_REQUEST |
SCIC_LOG_OBJECT_SSP_IO_REQUEST |
SCIC_LOG_OBJECT_STP_IO_REQUEST,
"SCIC Controller 0x%x received event 0x%x for io request object that doesnt exist.\n",
this_controller, completion_entry
));
}
break;
case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
device = this_controller->device_table[index];
if (device != SCI_INVALID_HANDLE)
{
scic_sds_remote_device_event_handler(device, completion_entry);
}
else
{
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER |
SCIC_LOG_OBJECT_SMP_REMOTE_TARGET |
SCIC_LOG_OBJECT_SSP_REMOTE_TARGET |
SCIC_LOG_OBJECT_STP_REMOTE_TARGET,
"SCIC Controller 0x%x received event 0x%x for remote device object that doesnt exist.\n",
this_controller, completion_entry
));
}
break;
}
break;
case SCU_EVENT_TYPE_BROADCAST_CHANGE:
// direct the broadcast change event to the phy first and then let
// the phy redirect the broadcast change to the port object
case SCU_EVENT_TYPE_ERR_CNT_EVENT:
// direct error counter event to the phy object since that is where
// we get the event notification. This is a type 4 event.
case SCU_EVENT_TYPE_OSSP_EVENT:
index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
phy = &this_controller->phy_table[index];
scic_sds_phy_event_handler(phy, completion_entry);
break;
case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
case SCU_EVENT_TYPE_RNC_OPS_MISC:
if (index < this_controller->remote_node_entries)
{
device = this_controller->device_table[index];
if (device != NULL)
{
scic_sds_remote_device_event_handler(device, completion_entry);
}
}
else
{
SCIC_LOG_ERROR((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER |
SCIC_LOG_OBJECT_SMP_REMOTE_TARGET |
SCIC_LOG_OBJECT_SSP_REMOTE_TARGET |
SCIC_LOG_OBJECT_STP_REMOTE_TARGET,
"SCIC Controller 0x%x received event 0x%x for remote device object 0x%0x that doesnt exist.\n",
this_controller, completion_entry, index
));
}
break;
default:
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller received unknown event code %x\n",
completion_entry
));
break;
}
}
/**
* @brief This method is a private routine for processing the completion
* queue entries.
*
* @param[in] this_controller
*
* @return none
*/
static
void scic_sds_controller_process_completions(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
U32 completion_count = 0;
U32 completion_entry;
U32 get_index;
U32 get_cycle;
U32 event_index;
U32 event_cycle;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_sds_controller_process_completions(0x%x) enter\n",
this_controller
));
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_COMPLETION_QUEUE,
"completion queue beginning get : 0x%08x\n",
this_controller->completion_queue_get
));
// Get the component parts of the completion queue
get_index = NORMALIZE_GET_POINTER(this_controller->completion_queue_get);
get_cycle = SMU_CQGR_CYCLE_BIT & this_controller->completion_queue_get;
event_index = NORMALIZE_EVENT_POINTER(this_controller->completion_queue_get);
event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & this_controller->completion_queue_get;
while (
NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
== COMPLETION_QUEUE_CYCLE_BIT(this_controller->completion_queue[get_index])
)
{
completion_count++;
completion_entry = this_controller->completion_queue[get_index];
INCREMENT_COMPLETION_QUEUE_GET(this_controller, get_index, get_cycle);
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_COMPLETION_QUEUE,
"completion queue entry : 0x%08x\n",
completion_entry
));
switch (SCU_GET_COMPLETION_TYPE(completion_entry))
{
case SCU_COMPLETION_TYPE_TASK:
scic_sds_controller_task_completion(this_controller, completion_entry);
break;
case SCU_COMPLETION_TYPE_SDMA:
scic_sds_controller_sdma_completion(this_controller, completion_entry);
break;
case SCU_COMPLETION_TYPE_UFI:
scic_sds_controller_unsolicited_frame(this_controller, completion_entry);
break;
case SCU_COMPLETION_TYPE_EVENT:
scic_sds_controller_event_completion(this_controller, completion_entry);
break;
case SCU_COMPLETION_TYPE_NOTIFY:
// Presently we do the same thing with a notify event that we do with the
// other event codes.
INCREMENT_EVENT_QUEUE_GET(this_controller, event_index, event_cycle);
scic_sds_controller_event_completion(this_controller, completion_entry);
break;
default:
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller received unknown completion type %x\n",
completion_entry
));
break;
}
}
// Update the get register if we completed one or more entries
if (completion_count > 0)
{
this_controller->completion_queue_get =
SMU_CQGR_GEN_BIT(ENABLE)
| SMU_CQGR_GEN_BIT(EVENT_ENABLE)
| event_cycle | SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index)
| get_cycle | SMU_CQGR_GEN_VAL(POINTER, get_index) ;
SMU_CQGR_WRITE(this_controller, this_controller->completion_queue_get);
}
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_COMPLETION_QUEUE,
"completion queue ending get : 0x%08x\n",
this_controller->completion_queue_get
));
}
/**
* @brief This method is a private routine for processing the completion
* queue entries.
*
* @param[in] this_controller
*
* @return none
*/
static
void scic_sds_controller_transitioned_process_completions(
SCIC_SDS_CONTROLLER_T * this_controller
)
{
U32 completion_count = 0;
U32 completion_entry;
U32 get_index;
U32 get_cycle;
U32 event_index;
U32 event_cycle;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_sds_controller_transitioned_process_completions(0x%x) enter\n",
this_controller
));
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_COMPLETION_QUEUE,
"completion queue beginning get : 0x%08x\n",
this_controller->completion_queue_get
));
// Get the component parts of the completion queue
get_index = NORMALIZE_GET_POINTER(this_controller->completion_queue_get);
get_cycle = SMU_CQGR_CYCLE_BIT & this_controller->completion_queue_get;
event_index = NORMALIZE_EVENT_POINTER(this_controller->completion_queue_get);
event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & this_controller->completion_queue_get;
while (
NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
== COMPLETION_QUEUE_CYCLE_BIT(
this_controller->completion_queue[get_index])
)
{
completion_count++;
completion_entry = this_controller->completion_queue[get_index];
INCREMENT_COMPLETION_QUEUE_GET(this_controller, get_index, get_cycle);
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_COMPLETION_QUEUE,
"completion queue entry : 0x%08x\n",
completion_entry
));
switch (SCU_GET_COMPLETION_TYPE(completion_entry))
{
case SCU_COMPLETION_TYPE_TASK:
scic_sds_controller_task_completion(this_controller, completion_entry);
break;
case SCU_COMPLETION_TYPE_NOTIFY:
INCREMENT_EVENT_QUEUE_GET(this_controller, event_index, event_cycle);
// Fall-through
case SCU_COMPLETION_TYPE_EVENT:
case SCU_COMPLETION_TYPE_SDMA:
case SCU_COMPLETION_TYPE_UFI:
default:
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller ignoring completion type %x\n",
completion_entry
));
break;
}
}
// Update the get register if we completed one or more entries
if (completion_count > 0)
{
this_controller->completion_queue_get =
SMU_CQGR_GEN_BIT(ENABLE)
| SMU_CQGR_GEN_BIT(EVENT_ENABLE)
| event_cycle | SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index)
| get_cycle | SMU_CQGR_GEN_VAL(POINTER, get_index) ;
SMU_CQGR_WRITE(this_controller, this_controller->completion_queue_get);
}
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_COMPLETION_QUEUE,
"completion queue ending get : 0x%08x\n",
this_controller->completion_queue_get
));
}
//****************************************************************************-
//* SCIC SDS Controller Interrupt and Completion functions
//****************************************************************************-
/**
* @brief This method provides standard (common) processing of interrupts
* for polling and legacy based interrupts.
*
* @param[in] controller
* @param[in] interrupt_status
*
* @return This method returns a boolean (BOOL) indication as to
* whether an completions are pending to be processed.
* @retval TRUE if an interrupt is to be processed
* @retval FALSE if no interrupt was pending
*/
static
BOOL scic_sds_controller_standard_interrupt_handler(
SCIC_SDS_CONTROLLER_T *this_controller,
U32 interrupt_status
)
{
BOOL is_completion_needed = FALSE;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_sds_controller_standard_interrupt_handler(0x%d,0x%d) enter\n",
this_controller, interrupt_status
));
if (
(interrupt_status & SMU_ISR_QUEUE_ERROR)
|| (
(interrupt_status & SMU_ISR_QUEUE_SUSPEND)
&& (!scic_sds_controller_completion_queue_has_entries(this_controller))
)
)
{
// We have a fatal error on the read of the completion queue bar
// OR
// We have a fatal error there is nothing in the completion queue
// but we have a report from the hardware that the queue is full
/// @todo how do we request the a controller reset
is_completion_needed = TRUE;
this_controller->encountered_fatal_error = TRUE;
}
if (scic_sds_controller_completion_queue_has_entries(this_controller))
{
is_completion_needed = TRUE;
}
return is_completion_needed;
}
/**
* @brief This is the method provided to handle polling for interrupts
* for the controller object.
*
* @param[in] controller
*
* @return BOOL
* @retval TRUE if an interrupt is to be processed
* @retval FALSE if no interrupt was pending
*/
static
BOOL scic_sds_controller_polling_interrupt_handler(
SCI_CONTROLLER_HANDLE_T controller
)
{
U32 interrupt_status;
SCIC_SDS_CONTROLLER_T *this_controller = (SCIC_SDS_CONTROLLER_T*)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_sds_controller_polling_interrupt_handler(0x%d) enter\n",
controller
));
/*
* In INTERRUPT_POLLING_MODE we exit the interrupt handler if the hardware
* indicates nothing is pending. Since we are not being called from a real
* interrupt, we don't want to confuse the hardware by servicing the
* completion queue before the hardware indicates it is ready. We'll
* simply wait for another polling interval and check again.
*/
interrupt_status = SMU_ISR_READ(this_controller);
if ((interrupt_status &
(SMU_ISR_COMPLETION |
SMU_ISR_QUEUE_ERROR |
SMU_ISR_QUEUE_SUSPEND)) == 0)
{
return FALSE;
}
return scic_sds_controller_standard_interrupt_handler(
controller, interrupt_status
);
}
/**
* @brief This is the method provided to handle completions when interrupt
* polling is in use.
*
* @param[in] controller
*
* @return none
*/
static
void scic_sds_controller_polling_completion_handler(
SCI_CONTROLLER_HANDLE_T controller
)
{
SCIC_SDS_CONTROLLER_T *this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_sds_controller_polling_completion_handler(0x%d) enter\n",
controller
));
if (this_controller->encountered_fatal_error == TRUE)
{
SCIC_LOG_ERROR((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller has encountered a fatal error.\n"
));
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_FAILED
);
}
else if (scic_sds_controller_completion_queue_has_entries(this_controller))
{
if (this_controller->restrict_completions == FALSE)
scic_sds_controller_process_completions(this_controller);
else
scic_sds_controller_transitioned_process_completions(this_controller);
}
/*
* The interrupt handler does not adjust the CQ's
* get pointer. So, SCU's INTx pin stays asserted during the
* interrupt handler even though it tries to clear the interrupt
* source. Therefore, the completion handler must ensure that the
* interrupt source is cleared. Otherwise, we get a spurious
* interrupt for which the interrupt handler will not issue a
* corresponding completion event. Also, we unmask interrupts.
*/
SMU_ISR_WRITE(
this_controller,
(U32)(SMU_ISR_COMPLETION | SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)
);
}
#if !defined(DISABLE_INTERRUPTS)
/**
* @brief This is the method provided to handle legacy interrupts for the
* controller object.
*
* @param[in] controller
*
* @return BOOL
* @retval TRUE if an interrupt is processed
* FALSE if no interrupt was processed
*/
static
BOOL scic_sds_controller_legacy_interrupt_handler(
SCI_CONTROLLER_HANDLE_T controller
)
{
U32 interrupt_status;
BOOL is_completion_needed;
SCIC_SDS_CONTROLLER_T *this_controller = (SCIC_SDS_CONTROLLER_T*)controller;
interrupt_status = SMU_ISR_READ(this_controller);
is_completion_needed = scic_sds_controller_standard_interrupt_handler(
this_controller, interrupt_status
);
return is_completion_needed;
}
/**
* @brief This is the method provided to handle legacy completions it is
* expected that the SCI User will call this completion handler
* anytime the interrupt handler reports that it has handled an
* interrupt.
*
* @param[in] controller
*
* @return none
*/
static
void scic_sds_controller_legacy_completion_handler(
SCI_CONTROLLER_HANDLE_T controller
)
{
SCIC_SDS_CONTROLLER_T *this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_sds_controller_legacy_completion_handler(0x%d) enter\n",
controller
));
scic_sds_controller_polling_completion_handler(controller);
SMU_IMR_WRITE(this_controller, 0x00000000);
#ifdef IMR_READ_FENCE
{
volatile U32 int_mask_value = 0;
ULONG count = 0;
/*
* Temporary code since we have seen with legacy interrupts
* that interrupts are still masked after clearing the mask
* above. This may be an Arlington problem or it may be an
* old driver problem. Presently this code is turned off
* since we have not seen this problem recently.
*/
do
{
int_mask_value = SMU_IMR_READ(this_controler);
if (count++ > 10)
{
#ifdef ALLOW_ENTER_DEBUGGER
__debugbreak();
#endif
break;
}
} while (int_mask_value != 0);
}
#endif
}
/**
* @brief This is the method provided to handle an MSIX interrupt message
* when there is just a single MSIX message being provided by the
* hardware. This mode of operation is single vector mode.
*
* @param[in] controller
*
* @return BOOL
* @retval TRUE if an interrupt is processed
* FALSE if no interrupt was processed
*/
static
BOOL scic_sds_controller_single_vector_interrupt_handler(
SCI_CONTROLLER_HANDLE_T controller
)
{
U32 interrupt_status;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
// Mask the interrupts
// There is a race in the hardware that could cause us not to be notified
// of an interrupt completion if we do not take this step. We will unmask
// the interrupts in the completion routine.
SMU_IMR_WRITE(this_controller, 0xFFFFFFFF);
interrupt_status = SMU_ISR_READ(this_controller);
interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
if (
(interrupt_status == 0)
&& scic_sds_controller_completion_queue_has_entries(this_controller)
)
{
// There is at least one completion queue entry to process so we can
// return a success and ignore for now the case of an error interrupt
SMU_ISR_WRITE(this_controller, SMU_ISR_COMPLETION);
return TRUE;
}
if (interrupt_status != 0)
{
// There is an error interrupt pending so let it through and handle
// in the callback
return TRUE;
}
// Clear any offending interrupts since we could not find any to handle
// and unmask them all
SMU_ISR_WRITE(this_controller, 0x00000000);
SMU_IMR_WRITE(this_controller, 0x00000000);
return FALSE;
}
/**
* @brief This is the method provided to handle completions for a single
* MSIX message.
*
* @param[in] controller
*/
static
void scic_sds_controller_single_vector_completion_handler(
SCI_CONTROLLER_HANDLE_T controller
)
{
U32 interrupt_status;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_sds_controller_single_vector_completion_handler(0x%d) enter\n",
controller
));
interrupt_status = SMU_ISR_READ(this_controller);
interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
if (interrupt_status & SMU_ISR_QUEUE_ERROR)
{
SCIC_LOG_ERROR((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller has encountered a fatal error.\n"
));
// We have a fatal condition and must reset the controller
// Leave the interrupt mask in place and get the controller reset
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_FAILED
);
return;
}
if (
(interrupt_status & SMU_ISR_QUEUE_SUSPEND)
&& !scic_sds_controller_completion_queue_has_entries(this_controller)
)
{
SCIC_LOG_ERROR((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller has encountered a fatal error.\n"
));
// We have a fatal condtion and must reset the controller
// Leave the interrupt mask in place and get the controller reset
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_FAILED
);
return;
}
if (scic_sds_controller_completion_queue_has_entries(this_controller))
{
scic_sds_controller_process_completions(this_controller);
// We dont care which interrupt got us to processing the completion queu
// so clear them both.
SMU_ISR_WRITE(
this_controller,
(SMU_ISR_COMPLETION | SMU_ISR_QUEUE_SUSPEND)
);
}
SMU_IMR_WRITE(this_controller, 0x00000000);
}
/**
* @brief This is the method provided to handle a MSIX message for a normal
* completion.
*
* @param[in] controller
*
* @return BOOL
* @retval TRUE if an interrupt is processed
* FALSE if no interrupt was processed
*/
static
BOOL scic_sds_controller_normal_vector_interrupt_handler(
SCI_CONTROLLER_HANDLE_T controller
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
if (scic_sds_controller_completion_queue_has_entries(this_controller))
{
return TRUE;
}
else
{
// we have a spurious interrupt it could be that we have already
// emptied the completion queue from a previous interrupt
SMU_ISR_WRITE(this_controller, SMU_ISR_COMPLETION);
// There is a race in the hardware that could cause us not to be notified
// of an interrupt completion if we do not take this step. We will mask
// then unmask the interrupts so if there is another interrupt pending
// the clearing of the interrupt source we get the next interrupt message.
SMU_IMR_WRITE(this_controller, 0xFF000000);
SMU_IMR_WRITE(this_controller, 0x00000000);
}
return FALSE;
}
/**
* @brief This is the method provided to handle the completions for a
* normal MSIX message.
*
* @param[in] controller
*/
static
void scic_sds_controller_normal_vector_completion_handler(
SCI_CONTROLLER_HANDLE_T controller
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_sds_controller_normal_vector_completion_handler(0x%d) enter\n",
controller
));
// Empty out the completion queue
if (scic_sds_controller_completion_queue_has_entries(this_controller))
{
scic_sds_controller_process_completions(this_controller);
}
// Clear the interrupt and enable all interrupts again
SMU_ISR_WRITE(this_controller, SMU_ISR_COMPLETION);
// Could we write the value of SMU_ISR_COMPLETION?
SMU_IMR_WRITE(this_controller, 0xFF000000);
SMU_IMR_WRITE(this_controller, 0x00000000);
}
/**
* @brief This is the method provided to handle the error MSIX message
* interrupt. This is the normal operating mode for the hardware if
* MSIX is enabled.
*
* @param[in] controller
*
* @return BOOL
* @retval TRUE if an interrupt is processed
* FALSE if no interrupt was processed
*/
static
BOOL scic_sds_controller_error_vector_interrupt_handler(
SCI_CONTROLLER_HANDLE_T controller
)
{
U32 interrupt_status;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
interrupt_status = SMU_ISR_READ(this_controller);
interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
if (interrupt_status != 0)
{
// There is an error interrupt pending so let it through and handle
// in the callback
return TRUE;
}
// There is a race in the hardware that could cause us not to be notified
// of an interrupt completion if we do not take this step. We will mask
// then unmask the error interrupts so if there was another interrupt
// pending we will be notified.
// Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)?
SMU_IMR_WRITE(this_controller, 0x000000FF);
SMU_IMR_WRITE(this_controller, 0x00000000);
return FALSE;
}
/**
* @brief This is the method provided to handle the error completions when
* the hardware is using two MSIX messages.
*
* @param[in] controller
*/
static
void scic_sds_controller_error_vector_completion_handler(
SCI_CONTROLLER_HANDLE_T controller
)
{
U32 interrupt_status;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_sds_controller_error_vector_completion_handler(0x%d) enter\n",
controller
));
interrupt_status = SMU_ISR_READ(this_controller);
if (
(interrupt_status & SMU_ISR_QUEUE_SUSPEND)
&& scic_sds_controller_completion_queue_has_entries(this_controller)
)
{
scic_sds_controller_process_completions(this_controller);
SMU_ISR_WRITE(this_controller, SMU_ISR_QUEUE_SUSPEND);
}
else
{
SCIC_LOG_ERROR((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller reports CRC error on completion ISR %x\n",
interrupt_status
));
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_FAILED
);
return;
}
// If we dont process any completions I am not sure that we want to do this.
// We are in the middle of a hardware fault and should probably be reset.
SMU_IMR_WRITE(this_controller, 0x00000000);
}
#endif // !defined(DISABLE_INTERRUPTS)
//****************************************************************************-
//* SCIC SDS Controller External Methods
//****************************************************************************-
/**
* @brief This method returns the sizeof the SCIC SDS Controller Object
*
* @return U32
*/
U32 scic_sds_controller_get_object_size(void)
{
return sizeof(SCIC_SDS_CONTROLLER_T);
}
/**
* This method returns the minimum number of timers that are required by the
* controller object. This will include required timers for phys and ports.
*
* @return U32
* @retval The minimum number of timers that are required to make this
* controller operational.
*/
U32 scic_sds_controller_get_min_timer_count(void)
{
return SCIC_SDS_CONTROLLER_MIN_TIMER_COUNT
+ scic_sds_port_get_min_timer_count()
+ scic_sds_phy_get_min_timer_count();
}
/**
* This method returns the maximum number of timers that are required by the
* controller object. This will include required timers for phys and ports.
*
* @return U32
* @retval The maximum number of timers that will be used by the controller
* object
*/
U32 scic_sds_controller_get_max_timer_count(void)
{
return SCIC_SDS_CONTROLLER_MAX_TIMER_COUNT
+ scic_sds_port_get_max_timer_count()
+ scic_sds_phy_get_max_timer_count();
}
/**
* @brief
*
* @param[in] this_controller
* @param[in] the_port
* @param[in] the_phy
*
* @return none
*/
void scic_sds_controller_link_up(
SCIC_SDS_CONTROLLER_T *this_controller,
SCIC_SDS_PORT_T *the_port,
SCIC_SDS_PHY_T *the_phy
)
{
if (this_controller->state_handlers->link_up_handler != NULL)
{
this_controller->state_handlers->link_up_handler(
this_controller, the_port, the_phy);
}
else
{
SCIC_LOG_INFO((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller linkup event from phy %d in unexpected state %d\n",
the_phy->phy_index,
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(this_controller))
));
}
}
/**
* @brief
*
* @param[in] this_controller
* @param[in] the_port
* @param[in] the_phy
*/
void scic_sds_controller_link_down(
SCIC_SDS_CONTROLLER_T *this_controller,
SCIC_SDS_PORT_T *the_port,
SCIC_SDS_PHY_T *the_phy
)
{
if (this_controller->state_handlers->link_down_handler != NULL)
{
this_controller->state_handlers->link_down_handler(
this_controller, the_port, the_phy);
}
else
{
SCIC_LOG_INFO((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller linkdown event from phy %d in unexpected state %d\n",
the_phy->phy_index,
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(this_controller))
));
}
}
/**
* @brief This method is called by the remote device to inform the controller
* that this remote device has started.
*
* @param[in] this_controller
* @param[in] the_device
*/
void scic_sds_controller_remote_device_started(
SCIC_SDS_CONTROLLER_T * this_controller,
SCIC_SDS_REMOTE_DEVICE_T * the_device
)
{
if (this_controller->state_handlers->remote_device_started_handler != NULL)
{
this_controller->state_handlers->remote_device_started_handler(
this_controller, the_device
);
}
else
{
SCIC_LOG_INFO((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller 0x%x remote device started event from device 0x%x in unexpected state %d\n",
this_controller,
the_device,
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(this_controller))
));
}
}
/**
* @brief This is a helper method to determine if any remote devices on this
* controller are still in the stopping state.
*
* @param[in] this_controller
*/
BOOL scic_sds_controller_has_remote_devices_stopping(
SCIC_SDS_CONTROLLER_T * this_controller
)
{
U32 index;
for (index = 0; index < this_controller->remote_node_entries; index++)
{
if (
(this_controller->device_table[index] != NULL)
&& (
this_controller->device_table[index]->parent.state_machine.current_state_id
== SCI_BASE_REMOTE_DEVICE_STATE_STOPPING
)
)
{
return TRUE;
}
}
return FALSE;
}
/**
* @brief This method is called by the remote device to inform the controller
* object that the remote device has stopped.
*
* @param[in] this_controller
* @param[in] the_device
*/
void scic_sds_controller_remote_device_stopped(
SCIC_SDS_CONTROLLER_T * this_controller,
SCIC_SDS_REMOTE_DEVICE_T * the_device
)
{
if (this_controller->state_handlers->remote_device_stopped_handler != NULL)
{
this_controller->state_handlers->remote_device_stopped_handler(
this_controller, the_device
);
}
else
{
SCIC_LOG_INFO((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller 0x%x remote device stopped event from device 0x%x in unexpected state %d\n",
this_controller,
the_device,
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(this_controller))
));
}
}
/**
* @brief This method will write to the SCU PCP register the request value.
* The method is used to suspend/resume ports, devices, and phys.
*
* @param[in] this_controller
* @param[in] request
*/
void scic_sds_controller_post_request(
SCIC_SDS_CONTROLLER_T *this_controller,
U32 request
)
{
SCIC_LOG_INFO((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER | SCIC_LOG_OBJECT_COMPLETION_QUEUE,
"SCIC Controller 0x%08x post request 0x%08x\n",
this_controller, request
));
SMU_PCP_WRITE(this_controller, request);
}
/**
* @brief This method will copy the soft copy of the task context into
* the physical memory accessible by the controller.
*
* @note After this call is made the SCIC_SDS_IO_REQUEST object will
* always point to the physical memory version of the task context.
* Thus, all subsequent updates to the task context are performed in
* the TC table (i.e. DMAable memory).
*
* @param[in] this_controller This parameter specifies the controller for
* which to copy the task context.
* @param[in] this_request This parameter specifies the request for which
* the task context is being copied.
*
* @return none
*/
void scic_sds_controller_copy_task_context(
SCIC_SDS_CONTROLLER_T *this_controller,
SCIC_SDS_REQUEST_T *this_request
)
{
SCU_TASK_CONTEXT_T *task_context_buffer;
task_context_buffer = scic_sds_controller_get_task_context_buffer(
this_controller, this_request->io_tag
);
memcpy(
task_context_buffer,
this_request->task_context_buffer,
SCI_FIELD_OFFSET(SCU_TASK_CONTEXT_T, sgl_snapshot_ac)
);
// Now that the soft copy of the TC has been copied into the TC
// table accessible by the silicon. Thus, any further changes to
// the TC (e.g. TC termination) occur in the appropriate location.
this_request->task_context_buffer = task_context_buffer;
}
/**
* @brief This method returns the task context buffer for the given io tag.
*
* @param[in] this_controller
* @param[in] io_tag
*
* @return struct SCU_TASK_CONTEXT*
*/
SCU_TASK_CONTEXT_T * scic_sds_controller_get_task_context_buffer(
SCIC_SDS_CONTROLLER_T * this_controller,
U16 io_tag
)
{
U16 task_index = scic_sds_io_tag_get_index(io_tag);
if (task_index < this_controller->task_context_entries)
{
return &this_controller->task_context_table[task_index];
}
return NULL;
}
/**
* @brief This method returnst the sequence value from the io tag value
*
* @param[in] this_controller
* @param[in] io_tag
*
* @return U16
*/
U16 scic_sds_controller_get_io_sequence_from_tag(
SCIC_SDS_CONTROLLER_T *this_controller,
U16 io_tag
)
{
return scic_sds_io_tag_get_sequence(io_tag);
}
/**
* @brief This method returns the IO request associated with the tag value
*
* @param[in] this_controller
* @param[in] io_tag
*
* @return SCIC_SDS_IO_REQUEST_T*
* @retval NULL if there is no valid IO request at the tag value
*/
SCIC_SDS_REQUEST_T *scic_sds_controller_get_io_request_from_tag(
SCIC_SDS_CONTROLLER_T *this_controller,
U16 io_tag
)
{
U16 task_index;
U16 task_sequence;
task_index = scic_sds_io_tag_get_index(io_tag);
if (task_index < this_controller->task_context_entries)
{
if (this_controller->io_request_table[task_index] != SCI_INVALID_HANDLE)
{
task_sequence = scic_sds_io_tag_get_sequence(io_tag);
if (task_sequence == this_controller->io_request_sequence[task_index])
{
return this_controller->io_request_table[task_index];
}
}
}
return SCI_INVALID_HANDLE;
}
/**
* @brief This method allocates remote node index and the reserves the
* remote node context space for use. This method can fail if there
* are no more remote node index available.
*
* @param[in] this_controller This is the controller object which contains
* the set of free remote node ids
* @param[in] the_devce This is the device object which is requesting the a
* remote node id
* @param[out] node_id This is the remote node id that is assinged to the
* device if one is available
*
* @return SCI_STATUS
* @retval SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
* node index available.
*/
SCI_STATUS scic_sds_controller_allocate_remote_node_context(
SCIC_SDS_CONTROLLER_T * this_controller,
SCIC_SDS_REMOTE_DEVICE_T * the_device,
U16 * node_id
)
{
U16 node_index;
U32 remote_node_count = scic_sds_remote_device_node_count(the_device);
node_index = scic_sds_remote_node_table_allocate_remote_node(
&this_controller->available_remote_nodes, remote_node_count
);
if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
{
this_controller->device_table[node_index] = the_device;
*node_id = node_index;
return SCI_SUCCESS;
}
return SCI_FAILURE_INSUFFICIENT_RESOURCES;
}
/**
* @brief This method frees the remote node index back to the available
* pool. Once this is done the remote node context buffer is no
* longer valid and can not be used.
*
* @param[in] this_controller
* @param[in] the_device
* @param[in] node_id
*
* @return none
*/
void scic_sds_controller_free_remote_node_context(
SCIC_SDS_CONTROLLER_T * this_controller,
SCIC_SDS_REMOTE_DEVICE_T * the_device,
U16 node_id
)
{
U32 remote_node_count = scic_sds_remote_device_node_count(the_device);
if (this_controller->device_table[node_id] == the_device)
{
this_controller->device_table[node_id] = SCI_INVALID_HANDLE;
scic_sds_remote_node_table_release_remote_node_index(
&this_controller->available_remote_nodes, remote_node_count, node_id
);
}
}
/**
* @brief This method returns the SCU_REMOTE_NODE_CONTEXT for the specified
* remote node id.
*
* @param[in] this_controller
* @param[in] node_id
*
* @return SCU_REMOTE_NODE_CONTEXT_T*
*/
SCU_REMOTE_NODE_CONTEXT_T *scic_sds_controller_get_remote_node_context_buffer(
SCIC_SDS_CONTROLLER_T *this_controller,
U16 node_id
)
{
if (
(node_id < this_controller->remote_node_entries)
&& (this_controller->device_table[node_id] != SCI_INVALID_HANDLE)
)
{
return &this_controller->remote_node_context_table[node_id];
}
return NULL;
}
/**
* This method will combind the frame header and frame buffer to create
* a SATA D2H register FIS
*
* @param[out] resposne_buffer This is the buffer into which the D2H register
* FIS will be constructed.
* @param[in] frame_header This is the frame header returned by the hardware.
* @param[in] frame_buffer This is the frame buffer returned by the hardware.
*
* @erturn none
*/
void scic_sds_controller_copy_sata_response(
void * response_buffer,
void * frame_header,
void * frame_buffer
)
{
memcpy(
response_buffer,
frame_header,
sizeof(U32)
);
memcpy(
(char *)((char *)response_buffer + sizeof(U32)),
frame_buffer,
sizeof(SATA_FIS_REG_D2H_T) - sizeof(U32)
);
}
/**
* @brief This method releases the frame once this is done the frame is
* available for re-use by the hardware. The data contained in the
* frame header and frame buffer is no longer valid.
* The UF queue get pointer is only updated if UF control indicates
* this is appropriate.
*
* @param[in] this_controller
* @param[in] frame_index
*
* @return none
*/
void scic_sds_controller_release_frame(
SCIC_SDS_CONTROLLER_T *this_controller,
U32 frame_index
)
{
if (scic_sds_unsolicited_frame_control_release_frame(
&this_controller->uf_control, frame_index) == TRUE)
SCU_UFQGP_WRITE(this_controller, this_controller->uf_control.get);
}
#ifdef SCI_LOGGING
void scic_sds_controller_initialize_state_logging(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
sci_base_state_machine_logger_initialize(
&this_controller->parent.state_machine_logger,
&this_controller->parent.state_machine,
&this_controller->parent.parent,
scic_cb_logger_log_states,
"SCIC_SDS_CONTROLLER_T", "base state machine",
SCIC_LOG_OBJECT_CONTROLLER
);
}
void scic_sds_controller_deinitialize_state_logging(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
sci_base_state_machine_logger_deinitialize(
&this_controller->parent.state_machine_logger,
&this_controller->parent.state_machine
);
}
#endif
/**
* @brief This method sets user parameters and OEM parameters to
* default values. Users can override these values utilizing
* the scic_user_parameters_set() and scic_oem_parameters_set()
* methods.
*
* @param[in] controller This parameter specifies the controller for
* which to set the configuration parameters to their
* default values.
*
* @return none
*/
static
void scic_sds_controller_set_default_config_parameters(
SCIC_SDS_CONTROLLER_T *this_controller
)
{
U16 index;
// Default to APC mode.
this_controller->oem_parameters.sds1.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
// Default to 1
this_controller->oem_parameters.sds1.controller.max_number_concurrent_device_spin_up = 1;
// Default to no SSC operation.
this_controller->oem_parameters.sds1.controller.ssc_sata_tx_spread_level = 0;
this_controller->oem_parameters.sds1.controller.ssc_sas_tx_spread_level = 0;
this_controller->oem_parameters.sds1.controller.ssc_sas_tx_type = 0;
// Default to all phys to using short cables
this_controller->oem_parameters.sds1.controller.cable_selection_mask = 0;
// Initialize all of the port parameter information to narrow ports.
for (index = 0; index < SCI_MAX_PORTS; index++)
{
this_controller->oem_parameters.sds1.ports[index].phy_mask = 0;
}
// Initialize all of the phy parameter information.
for (index = 0; index < SCI_MAX_PHYS; index++)
{
// Default to 6G (i.e. Gen 3) for now. User can override if
// they choose.
this_controller->user_parameters.sds1.phys[index].max_speed_generation = 2;
//the frequencies cannot be 0
this_controller->user_parameters.sds1.phys[index].align_insertion_frequency = 0x7f;
this_controller->user_parameters.sds1.phys[index].in_connection_align_insertion_frequency = 0xff;
this_controller->user_parameters.sds1.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
// Previous Vitesse based expanders had a arbitration issue that
// is worked around by having the upper 32-bits of SAS address
// with a value greater then the Vitesse company identifier.
// Hence, usage of 0x5FCFFFFF.
this_controller->oem_parameters.sds1.phys[index].sas_address.sci_format.high
= 0x5FCFFFFF;
// Add in controller index to ensure each controller will have unique SAS addresses by default.
this_controller->oem_parameters.sds1.phys[index].sas_address.sci_format.low
= 0x00000001 + this_controller->controller_index;
if ( (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A0)
|| (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_A2)
|| (this_controller->pci_revision == SCIC_SDS_PCI_REVISION_B0) )
{
this_controller->oem_parameters.sds1.phys[index].afe_tx_amp_control0 = 0x000E7C03;
this_controller->oem_parameters.sds1.phys[index].afe_tx_amp_control1 = 0x000E7C03;
this_controller->oem_parameters.sds1.phys[index].afe_tx_amp_control2 = 0x000E7C03;
this_controller->oem_parameters.sds1.phys[index].afe_tx_amp_control3 = 0x000E7C03;
}
else // This must be SCIC_SDS_PCI_REVISION_C0
{
this_controller->oem_parameters.sds1.phys[index].afe_tx_amp_control0 = 0x000BDD08;
this_controller->oem_parameters.sds1.phys[index].afe_tx_amp_control1 = 0x000B7069;
this_controller->oem_parameters.sds1.phys[index].afe_tx_amp_control2 = 0x000B7C09;
this_controller->oem_parameters.sds1.phys[index].afe_tx_amp_control3 = 0x000AFC6E;
}
}
this_controller->user_parameters.sds1.stp_inactivity_timeout = 5;
this_controller->user_parameters.sds1.ssp_inactivity_timeout = 5;
this_controller->user_parameters.sds1.stp_max_occupancy_timeout = 5;
this_controller->user_parameters.sds1.ssp_max_occupancy_timeout = 20;
this_controller->user_parameters.sds1.no_outbound_task_timeout = 20;
}
/**
* @brief This method release resources in SCI controller.
*
* @param[in] this_controller This parameter specifies the core
* controller and associated objects whose resources are to be
* released.
*
* @return This method returns a value indicating if the operation succeeded.
* @retval SCI_SUCCESS This value indicates that all the timers are destroyed.
* @retval SCI_FAILURE This value indicates certain failure during the process
* of cleaning timer resource.
*/
static
SCI_STATUS scic_sds_controller_release_resource(
SCIC_SDS_CONTROLLER_T * this_controller
)
{
SCIC_SDS_PORT_T * port;
SCIC_SDS_PHY_T * phy;
U8 index;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER | SCIC_LOG_OBJECT_INITIALIZATION,
"scic_sds_controller_release_resource(0x%x) enter\n",
this_controller
));
if(this_controller->phy_startup_timer != NULL)
{
scic_cb_timer_destroy(this_controller, this_controller->phy_startup_timer);
this_controller->phy_startup_timer = NULL;
}
if(this_controller->power_control.timer != NULL)
{
scic_cb_timer_destroy(this_controller, this_controller->power_control.timer);
this_controller->power_control.timer = NULL;
}
if(this_controller->timeout_timer != NULL)
{
scic_cb_timer_destroy(this_controller, this_controller->timeout_timer);
this_controller->timeout_timer = NULL;
}
scic_sds_port_configuration_agent_release_resource(
this_controller,
&this_controller->port_agent);
for(index = 0; index < SCI_MAX_PORTS+1; index++)
{
port = &this_controller->port_table[index];
scic_sds_port_release_resource(this_controller, port);
}
for(index = 0; index < SCI_MAX_PHYS; index++)
{
phy = &this_controller->phy_table[index];
scic_sds_phy_release_resource(this_controller, phy);
}
return SCI_SUCCESS;
}
/**
* @brief This method process the ports configured message from port configuration
* agent.
*
* @param[in] this_controller This parameter specifies the core
* controller that its ports are configured.
*
* @return None.
*/
void scic_sds_controller_port_agent_configured_ports(
SCIC_SDS_CONTROLLER_T * this_controller
)
{
//simply transit to ready. The function below checks the controller state
scic_sds_controller_transition_to_ready(
this_controller, SCI_SUCCESS
);
}
//****************************************************************************-
//* SCIC Controller Public Methods
//****************************************************************************-
SCI_STATUS scic_controller_construct(
SCI_LIBRARY_HANDLE_T library,
SCI_CONTROLLER_HANDLE_T controller,
void * user_object
)
{
SCIC_SDS_LIBRARY_T *my_library;
SCIC_SDS_CONTROLLER_T *this_controller;
my_library = (SCIC_SDS_LIBRARY_T *)library;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(library),
SCIC_LOG_OBJECT_CONTROLLER | SCIC_LOG_OBJECT_INITIALIZATION,
"scic_controller_construct(0x%x, 0x%x) enter\n",
library, controller
));
// Just clear out the memory of the structure to be safe.
memset(this_controller, 0, sizeof(SCIC_SDS_CONTROLLER_T));
// Make sure that the static data is assigned before moving onto the
// base constroller construct as this will cause the controller to
// enter its initial state and the controller_index and pci_revision
// will be required to complete those operations correctly
this_controller->controller_index =
scic_sds_library_get_controller_index(my_library, this_controller);
this_controller->pci_revision = my_library->pci_revision;
sci_base_controller_construct(
&this_controller->parent,
sci_base_object_get_logger(my_library),
scic_sds_controller_state_table,
this_controller->memory_descriptors,
ARRAY_SIZE(this_controller->memory_descriptors),
NULL
);
sci_object_set_association(controller, user_object);
scic_sds_controller_initialize_state_logging(this_controller);
scic_sds_pci_bar_initialization(this_controller);
return SCI_SUCCESS;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_initialize(
SCI_CONTROLLER_HANDLE_T controller
)
{
SCI_STATUS status = SCI_FAILURE_INVALID_STATE;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_controller_initialize(0x%x, 0x%d) enter\n",
controller
));
if (this_controller->state_handlers->parent.initialize_handler != NULL)
{
status = this_controller->state_handlers->parent.initialize_handler(
(SCI_BASE_CONTROLLER_T *)controller
);
}
else
{
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller initialize operation requested in invalid state %d\n",
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(this_controller))
));
}
return status;
}
// ---------------------------------------------------------------------------
U32 scic_controller_get_suggested_start_timeout(
SCI_CONTROLLER_HANDLE_T controller
)
{
// Validate the user supplied parameters.
if (controller == SCI_INVALID_HANDLE)
return 0;
// The suggested minimum timeout value for a controller start operation:
//
// Signature FIS Timeout
// + Phy Start Timeout
// + Number of Phy Spin Up Intervals
// ---------------------------------
// Number of milliseconds for the controller start operation.
//
// NOTE: The number of phy spin up intervals will be equivalent
// to the number of phys divided by the number phys allowed
// per interval - 1 (once OEM parameters are supported).
// Currently we assume only 1 phy per interval.
return (SCIC_SDS_SIGNATURE_FIS_TIMEOUT
+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
+ ((SCI_MAX_PHYS-1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL));
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_start(
SCI_CONTROLLER_HANDLE_T controller,
U32 timeout
)
{
SCI_STATUS status = SCI_FAILURE_INVALID_STATE;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_controller_start(0x%x, 0x%d) enter\n",
controller, timeout
));
if (this_controller->state_handlers->parent.start_handler != NULL)
{
status = this_controller->state_handlers->parent.start_handler(
(SCI_BASE_CONTROLLER_T *)controller, timeout
);
}
else
{
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller start operation requested in invalid state %d\n",
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(this_controller))
));
}
return status;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_stop(
SCI_CONTROLLER_HANDLE_T controller,
U32 timeout
)
{
SCI_STATUS status = SCI_FAILURE_INVALID_STATE;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_controller_stop(0x%x, 0x%d) enter\n",
controller, timeout
));
if (this_controller->state_handlers->parent.stop_handler != NULL)
{
status = this_controller->state_handlers->parent.stop_handler(
(SCI_BASE_CONTROLLER_T *)controller, timeout
);
}
else
{
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller stop operation requested in invalid state %d\n",
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(this_controller))
));
}
return status;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_reset(
SCI_CONTROLLER_HANDLE_T controller
)
{
SCI_STATUS status = SCI_FAILURE_INVALID_STATE;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_controller_reset(0x%x) enter\n",
controller
));
if (this_controller->state_handlers->parent.reset_handler != NULL)
{
status = this_controller->state_handlers->parent.reset_handler(
(SCI_BASE_CONTROLLER_T *)controller
);
}
else
{
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller reset operation requested in invalid state %d\n",
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(this_controller))
));
}
return status;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_get_handler_methods(
SCIC_INTERRUPT_TYPE interrupt_type,
U16 message_count,
SCIC_CONTROLLER_HANDLER_METHODS_T *handler_methods
)
{
SCI_STATUS status = SCI_FAILURE_UNSUPPORTED_MESSAGE_COUNT;
switch (interrupt_type)
{
#if !defined(DISABLE_INTERRUPTS)
case SCIC_LEGACY_LINE_INTERRUPT_TYPE:
if (message_count == 0)
{
handler_methods[0].interrupt_handler
= scic_sds_controller_legacy_interrupt_handler;
handler_methods[0].completion_handler
= scic_sds_controller_legacy_completion_handler;
status = SCI_SUCCESS;
}
break;
case SCIC_MSIX_INTERRUPT_TYPE:
if (message_count == 1)
{
handler_methods[0].interrupt_handler
= scic_sds_controller_single_vector_interrupt_handler;
handler_methods[0].completion_handler
= scic_sds_controller_single_vector_completion_handler;
status = SCI_SUCCESS;
}
else if (message_count == 2)
{
handler_methods[0].interrupt_handler
= scic_sds_controller_normal_vector_interrupt_handler;
handler_methods[0].completion_handler
= scic_sds_controller_normal_vector_completion_handler;
handler_methods[1].interrupt_handler
= scic_sds_controller_error_vector_interrupt_handler;
handler_methods[1].completion_handler
= scic_sds_controller_error_vector_completion_handler;
status = SCI_SUCCESS;
}
break;
#endif // !defined(DISABLE_INTERRUPTS)
case SCIC_NO_INTERRUPTS:
if (message_count == 0)
{
handler_methods[0].interrupt_handler
= scic_sds_controller_polling_interrupt_handler;
handler_methods[0].completion_handler
= scic_sds_controller_polling_completion_handler;
status = SCI_SUCCESS;
}
break;
default:
status = SCI_FAILURE_INVALID_PARAMETER_VALUE;
break;
}
return status;
}
// ---------------------------------------------------------------------------
SCI_IO_STATUS scic_controller_start_io(
SCI_CONTROLLER_HANDLE_T controller,
SCI_REMOTE_DEVICE_HANDLE_T remote_device,
SCI_IO_REQUEST_HANDLE_T io_request,
U16 io_tag
)
{
SCI_STATUS status;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_controller_start_io(0x%x, 0x%x, 0x%x, 0x%x) enter\n",
controller, remote_device, io_request, io_tag
));
status = this_controller->state_handlers->parent.start_io_handler(
&this_controller->parent,
(SCI_BASE_REMOTE_DEVICE_T *)remote_device,
(SCI_BASE_REQUEST_T *)io_request,
io_tag
);
return (SCI_IO_STATUS)status;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_terminate_request(
SCI_CONTROLLER_HANDLE_T controller,
SCI_REMOTE_DEVICE_HANDLE_T remote_device,
SCI_IO_REQUEST_HANDLE_T request
)
{
SCI_STATUS status;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_controller_terminate_request(0x%x, 0x%x, 0x%x) enter\n",
controller, remote_device, request
));
status = this_controller->state_handlers->terminate_request_handler(
&this_controller->parent,
(SCI_BASE_REMOTE_DEVICE_T *)remote_device,
(SCI_BASE_REQUEST_T *)request
);
return status;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_complete_io(
SCI_CONTROLLER_HANDLE_T controller,
SCI_REMOTE_DEVICE_HANDLE_T remote_device,
SCI_IO_REQUEST_HANDLE_T io_request
)
{
SCI_STATUS status;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_controller_complete_io(0x%x, 0x%x, 0x%x) enter\n",
controller, remote_device, io_request
));
status = this_controller->state_handlers->parent.complete_io_handler(
&this_controller->parent,
(SCI_BASE_REMOTE_DEVICE_T *)remote_device,
(SCI_BASE_REQUEST_T *)io_request
);
return status;
}
// ---------------------------------------------------------------------------
#if !defined(DISABLE_TASK_MANAGEMENT)
SCI_TASK_STATUS scic_controller_start_task(
SCI_CONTROLLER_HANDLE_T controller,
SCI_REMOTE_DEVICE_HANDLE_T remote_device,
SCI_TASK_REQUEST_HANDLE_T task_request,
U16 task_tag
)
{
SCI_STATUS status = SCI_FAILURE_INVALID_STATE;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_controller_start_task(0x%x, 0x%x, 0x%x, 0x%x) enter\n",
controller, remote_device, task_request, task_tag
));
if (this_controller->state_handlers->parent.start_task_handler != NULL)
{
status = this_controller->state_handlers->parent.start_task_handler(
&this_controller->parent,
(SCI_BASE_REMOTE_DEVICE_T *)remote_device,
(SCI_BASE_REQUEST_T *)task_request,
task_tag
);
}
else
{
SCIC_LOG_INFO((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller starting task from invalid state\n"
));
}
return (SCI_TASK_STATUS)status;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_complete_task(
SCI_CONTROLLER_HANDLE_T controller,
SCI_REMOTE_DEVICE_HANDLE_T remote_device,
SCI_TASK_REQUEST_HANDLE_T task_request
)
{
SCI_STATUS status = SCI_FAILURE_INVALID_STATE;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_controller_complete_task(0x%x, 0x%x, 0x%x) enter\n",
controller, remote_device, task_request
));
if (this_controller->state_handlers->parent.complete_task_handler != NULL)
{
status = this_controller->state_handlers->parent.complete_task_handler(
&this_controller->parent,
(SCI_BASE_REMOTE_DEVICE_T *)remote_device,
(SCI_BASE_REQUEST_T *)task_request
);
}
else
{
SCIC_LOG_INFO((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller completing task from invalid state\n"
));
}
return status;
}
#endif // !defined(DISABLE_TASK_MANAGEMENT)
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_get_port_handle(
SCI_CONTROLLER_HANDLE_T controller,
U8 port_index,
SCI_PORT_HANDLE_T * port_handle
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_controller_get_port_handle(0x%x, 0x%x, 0x%x) enter\n",
controller, port_index, port_handle
));
if (port_index < this_controller->logical_port_entries)
{
*port_handle = &this_controller->port_table[port_index];
return SCI_SUCCESS;
}
return SCI_FAILURE_INVALID_PORT;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_get_phy_handle(
SCI_CONTROLLER_HANDLE_T controller,
U8 phy_index,
SCI_PHY_HANDLE_T * phy_handle
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_controller_get_phy_handle(0x%x, 0x%x, 0x%x) enter\n",
controller, phy_index, phy_handle
));
if (phy_index < ARRAY_SIZE(this_controller->phy_table))
{
*phy_handle = &this_controller->phy_table[phy_index];
return SCI_SUCCESS;
}
SCIC_LOG_ERROR((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_PORT | SCIC_LOG_OBJECT_CONTROLLER,
"Controller:0x%x PhyId:0x%x invalid phy index\n",
this_controller, phy_index
));
return SCI_FAILURE_INVALID_PHY;
}
// ---------------------------------------------------------------------------
U16 scic_controller_allocate_io_tag(
SCI_CONTROLLER_HANDLE_T controller
)
{
U16 task_context;
U16 sequence_count;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_controller_allocate_io_tag(0x%x) enter\n",
controller
));
if (!sci_pool_empty(this_controller->tci_pool))
{
sci_pool_get(this_controller->tci_pool, task_context);
sequence_count = this_controller->io_request_sequence[task_context];
return scic_sds_io_tag_construct(sequence_count, task_context);
}
return SCI_CONTROLLER_INVALID_IO_TAG;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_free_io_tag(
SCI_CONTROLLER_HANDLE_T controller,
U16 io_tag
)
{
U16 sequence;
U16 index;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
ASSERT(io_tag != SCI_CONTROLLER_INVALID_IO_TAG);
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_controller_free_io_tag(0x%x, 0x%x) enter\n",
controller, io_tag
));
sequence = scic_sds_io_tag_get_sequence(io_tag);
index = scic_sds_io_tag_get_index(io_tag);
if (!sci_pool_full(this_controller->tci_pool))
{
if (sequence == this_controller->io_request_sequence[index])
{
scic_sds_io_sequence_increment(
this_controller->io_request_sequence[index]);
sci_pool_put(this_controller->tci_pool, index);
return SCI_SUCCESS;
}
}
return SCI_FAILURE_INVALID_IO_TAG;
}
// ---------------------------------------------------------------------------
void scic_controller_enable_interrupts(
SCI_CONTROLLER_HANDLE_T controller
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
ASSERT(this_controller->smu_registers != NULL);
SMU_IMR_WRITE(this_controller, 0x00000000);
}
// ---------------------------------------------------------------------------
void scic_controller_disable_interrupts(
SCI_CONTROLLER_HANDLE_T controller
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
ASSERT(this_controller->smu_registers != NULL);
SMU_IMR_WRITE(this_controller, 0xffffffff);
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_set_mode(
SCI_CONTROLLER_HANDLE_T controller,
SCI_CONTROLLER_MODE operating_mode
)
{
SCIC_SDS_CONTROLLER_T *this_controller = (SCIC_SDS_CONTROLLER_T*)controller;
SCI_STATUS status = SCI_SUCCESS;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_controller_set_mode(0x%x, 0x%x) enter\n",
controller, operating_mode
));
if (
(this_controller->parent.state_machine.current_state_id
== SCI_BASE_CONTROLLER_STATE_INITIALIZING)
|| (this_controller->parent.state_machine.current_state_id
== SCI_BASE_CONTROLLER_STATE_INITIALIZED)
)
{
switch (operating_mode)
{
case SCI_MODE_SPEED:
this_controller->remote_node_entries =
MIN(this_controller->remote_node_entries, SCI_MAX_REMOTE_DEVICES);
this_controller->task_context_entries =
MIN(this_controller->task_context_entries, SCU_IO_REQUEST_COUNT);
this_controller->uf_control.buffers.count =
MIN(this_controller->uf_control.buffers.count, SCU_UNSOLICITED_FRAME_COUNT);
this_controller->completion_event_entries =
MIN(this_controller->completion_event_entries, SCU_EVENT_COUNT);
this_controller->completion_queue_entries =
MIN(this_controller->completion_queue_entries, SCU_COMPLETION_QUEUE_COUNT);
scic_sds_controller_build_memory_descriptor_table(this_controller);
break;
case SCI_MODE_SIZE:
this_controller->remote_node_entries =
MIN(this_controller->remote_node_entries, SCI_MIN_REMOTE_DEVICES);
this_controller->task_context_entries =
MIN(this_controller->task_context_entries, SCI_MIN_IO_REQUESTS);
this_controller->uf_control.buffers.count =
MIN(this_controller->uf_control.buffers.count, SCU_MIN_UNSOLICITED_FRAMES);
this_controller->completion_event_entries =
MIN(this_controller->completion_event_entries, SCU_MIN_EVENTS);
this_controller->completion_queue_entries =
MIN(this_controller->completion_queue_entries, SCU_MIN_COMPLETION_QUEUE_ENTRIES);
scic_sds_controller_build_memory_descriptor_table(this_controller);
break;
default:
status = SCI_FAILURE_INVALID_PARAMETER_VALUE;
break;
}
}
else
status = SCI_FAILURE_INVALID_STATE;
return status;
}
/**
* This method will reset the controller hardware.
*
* @param[in] this_controller The controller that is to be reset.
*/
void scic_sds_controller_reset_hardware(
SCIC_SDS_CONTROLLER_T * this_controller
)
{
// Disable interrupts so we dont take any spurious interrupts
scic_controller_disable_interrupts(this_controller);
// Reset the SCU
SMU_SMUSRCR_WRITE(this_controller, 0xFFFFFFFF);
// Delay for 1ms to before clearing the CQP and UFQPR.
scic_cb_stall_execution(1000);
// The write to the CQGR clears the CQP
SMU_CQGR_WRITE(this_controller, 0x00000000);
// The write to the UFQGP clears the UFQPR
SCU_UFQGP_WRITE(this_controller, 0x00000000);
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_user_parameters_set(
SCI_CONTROLLER_HANDLE_T controller,
SCIC_USER_PARAMETERS_T * scic_parms
)
{
SCIC_SDS_CONTROLLER_T * this_controller = (SCIC_SDS_CONTROLLER_T*)controller;
if (
(this_controller->parent.state_machine.current_state_id
== SCI_BASE_CONTROLLER_STATE_RESET)
|| (this_controller->parent.state_machine.current_state_id
== SCI_BASE_CONTROLLER_STATE_INITIALIZING)
|| (this_controller->parent.state_machine.current_state_id
== SCI_BASE_CONTROLLER_STATE_INITIALIZED)
)
{
U16 index;
// Validate the user parameters. If they are not legal, then
// return a failure.
for (index = 0; index < SCI_MAX_PHYS; index++)
{
if (!
( scic_parms->sds1.phys[index].max_speed_generation
<= SCIC_SDS_PARM_MAX_SPEED
&& scic_parms->sds1.phys[index].max_speed_generation
> SCIC_SDS_PARM_NO_SPEED
)
)
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
if (
(scic_parms->sds1.phys[index].in_connection_align_insertion_frequency < 3) ||
(scic_parms->sds1.phys[index].align_insertion_frequency == 0) ||
(scic_parms->sds1.phys[index].notify_enable_spin_up_insertion_frequency == 0)
)
{
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
}
if (
(scic_parms->sds1.stp_inactivity_timeout == 0) ||
(scic_parms->sds1.ssp_inactivity_timeout == 0) ||
(scic_parms->sds1.stp_max_occupancy_timeout == 0) ||
(scic_parms->sds1.ssp_max_occupancy_timeout == 0) ||
(scic_parms->sds1.no_outbound_task_timeout == 0)
)
{
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
memcpy(
(&this_controller->user_parameters), scic_parms, sizeof(*scic_parms));
return SCI_SUCCESS;
}
return SCI_FAILURE_INVALID_STATE;
}
// ---------------------------------------------------------------------------
void scic_user_parameters_get(
SCI_CONTROLLER_HANDLE_T controller,
SCIC_USER_PARAMETERS_T * scic_parms
)
{
SCIC_SDS_CONTROLLER_T * this_controller = (SCIC_SDS_CONTROLLER_T*)controller;
memcpy(scic_parms, (&this_controller->user_parameters), sizeof(*scic_parms));
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_oem_parameters_set(
SCI_CONTROLLER_HANDLE_T controller,
SCIC_OEM_PARAMETERS_T * scic_parms,
U8 scic_parms_version
)
{
SCIC_SDS_CONTROLLER_T * this_controller = (SCIC_SDS_CONTROLLER_T*)controller;
SCI_BIOS_OEM_PARAM_ELEMENT_T *old_oem_params =
(SCI_BIOS_OEM_PARAM_ELEMENT_T *)(&(scic_parms->sds1));
if (
(this_controller->parent.state_machine.current_state_id
== SCI_BASE_CONTROLLER_STATE_RESET)
|| (this_controller->parent.state_machine.current_state_id
== SCI_BASE_CONTROLLER_STATE_INITIALIZING)
|| (this_controller->parent.state_machine.current_state_id
== SCI_BASE_CONTROLLER_STATE_INITIALIZED)
)
{
U16 index;
U8 combined_phy_mask = 0;
/*
* Set the OEM parameter version for the controller. This comes
* from the OEM parameter block header or the registry depending
* on what WCDL is set to retrieve.
*/
this_controller->oem_parameters_version = scic_parms_version;
// Validate the oem parameters. If they are not legal, then
// return a failure.
for(index=0; index<SCI_MAX_PORTS; index++)
{
if (scic_parms->sds1.ports[index].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
{
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
}
for(index=0; index<SCI_MAX_PHYS; index++)
{
if (
scic_parms->sds1.phys[index].sas_address.sci_format.high == 0
&& scic_parms->sds1.phys[index].sas_address.sci_format.low == 0
)
{
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
#if defined(PBG_HBA_A0_BUILD) || defined(PBG_HBA_A2_BUILD) || defined(PBG_HBA_BETA_BUILD) || defined(PBG_BUILD)
if (
(scic_parms->sds1.phys[index].afe_tx_amp_control0 == 0) ||
(scic_parms->sds1.phys[index].afe_tx_amp_control1 == 0) ||
(scic_parms->sds1.phys[index].afe_tx_amp_control2 == 0) ||
(scic_parms->sds1.phys[index].afe_tx_amp_control3 == 0)
)
{
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
#endif
}
if (scic_parms->sds1.controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE)
{
for(index=0; index<SCI_MAX_PHYS; index++)
{
if (scic_parms->sds1.ports[index].phy_mask != 0)
{
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
}
}
else if (scic_parms->sds1.controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE)
{
for(index=0; index<SCI_MAX_PHYS; index++)
{
combined_phy_mask |= scic_parms->sds1.ports[index].phy_mask;
}
if (combined_phy_mask == 0)
{
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
}
else
{
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
if (scic_parms->sds1.controller.max_number_concurrent_device_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
{
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
if (old_oem_params->controller.do_enable_ssc != 0)
{
if ( (scic_parms_version == SCI_OEM_PARAM_VER_1_0)
&& (old_oem_params->controller.do_enable_ssc != 0x01))
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
if (scic_parms_version >= SCI_OEM_PARAM_VER_1_1)
{
SCI_BIOS_OEM_PARAM_ELEMENT_v_1_1_T *oem_params =
(SCI_BIOS_OEM_PARAM_ELEMENT_v_1_1_T*)(&(scic_parms->sds1));
U8 test = oem_params->controller.ssc_sata_tx_spread_level;
if ( !((test == 0x0) || (test == 0x2) || (test == 0x3) ||
(test == 0x6) || (test == 0x7)) )
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
test = oem_params->controller.ssc_sas_tx_spread_level;
if (oem_params->controller.ssc_sas_tx_type == 0)
{
if ( !((test == 0x0) || (test == 0x2) || (test == 0x3)) )
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
else
if (oem_params->controller.ssc_sas_tx_type == 1)
{
if ( !((test == 0x0) || (test == 0x3) || (test == 0x6)) )
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
}
}
memcpy(
(&this_controller->oem_parameters), scic_parms, sizeof(*scic_parms));
return SCI_SUCCESS;
}
return SCI_FAILURE_INVALID_STATE;
}
// ---------------------------------------------------------------------------
void scic_oem_parameters_get(
SCI_CONTROLLER_HANDLE_T controller,
SCIC_OEM_PARAMETERS_T * scic_parms
)
{
SCIC_SDS_CONTROLLER_T * this_controller = (SCIC_SDS_CONTROLLER_T*)controller;
memcpy(scic_parms, (&this_controller->oem_parameters), sizeof(*scic_parms));
}
// ---------------------------------------------------------------------------
#if !defined(DISABLE_INTERRUPTS)
#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
#define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
#define INTERRUPT_COALESCE_NUMBER_MAX 256
#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
SCI_STATUS scic_controller_set_interrupt_coalescence(
SCI_CONTROLLER_HANDLE_T controller,
U32 coalesce_number,
U32 coalesce_timeout
)
{
SCIC_SDS_CONTROLLER_T * scic_controller = (SCIC_SDS_CONTROLLER_T *)controller;
U8 timeout_encode = 0;
U32 min = 0;
U32 max = 0;
//Check if the input parameters fall in the range.
if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
// Defined encoding for interrupt coalescing timeout:
// Value Min Max Units
// ----- --- --- -----
// 0 - - Disabled
// 1 13.3 20.0 ns
// 2 26.7 40.0
// 3 53.3 80.0
// 4 106.7 160.0
// 5 213.3 320.0
// 6 426.7 640.0
// 7 853.3 1280.0
// 8 1.7 2.6 us
// 9 3.4 5.1
// 10 6.8 10.2
// 11 13.7 20.5
// 12 27.3 41.0
// 13 54.6 81.9
// 14 109.2 163.8
// 15 218.5 327.7
// 16 436.9 655.4
// 17 873.8 1310.7
// 18 1.7 2.6 ms
// 19 3.5 5.2
// 20 7.0 10.5
// 21 14.0 21.0
// 22 28.0 41.9
// 23 55.9 83.9
// 24 111.8 167.8
// 25 223.7 335.5
// 26 447.4 671.1
// 27 894.8 1342.2
// 28 1.8 2.7 s
// Others Undefined
//Use the table above to decide the encode of interrupt coalescing timeout
//value for register writing.
if (coalesce_timeout == 0)
timeout_encode = 0;
else
{
//make the timeout value in unit of (10 ns).
coalesce_timeout = coalesce_timeout * 100;
min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
//get the encode of timeout for register writing.
for ( timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
timeout_encode++ )
{
if (min <= coalesce_timeout && max > coalesce_timeout)
break;
else if (coalesce_timeout >= max && coalesce_timeout < min*2
&& coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US*100)
{
if ( (coalesce_timeout-max) < (2*min - coalesce_timeout) )
break;
else
{
timeout_encode++;
break;
}
}
else
{
max = max*2;
min = min*2;
}
}
if ( timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX+1 )
//the value is out of range.
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
SMU_ICC_WRITE(
scic_controller,
(SMU_ICC_GEN_VAL(NUMBER, coalesce_number)|
SMU_ICC_GEN_VAL(TIMER, timeout_encode))
);
scic_controller->interrupt_coalesce_number = (U16)coalesce_number;
scic_controller->interrupt_coalesce_timeout = coalesce_timeout/100;
return SCI_SUCCESS;
}
// ---------------------------------------------------------------------------
void scic_controller_get_interrupt_coalescence(
SCI_CONTROLLER_HANDLE_T controller,
U32 * coalesce_number,
U32 * coalesce_timeout
)
{
SCIC_SDS_CONTROLLER_T * scic_controller = (SCIC_SDS_CONTROLLER_T *)controller;
*coalesce_number = scic_controller->interrupt_coalesce_number;
*coalesce_timeout = scic_controller->interrupt_coalesce_timeout;
}
#endif // !defined(DISABLE_INTERRUPTS)
// ---------------------------------------------------------------------------
U32 scic_controller_get_scratch_ram_size(
SCI_CONTROLLER_HANDLE_T controller
)
{
return SCU_SCRATCH_RAM_SIZE_IN_DWORDS;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_read_scratch_ram_dword(
SCI_CONTROLLER_HANDLE_T controller,
U32 offset,
U32 * value
)
{
U32 zpt_index;
SCIC_SDS_CONTROLLER_T * scic_controller = (SCIC_SDS_CONTROLLER_T *)controller;
U32 status = SMU_SMUCSR_READ(scic_controller);
//Check if the SCU Scratch RAM been initialized, if not return zeros
if ((status & SCU_RAM_INIT_COMPLETED) != SCU_RAM_INIT_COMPLETED)
{
*value = 0x00000000;
return SCI_SUCCESS;
}
if (offset < scic_controller_get_scratch_ram_size(controller))
{
if(offset <= SCU_MAX_ZPT_DWORD_INDEX)
{
zpt_index = offset + (offset - (offset % 4)) + 4;
*value = scu_controller_scratch_ram_register_read(scic_controller,zpt_index);
}
else //offset > SCU_MAX_ZPT_DWORD_INDEX
{
offset = offset - 132;
zpt_index = offset + (offset - (offset % 4)) + 4;
*value = scu_controller_scratch_ram_register_read_ext(scic_controller,zpt_index);
}
return SCI_SUCCESS;
}
else
{
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_write_scratch_ram_dword(
SCI_CONTROLLER_HANDLE_T controller,
U32 offset,
U32 value
)
{
U32 zpt_index;
if (offset < scic_controller_get_scratch_ram_size(controller))
{
SCIC_SDS_CONTROLLER_T * scic_controller = (SCIC_SDS_CONTROLLER_T *)controller;
if(offset <= SCU_MAX_ZPT_DWORD_INDEX)
{
zpt_index = offset + (offset - (offset % 4)) + 4;
scu_controller_scratch_ram_register_write(scic_controller,zpt_index,value);
}
else //offset > SCU_MAX_ZPT_DWORD_INDEX
{
offset = offset - 132;
zpt_index = offset + (offset - (offset % 4)) + 4;
scu_controller_scratch_ram_register_write_ext(scic_controller,zpt_index,value);
}
return SCI_SUCCESS;
}
else
{
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_suspend(
SCI_CONTROLLER_HANDLE_T controller
)
{
SCIC_SDS_CONTROLLER_T * this_controller = (SCIC_SDS_CONTROLLER_T*)controller;
U8 index;
// As a precaution, disable interrupts. The user is required
// to re-enable interrupts if so desired after the call.
scic_controller_disable_interrupts(controller);
// Stop all the timers
// Maybe change the states of the objects to avoid processing stuff.
// Suspend the Ports in order to ensure no unexpected
// frame reception occurs on the links from the target
for (index = 0; index < SCI_MAX_PORTS; index++)
scic_sds_port_suspend_port_task_scheduler(
&(this_controller->port_table[index]));
// Disable/Reset the completion queue and unsolicited frame
// queue.
SMU_CQGR_WRITE(this_controller, 0x00000000);
SCU_UFQGP_WRITE(this_controller, 0x00000000);
// Clear any interrupts that may be pending or may have been generated
// by setting CQGR and CQPR back to 0
SMU_ISR_WRITE(this_controller, 0xFFFFFFFF);
//reset the software get pointer to completion queue.
this_controller->completion_queue_get = 0;
return SCI_SUCCESS;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_resume(
SCI_CONTROLLER_HANDLE_T controller
)
{
SCIC_SDS_CONTROLLER_T * this_controller = (SCIC_SDS_CONTROLLER_T*)controller;
U8 index;
// Initialize the completion queue and unsolicited frame queue.
scic_sds_controller_initialize_completion_queue(this_controller);
scic_sds_controller_initialize_unsolicited_frame_queue(this_controller);
this_controller->restrict_completions = FALSE;
// Release the port suspensions to allow for further successful
// operation.
for (index = 0; index < SCI_MAX_PORTS; index++)
scic_sds_port_resume_port_task_scheduler(
&(this_controller->port_table[index]));
//check the link layer status register DWORD sync acquired bit to detect
//link down event. If there is any link down event happened during controller
//suspension, restart phy state machine.
for (index = 0; index < SCI_MAX_PHYS; index ++)
{
SCIC_SDS_PHY_T * curr_phy = &this_controller->phy_table[index];
U32 link_layer_status = SCU_SAS_LLSTA_READ(curr_phy);
if ((link_layer_status & SCU_SAS_LLSTA_DWORD_SYNCA_BIT) == 0)
{
//Need to put the phy back to start OOB. Then an appropriate link event
//message will be send to scic user.
scic_sds_phy_restart_starting_state(curr_phy);
}
}
return SCI_SUCCESS;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_transition(
SCI_CONTROLLER_HANDLE_T controller,
BOOL restrict_completions
)
{
SCI_STATUS result = SCI_FAILURE_INVALID_STATE;
SCIC_SDS_CONTROLLER_T * this_controller = (SCIC_SDS_CONTROLLER_T*)controller;
U8 index;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_controller_transition(0x%x) enter\n",
controller
));
if (this_controller->parent.state_machine.current_state_id
== SCI_BASE_CONTROLLER_STATE_READY)
{
// Ensure that there are no outstanding IO operations at this
// time.
for (index = 0; index < SCI_MAX_PORTS; index++)
{
if (this_controller->port_table[index].started_request_count != 0)
return result;
}
scic_controller_suspend(controller);
// Loop through the memory descriptor list and reprogram
// the silicon memory registers accordingly.
result = scic_sds_controller_validate_memory_descriptor_table(
this_controller);
if (result == SCI_SUCCESS)
{
scic_sds_controller_ram_initialization(this_controller);
this_controller->restrict_completions = restrict_completions;
}
scic_controller_resume(controller);
}
return result;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_get_max_ports(
SCI_CONTROLLER_HANDLE_T controller,
U8 * count
)
{
*count = SCI_MAX_PORTS;
return SCI_SUCCESS;
}
// ---------------------------------------------------------------------------
SCI_STATUS scic_controller_get_max_phys(
SCI_CONTROLLER_HANDLE_T controller,
U8 * count
)
{
*count = SCI_MAX_PHYS;
return SCI_SUCCESS;
}
//******************************************************************************
//* CONTROLLER STATE MACHINE
//******************************************************************************
/**
* This macro returns the maximum number of logical ports supported by the
* hardware. The caller passes in the value read from the device context
* capacity register and this macro will mash and shift the value
* appropriately.
*/
#define smu_dcc_get_max_ports(dcc_value) \
( \
( ((U32)((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK)) \
>> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT ) + 1\
)
/**
* This macro returns the maximum number of task contexts supported by the
* hardware. The caller passes in the value read from the device context
* capacity register and this macro will mash and shift the value
* appropriately.
*/
#define smu_dcc_get_max_task_context(dcc_value) \
( \
( ((U32)((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK)) \
>> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT ) + 1\
)
/**
* This macro returns the maximum number of remote node contexts supported
* by the hardware. The caller passes in the value read from the device
* context capacity register and this macro will mash and shift the value
* appropriately.
*/
#define smu_dcc_get_max_remote_node_context(dcc_value) \
( \
( ( (U32)((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) )\
>> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT ) + 1\
)
//*****************************************************************************
//* DEFAULT STATE HANDLERS
//*****************************************************************************
/**
* This method is called when the SCIC_SDS_CONTROLLER default start
* io/task handler is in place.
* - Issue a warning message
*
* @param[in] controller This is SCI_BASE_CONTROLLER object which is cast
* into a SCIC_SDS_CONTROLLER object.
* @param[in] remote_device This is SCI_BASE_REMOTE_DEVICE which, if it was
* used, would be cast to a SCIC_SDS_REMOTE_DEVICE.
* @param[in] io_request This is the SCI_BASE_REQUEST which, if it was used,
* would be cast to a SCIC_SDS_IO_REQUEST.
* @param[in] io_tag This is the IO tag to be assigned to the IO request or
* SCI_CONTROLLER_INVALID_IO_TAG.
*
* @return SCI_STATUS
* @retval SCI_FAILURE_INVALID_STATE
*/
static
SCI_STATUS scic_sds_controller_default_start_operation_handler(
SCI_BASE_CONTROLLER_T *controller,
SCI_BASE_REMOTE_DEVICE_T *remote_device,
SCI_BASE_REQUEST_T *io_request,
U16 io_tag
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller requested to start an io/task from invalid state %d\n",
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(this_controller))
));
return SCI_FAILURE_INVALID_STATE;
}
/**
* This method is called when the SCIC_SDS_CONTROLLER default
* request handler is in place.
* - Issue a warning message
*
* @param[in] controller This is SCI_BASE_CONTROLLER object which is cast
* into a SCIC_SDS_CONTROLLER object.
* @param[in] remote_device This is SCI_BASE_REMOTE_DEVICE which, if it was
* used, would be cast to a SCIC_SDS_REMOTE_DEVICE.
* @param[in] io_request This is the SCI_BASE_REQUEST which, if it was used,
* would be cast to a SCIC_SDS_IO_REQUEST.
*
* @return SCI_STATUS
* @retval SCI_FAILURE_INVALID_STATE
*/
static
SCI_STATUS scic_sds_controller_default_request_handler(
SCI_BASE_CONTROLLER_T *controller,
SCI_BASE_REMOTE_DEVICE_T *remote_device,
SCI_BASE_REQUEST_T *io_request
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller request operation from invalid state %d\n",
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(this_controller))
));
return SCI_FAILURE_INVALID_STATE;
}
//*****************************************************************************
//* GENERAL (COMMON) STATE HANDLERS
//*****************************************************************************
/**
* This method is called when the SCIC_SDS_CONTROLLER is in the ready state
* reset handler is in place.
* - Transition to SCI_BASE_CONTROLLER_STATE_RESETTING
*
* @param[in] controller The SCI_BASE_CONTROLLER object which is cast into a
* SCIC_SDS_CONTROLLER object.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS
*/
static
SCI_STATUS scic_sds_controller_general_reset_handler(
SCI_BASE_CONTROLLER_T *controller
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_sds_controller_resetting_state_enter(0x%x) enter\n",
controller
));
//Release resource. So far only resource to be released are timers.
scic_sds_controller_release_resource(this_controller);
// The reset operation is not a graceful cleanup just perform the state
// transition.
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_RESETTING
);
return SCI_SUCCESS;
}
//*****************************************************************************
//* RESET STATE HANDLERS
//*****************************************************************************
/**
* This method is the SCIC_SDS_CONTROLLER initialize handler for the reset
* state.
* - Currently this function does nothing
*
* @param[in] controller This is the SCI_BASE_CONTROLLER object which is cast
* into a SCIC_SDS_CONTROLLER object.
*
* @return SCI_STATUS
* @retval SCI_FAILURE
*
* @todo This function is not yet implemented and is a valid request from the
* reset state.
*/
static
SCI_STATUS scic_sds_controller_reset_state_initialize_handler(
SCI_BASE_CONTROLLER_T *controller
)
{
U32 index;
SCI_STATUS result = SCI_SUCCESS;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER | SCIC_LOG_OBJECT_INITIALIZATION,
"scic_sds_controller_reset_state_initialize_handler(0x%x) enter\n",
controller
));
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_INITIALIZING
);
this_controller->timeout_timer = scic_cb_timer_create(
controller,
scic_sds_controller_timeout_handler,
controller
);
scic_sds_controller_initialize_power_control(this_controller);
/// todo: This should really be done in the reset state enter but
/// the controller has not yet been initialized before getting
/// to the reset enter state so the PCI BAR is not yet assigned
scic_sds_controller_reset_hardware(this_controller);
#if defined(ARLINGTON_BUILD)
scic_sds_controller_lex_atux_initialization(this_controller);
#elif defined(PLEASANT_RIDGE_BUILD) \
|| defined(PBG_HBA_A0_BUILD) \
|| defined(PBG_HBA_A2_BUILD)
scic_sds_controller_afe_initialization(this_controller);
#elif defined(PBG_HBA_BETA_BUILD) || defined(PBG_BUILD)
// There is nothing to do here for B0 since we do not have to
// program the AFE registers.
/// @todo The AFE settings are supposed to be correct for the B0 but
/// presently they seem to be wrong.
scic_sds_controller_afe_initialization(this_controller);
#else // !defined(ARLINGTON_BUILD) && !defined(PLEASANT_RIDGE_BUILD)
// What other systems do we want to add here?
#endif // !defined(ARLINGTON_BUILD) && !defined(PLEASANT_RIDGE_BUILD)
if (SCI_SUCCESS == result)
{
U32 status;
U32 terminate_loop;
// Take the hardware out of reset
SMU_SMUSRCR_WRITE(this_controller, 0x00000000);
/// @todo Provide meaningfull error code for hardware failure
//result = SCI_FAILURE_CONTROLLER_HARDWARE;
result = SCI_FAILURE;
terminate_loop = 100;
while (terminate_loop-- && (result != SCI_SUCCESS))
{
// Loop until the hardware reports success
scic_cb_stall_execution(SCU_CONTEXT_RAM_INIT_STALL_TIME);
status = SMU_SMUCSR_READ(this_controller);
if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
{
result = SCI_SUCCESS;
}
}
}
#ifdef ARLINGTON_BUILD
scic_sds_controller_enable_chipwatch(this_controller);
#endif
if (result == SCI_SUCCESS)
{
U32 max_supported_ports;
U32 max_supported_devices;
U32 max_supported_io_requests;
U32 device_context_capacity;
// Determine what are the actaul device capacities that the
// hardware will support
device_context_capacity = SMU_DCC_READ(this_controller);
max_supported_ports =
smu_dcc_get_max_ports(device_context_capacity);
max_supported_devices =
smu_dcc_get_max_remote_node_context(device_context_capacity);
max_supported_io_requests =
smu_dcc_get_max_task_context(device_context_capacity);
// Make all PEs that are unassigned match up with the logical ports
for (index = 0; index < max_supported_ports; index++)
{
scu_register_write(
this_controller,
this_controller->scu_registers->peg0.ptsg.protocol_engine[index],
index
);
}
// Now that we have the correct hardware reported minimum values
// build the MDL for the controller. Default to a performance
// configuration.
scic_controller_set_mode(this_controller, SCI_MODE_SPEED);
// Record the smaller of the two capacity values
this_controller->logical_port_entries =
MIN(max_supported_ports, this_controller->logical_port_entries);
this_controller->task_context_entries =
MIN(max_supported_io_requests, this_controller->task_context_entries);
this_controller->remote_node_entries =
MIN(max_supported_devices, this_controller->remote_node_entries);
}
// Initialize hardware PCI Relaxed ordering in DMA engines
if (result == SCI_SUCCESS)
{
U32 dma_configuration;
// Configure the payload DMA
dma_configuration = SCU_PDMACR_READ(this_controller);
dma_configuration |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
SCU_PDMACR_WRITE(this_controller, dma_configuration);
// Configure the control DMA
dma_configuration = SCU_CDMACR_READ(this_controller);
dma_configuration |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
SCU_CDMACR_WRITE(this_controller, dma_configuration);
}
// Initialize the PHYs before the PORTs because the PHY registers
// are accessed during the port initialization.
if (result == SCI_SUCCESS)
{
// Initialize the phys
for (index = 0;
(result == SCI_SUCCESS) && (index < SCI_MAX_PHYS);
index++)
{
result = scic_sds_phy_initialize(
&this_controller->phy_table[index],
&this_controller->scu_registers->peg0.pe[index].tl,
&this_controller->scu_registers->peg0.pe[index].ll
);
}
}
//Initialize the SGPIO Unit for HARDWARE controlled SGPIO
if(result == SCI_SUCCESS)
{
scic_sgpio_hardware_initialize(this_controller);
}
if (result == SCI_SUCCESS)
{
// Initialize the logical ports
for (index = 0;
(index < this_controller->logical_port_entries)
&& (result == SCI_SUCCESS);
index++)
{
result = scic_sds_port_initialize(
&this_controller->port_table[index],
&this_controller->scu_registers->peg0.ptsg.port[index],
&this_controller->scu_registers->peg0.ptsg.protocol_engine,
&this_controller->scu_registers->peg0.viit[index]
);
}
}
if (SCI_SUCCESS == result)
{
result = scic_sds_port_configuration_agent_initialize(
this_controller,
&this_controller->port_agent
);
}
// Advance the controller state machine
if (result == SCI_SUCCESS)
{
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_INITIALIZED
);
}
else
{
//stay in the same state and release the resource
scic_sds_controller_release_resource(this_controller);
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER | SCIC_LOG_OBJECT_INITIALIZATION,
"Invalid Port Configuration from scic_sds_controller_reset_state_initialize_handler(0x%x) \n",
controller
));
}
return result;
}
//*****************************************************************************
//* INITIALIZED STATE HANDLERS
//*****************************************************************************
/**
* This method is the SCIC_SDS_CONTROLLER start handler for the initialized
* state.
* - Validate we have a good memory descriptor table
* - Initialze the physical memory before programming the hardware
* - Program the SCU hardware with the physical memory addresses passed in
* the memory descriptor table.
* - Initialzie the TCi pool
* - Initialize the RNi pool
* - Initialize the completion queue
* - Initialize the unsolicited frame data
* - Take the SCU port task scheduler out of reset
* - Start the first phy object.
* - Transition to SCI_BASE_CONTROLLER_STATE_STARTING.
*
* @param[in] controller This is the SCI_BASE_CONTROLLER object which is cast
* into a SCIC_SDS_CONTROLLER object.
* @param[in] timeout This is the allowed time for the controller object to
* reach the started state.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS if all of the controller start operations complete
* @retval SCI_FAILURE_UNSUPPORTED_INFORMATION_FIELD if one or more of the
* memory descriptor fields is invalid.
*/
static
SCI_STATUS scic_sds_controller_initialized_state_start_handler(
SCI_BASE_CONTROLLER_T * controller,
U32 timeout
)
{
U16 index;
SCI_STATUS result;
SCIC_SDS_CONTROLLER_T * this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
// Make sure that the SCI User filled in the memory descriptor table correctly
result = scic_sds_controller_validate_memory_descriptor_table(this_controller);
if (result == SCI_SUCCESS)
{
// The memory descriptor list looks good so program the hardware
scic_sds_controller_ram_initialization(this_controller);
}
if (SCI_SUCCESS == result)
{
// Build the TCi free pool
sci_pool_initialize(this_controller->tci_pool);
for (index = 0; index < this_controller->task_context_entries; index++)
{
sci_pool_put(this_controller->tci_pool, index);
}
// Build the RNi free pool
scic_sds_remote_node_table_initialize(
&this_controller->available_remote_nodes,
this_controller->remote_node_entries
);
}
if (SCI_SUCCESS == result)
{
// Before anything else lets make sure we will not be interrupted
// by the hardware.
scic_controller_disable_interrupts(controller);
// Enable the port task scheduler
scic_sds_controller_enable_port_task_scheduler(this_controller);
// Assign all the task entries to this controller physical function
scic_sds_controller_assign_task_entries(this_controller);
// Now initialze the completion queue
scic_sds_controller_initialize_completion_queue(this_controller);
// Initialize the unsolicited frame queue for use
scic_sds_controller_initialize_unsolicited_frame_queue(this_controller);
// Setup the phy start timer
result = scic_sds_controller_initialize_phy_startup(this_controller);
}
// Start all of the ports on this controller
for (
index = 0;
(index < this_controller->logical_port_entries) && (result == SCI_SUCCESS);
index++
)
{
result = this_controller->port_table[index].
state_handlers->parent.start_handler(&this_controller->port_table[index].parent);
}
if (SCI_SUCCESS == result)
{
scic_sds_controller_start_next_phy(this_controller);
// See if the user requested to timeout this operation.
if (timeout != 0)
scic_cb_timer_start(controller, this_controller->timeout_timer, timeout);
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_STARTING
);
}
return result;
}
//*****************************************************************************
//* STARTING STATE HANDLERS
//*****************************************************************************
/**
* This method is called when the SCIC_SDS_CONTROLLER is in the starting state
* link up handler is called. This method will perform the following:
* - Stop the phy timer
* - Start the next phy
* - Report the link up condition to the port object
*
* @param[in] controller This is SCIC_SDS_CONTROLLER which receives the link up
* notification.
* @param[in] port This is SCIC_SDS_PORT with which the phy is associated.
* @param[in] phy This is the SCIC_SDS_PHY which has gone link up.
*
* @return none
*/
static
void scic_sds_controller_starting_state_link_up_handler(
SCIC_SDS_CONTROLLER_T *this_controller,
SCIC_SDS_PORT_T *port,
SCIC_SDS_PHY_T *phy
)
{
scic_sds_controller_phy_timer_stop(this_controller);
this_controller->port_agent.link_up_handler(
this_controller, &this_controller->port_agent, port, phy
);
//scic_sds_port_link_up(port, phy);
scic_sds_controller_start_next_phy(this_controller);
}
/**
* This method is called when the SCIC_SDS_CONTROLLER is in the starting state
* link down handler is called.
* - Report the link down condition to the port object
*
* @param[in] controller This is SCIC_SDS_CONTROLLER which receives the
* link down notification.
* @param[in] port This is SCIC_SDS_PORT with which the phy is associated.
* @param[in] phy This is the SCIC_SDS_PHY which has gone link down.
*
* @return none
*/
static
void scic_sds_controller_starting_state_link_down_handler(
SCIC_SDS_CONTROLLER_T *this_controller,
SCIC_SDS_PORT_T *port,
SCIC_SDS_PHY_T *phy
)
{
this_controller->port_agent.link_down_handler(
this_controller, &this_controller->port_agent, port, phy
);
//scic_sds_port_link_down(port, phy);
}
//*****************************************************************************
//* READY STATE HANDLERS
//*****************************************************************************
/**
* This method is called when the SCIC_SDS_CONTROLLER is in the ready state
* stop handler is called.
* - Start the timeout timer
* - Transition to SCI_BASE_CONTROLLER_STATE_STOPPING.
*
* @param[in] controller The SCI_BASE_CONTROLLER object which is cast into a
* SCIC_SDS_CONTROLLER object.
* @param[in] timeout The timeout for when the stop operation should report a
* failure.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS
*/
static
SCI_STATUS scic_sds_controller_ready_state_stop_handler(
SCI_BASE_CONTROLLER_T *controller,
U32 timeout
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
// See if the user requested to timeout this operation
if (timeout != 0)
scic_cb_timer_start(controller, this_controller->timeout_timer, timeout);
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_STOPPING
);
return SCI_SUCCESS;
}
/**
* This method is called when the SCIC_SDS_CONTROLLER is in the ready state
* and the start io handler is called.
* - Start the io request on the remote device
* - if successful
* - assign the io_request to the io_request_table
* - post the request to the hardware
*
* @param[in] controller This is SCI_BASE_CONTROLLER object which is cast
* into a SCIC_SDS_CONTROLLER object.
* @param[in] remote_device This is SCI_BASE_REMOTE_DEVICE which is cast to a
* SCIC_SDS_REMOTE_DEVICE object.
* @param[in] io_request This is the SCI_BASE_REQUEST which is cast to a
* SCIC_SDS_IO_REQUEST object.
* @param[in] io_tag This is the IO tag to be assigned to the IO request or
* SCI_CONTROLLER_INVALID_IO_TAG.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS if the start io operation succeeds
* @retval SCI_FAILURE_INSUFFICIENT_RESOURCES if the IO tag could not be
* allocated for the io request.
* @retval SCI_FAILURE_INVALID_STATE if one or more objects are not in a valid
* state to accept io requests.
*
* @todo How does the io_tag parameter get assigned to the io request?
*/
static
SCI_STATUS scic_sds_controller_ready_state_start_io_handler(
SCI_BASE_CONTROLLER_T *controller,
SCI_BASE_REMOTE_DEVICE_T *remote_device,
SCI_BASE_REQUEST_T *io_request,
U16 io_tag
)
{
SCI_STATUS status;
SCIC_SDS_CONTROLLER_T *this_controller;
SCIC_SDS_REQUEST_T *the_request;
SCIC_SDS_REMOTE_DEVICE_T *the_device;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
the_request = (SCIC_SDS_REQUEST_T *)io_request;
the_device = (SCIC_SDS_REMOTE_DEVICE_T *)remote_device;
status = scic_sds_remote_device_start_io(this_controller, the_device, the_request);
if (status == SCI_SUCCESS)
{
this_controller->io_request_table[
scic_sds_io_tag_get_index(the_request->io_tag)] = the_request;
scic_sds_controller_post_request(
this_controller,
scic_sds_request_get_post_context(the_request)
);
}
return status;
}
/**
* This method is called when the SCIC_SDS_CONTROLLER is in the ready state
* and the complete io handler is called.
* - Complete the io request on the remote device
* - if successful
* - remove the io_request to the io_request_table
*
* @param[in] controller This is SCI_BASE_CONTROLLER object which is cast
* into a SCIC_SDS_CONTROLLER object.
* @param[in] remote_device This is SCI_BASE_REMOTE_DEVICE which is cast to a
* SCIC_SDS_REMOTE_DEVICE object.
* @param[in] io_request This is the SCI_BASE_REQUEST which is cast to a
* SCIC_SDS_IO_REQUEST object.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS if the start io operation succeeds
* @retval SCI_FAILURE_INVALID_STATE if one or more objects are not in a valid
* state to accept io requests.
*/
static
SCI_STATUS scic_sds_controller_ready_state_complete_io_handler(
SCI_BASE_CONTROLLER_T *controller,
SCI_BASE_REMOTE_DEVICE_T *remote_device,
SCI_BASE_REQUEST_T *io_request
)
{
U16 index;
SCI_STATUS status;
SCIC_SDS_CONTROLLER_T *this_controller;
SCIC_SDS_REQUEST_T *the_request;
SCIC_SDS_REMOTE_DEVICE_T *the_device;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
the_request = (SCIC_SDS_REQUEST_T *)io_request;
the_device = (SCIC_SDS_REMOTE_DEVICE_T *)remote_device;
status = scic_sds_remote_device_complete_io(
this_controller, the_device, the_request);
if (status == SCI_SUCCESS)
{
index = scic_sds_io_tag_get_index(the_request->io_tag);
this_controller->io_request_table[index] = SCI_INVALID_HANDLE;
}
return status;
}
/**
* This method is called when the SCIC_SDS_CONTROLLER is in the ready state
* and the continue io handler is called.
*
* @param[in] controller This is SCI_BASE_CONTROLLER object which is cast
* into a SCIC_SDS_CONTROLLER object.
* @param[in] remote_device This is SCI_BASE_REMOTE_DEVICE which is cast to a
* SCIC_SDS_REMOTE_DEVICE object.
* @param[in] io_request This is the SCI_BASE_REQUEST which is cast to a
* SCIC_SDS_IO_REQUEST object.
*
* @return SCI_STATUS
*/
static
SCI_STATUS scic_sds_controller_ready_state_continue_io_handler(
SCI_BASE_CONTROLLER_T *controller,
SCI_BASE_REMOTE_DEVICE_T *remote_device,
SCI_BASE_REQUEST_T *io_request
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
SCIC_SDS_REQUEST_T *the_request;
the_request = (SCIC_SDS_REQUEST_T *)io_request;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
this_controller->io_request_table[
scic_sds_io_tag_get_index(the_request->io_tag)] = the_request;
scic_sds_controller_post_request(
this_controller,
scic_sds_request_get_post_context(the_request)
);
return SCI_SUCCESS;
}
/**
* This method is called when the SCIC_SDS_CONTROLLER is in the ready state
* and the start task handler is called.
* - The remote device is requested to start the task request
* - if successful
* - assign the task to the io_request_table
* - post the request to the SCU hardware
*
* @param[in] controller This is SCI_BASE_CONTROLLER object which is cast
* into a SCIC_SDS_CONTROLLER object.
* @param[in] remote_device This is SCI_BASE_REMOTE_DEVICE which is cast to a
* SCIC_SDS_REMOTE_DEVICE object.
* @param[in] io_request This is the SCI_BASE_REQUEST which is cast to a
* SCIC_SDS_IO_REQUEST object.
* @param[in] task_tag This is the task tag to be assigned to the task request
* or SCI_CONTROLLER_INVALID_IO_TAG.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS if the start io operation succeeds
* @retval SCI_FAILURE_INSUFFICIENT_RESOURCES if the IO tag could not be
* allocated for the io request.
* @retval SCI_FAILURE_INVALID_STATE if one or more objects are not in a valid
* state to accept io requests.
*
* @todo How does the io tag get assigned in this code path?
*/
static
SCI_STATUS scic_sds_controller_ready_state_start_task_handler(
SCI_BASE_CONTROLLER_T *controller,
SCI_BASE_REMOTE_DEVICE_T *remote_device,
SCI_BASE_REQUEST_T *io_request,
U16 task_tag
)
{
SCIC_SDS_CONTROLLER_T *this_controller = (SCIC_SDS_CONTROLLER_T *)
controller;
SCIC_SDS_REQUEST_T *the_request = (SCIC_SDS_REQUEST_T *)
io_request;
SCIC_SDS_REMOTE_DEVICE_T *the_device = (SCIC_SDS_REMOTE_DEVICE_T *)
remote_device;
SCI_STATUS status;
status = scic_sds_remote_device_start_task(
this_controller, the_device, the_request
);
if (status == SCI_SUCCESS)
{
this_controller->io_request_table[
scic_sds_io_tag_get_index(the_request->io_tag)] = the_request;
scic_sds_controller_post_request(
this_controller,
scic_sds_request_get_post_context(the_request)
);
}
else if (status == SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS)
{
this_controller->io_request_table[
scic_sds_io_tag_get_index(the_request->io_tag)] = the_request;
//We will let framework know this task request started successfully,
//although core is still woring on starting the request (to post tc when
//RNC is resumed.)
status = SCI_SUCCESS;
}
return status;
}
/**
* This method is called when the SCIC_SDS_CONTROLLER is in the ready state
* and the terminate request handler is called.
* - call the io request terminate function
* - if successful
* - post the terminate request to the SCU hardware
*
* @param[in] controller This is SCI_BASE_CONTROLLER object which is cast
* into a SCIC_SDS_CONTROLLER object.
* @param[in] remote_device This is SCI_BASE_REMOTE_DEVICE which is cast to a
* SCIC_SDS_REMOTE_DEVICE object.
* @param[in] io_request This is the SCI_BASE_REQUEST which is cast to a
* SCIC_SDS_IO_REQUEST object.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS if the start io operation succeeds
* @retval SCI_FAILURE_INVALID_STATE if one or more objects are not in a valid
* state to accept io requests.
*/
static
SCI_STATUS scic_sds_controller_ready_state_terminate_request_handler(
SCI_BASE_CONTROLLER_T *controller,
SCI_BASE_REMOTE_DEVICE_T *remote_device,
SCI_BASE_REQUEST_T *io_request
)
{
SCIC_SDS_CONTROLLER_T *this_controller = (SCIC_SDS_CONTROLLER_T *)
controller;
SCIC_SDS_REQUEST_T *the_request = (SCIC_SDS_REQUEST_T *)
io_request;
SCI_STATUS status;
status = scic_sds_io_request_terminate(the_request);
if (status == SCI_SUCCESS)
{
// Utilize the original post context command and or in the POST_TC_ABORT
// request sub-type.
scic_sds_controller_post_request(
this_controller,
scic_sds_request_get_post_context(the_request)
| SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT
);
}
return status;
}
/**
* This method is called when the SCIC_SDS_CONTROLLER is in the starting state
* link up handler is called. This method will perform the following:
* - Stop the phy timer
* - Start the next phy
* - Report the link up condition to the port object
*
* @param[in] controller This is SCIC_SDS_CONTROLLER which receives the link up
* notification.
* @param[in] port This is SCIC_SDS_PORT with which the phy is associated.
* @param[in] phy This is the SCIC_SDS_PHY which has gone link up.
*
* @return none
*/
static
void scic_sds_controller_ready_state_link_up_handler(
SCIC_SDS_CONTROLLER_T *this_controller,
SCIC_SDS_PORT_T *port,
SCIC_SDS_PHY_T *phy
)
{
this_controller->port_agent.link_up_handler(
this_controller, &this_controller->port_agent, port, phy
);
}
/**
* This method is called when the SCIC_SDS_CONTROLLER is in the starting state
* link down handler is called.
* - Report the link down condition to the port object
*
* @param[in] controller This is SCIC_SDS_CONTROLLER which receives the
* link down notification.
* @param[in] port This is SCIC_SDS_PORT with which the phy is associated.
* @param[in] phy This is the SCIC_SDS_PHY which has gone link down.
*
* @return none
*/
static
void scic_sds_controller_ready_state_link_down_handler(
SCIC_SDS_CONTROLLER_T *this_controller,
SCIC_SDS_PORT_T *port,
SCIC_SDS_PHY_T *phy
)
{
this_controller->port_agent.link_down_handler(
this_controller, &this_controller->port_agent, port, phy
);
}
//*****************************************************************************
//* STOPPING STATE HANDLERS
//*****************************************************************************
/**
* This method is called when the SCIC_SDS_CONTROLLER is in a stopping state
* and the complete io handler is called.
* - This function is not yet implemented
*
* @param[in] controller This is SCI_BASE_CONTROLLER object which is cast
* into a SCIC_SDS_CONTROLLER object.
* @param[in] remote_device This is SCI_BASE_REMOTE_DEVICE which is cast to a
* SCIC_SDS_REMOTE_DEVICE object.
* @param[in] io_request This is the SCI_BASE_REQUEST which is cast to a
* SCIC_SDS_IO_REQUEST object.
*
* @return SCI_STATUS
* @retval SCI_FAILURE
*/
static
SCI_STATUS scic_sds_controller_stopping_state_complete_io_handler(
SCI_BASE_CONTROLLER_T *controller,
SCI_BASE_REMOTE_DEVICE_T *remote_device,
SCI_BASE_REQUEST_T *io_request
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
/// @todo Implement this function
return SCI_FAILURE;
}
/**
* This method is called when the SCIC_SDS_CONTROLLER is in a stopping state
* and the a remote device has stopped.
*
* @param[in] controller This is SCI_BASE_CONTROLLER object which is cast
* into a SCIC_SDS_CONTROLLER object.
* @param[in] remote_device This is SCI_BASE_REMOTE_DEVICE which is cast to a
* SCIC_SDS_REMOTE_DEVICE object.
*
* @return none
*/
static
void scic_sds_controller_stopping_state_device_stopped_handler(
SCIC_SDS_CONTROLLER_T * controller,
SCIC_SDS_REMOTE_DEVICE_T * remote_device
)
{
if (!scic_sds_controller_has_remote_devices_stopping(controller))
{
sci_base_state_machine_change_state(
&controller->parent.state_machine,
SCI_BASE_CONTROLLER_STATE_STOPPED
);
}
}
//*****************************************************************************
//* STOPPED STATE HANDLERS
//*****************************************************************************
//*****************************************************************************
//* FAILED STATE HANDLERS
//*****************************************************************************
/**
* This method is called when the SCIC_SDS_CONTROLLER failed state start
* io/task handler is in place.
* - Issue a warning message
*
* @param[in] controller This is SCI_BASE_CONTROLLER object which is cast
* into a SCIC_SDS_CONTROLLER object.
* @param[in] remote_device This is SCI_BASE_REMOTE_DEVICE which, if it was
* used, would be cast to a SCIC_SDS_REMOTE_DEVICE.
* @param[in] io_request This is the SCI_BASE_REQUEST which, if it was used,
* would be cast to a SCIC_SDS_IO_REQUEST.
* @param[in] io_tag This is the IO tag to be assigned to the IO request or
* SCI_CONTROLLER_INVALID_IO_TAG.
*
* @return SCI_FAILURE
* @retval SCI_FAILURE
*/
static
SCI_STATUS scic_sds_controller_failed_state_start_operation_handler(
SCI_BASE_CONTROLLER_T *controller,
SCI_BASE_REMOTE_DEVICE_T *remote_device,
SCI_BASE_REQUEST_T *io_request,
U16 io_tag
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
SCIC_LOG_WARNING((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"SCIC Controller requested to start an io/task from failed state %d\n",
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(this_controller))
));
return SCI_FAILURE;
}
/**
* This method is called when the SCIC_SDS_CONTROLLER is in the failed state
* reset handler is in place.
* - Transition to SCI_BASE_CONTROLLER_STATE_RESETTING
*
* @param[in] controller The SCI_BASE_CONTROLLER object which is cast into a
* SCIC_SDS_CONTROLLER object.
*
* @return SCI_STATUS
* @retval SCI_FAILURE if fatal memory error occurred
*/
static
SCI_STATUS scic_sds_controller_failed_state_reset_handler(
SCI_BASE_CONTROLLER_T *controller
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller = (SCIC_SDS_CONTROLLER_T *)controller;
if (this_controller->parent.error == SCI_CONTROLLER_FATAL_MEMORY_ERROR) {
SCIC_LOG_TRACE((
sci_base_object_get_logger(controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_sds_controller_resetting_state_enter(0x%x) enter\n not allowed with fatal memory error",
controller
));
return SCI_FAILURE;
} else {
return scic_sds_controller_general_reset_handler(controller);
}
}
/**
* This method is called when the SCIC_SDS_CONTROLLER is in the failed state
* and the terminate request handler is called.
* - call the io request terminate function
* - if successful
* - post the terminate request to the SCU hardware
*
* @param[in] controller This is SCI_BASE_CONTROLLER object which is cast
* into a SCIC_SDS_CONTROLLER object.
* @param[in] remote_device This is SCI_BASE_REMOTE_DEVICE which is cast to a
* SCIC_SDS_REMOTE_DEVICE object.
* @param[in] io_request This is the SCI_BASE_REQUEST which is cast to a
* SCIC_SDS_IO_REQUEST object.
*
* @return SCI_STATUS
* @retval SCI_SUCCESS if the start io operation succeeds
* @retval SCI_FAILURE_INVALID_STATE if one or more objects are not in a valid
* state to accept io requests.
*/
static
SCI_STATUS scic_sds_controller_failed_state_terminate_request_handler(
SCI_BASE_CONTROLLER_T *controller,
SCI_BASE_REMOTE_DEVICE_T *remote_device,
SCI_BASE_REQUEST_T *io_request
)
{
SCIC_SDS_REQUEST_T *the_request = (SCIC_SDS_REQUEST_T *)
io_request;
return scic_sds_io_request_terminate(the_request);
}
SCIC_SDS_CONTROLLER_STATE_HANDLER_T
scic_sds_controller_state_handler_table[SCI_BASE_CONTROLLER_MAX_STATES] =
{
// SCI_BASE_CONTROLLER_STATE_INITIAL
{
{
NULL,
NULL,
NULL,
NULL,
scic_sds_controller_default_start_operation_handler,
scic_sds_controller_default_start_operation_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_default_request_handler,
NULL,
NULL
},
scic_sds_controller_default_request_handler,
NULL,
NULL,
NULL,
NULL
},
// SCI_BASE_CONTROLLER_STATE_RESET
{
{
NULL,
NULL,
NULL,
scic_sds_controller_reset_state_initialize_handler,
scic_sds_controller_default_start_operation_handler,
scic_sds_controller_default_start_operation_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_default_request_handler,
NULL,
NULL
},
scic_sds_controller_default_request_handler,
NULL,
NULL,
NULL,
NULL
},
// SCI_BASE_CONTROLLER_STATE_INITIALIZING
{
{
NULL,
NULL,
NULL,
NULL,
scic_sds_controller_default_start_operation_handler,
scic_sds_controller_default_start_operation_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_default_request_handler,
NULL,
NULL
},
scic_sds_controller_default_request_handler,
NULL,
NULL,
NULL,
NULL
},
// SCI_BASE_CONTROLLER_STATE_INITIALIZED
{
{
scic_sds_controller_initialized_state_start_handler,
NULL,
NULL,
NULL,
scic_sds_controller_default_start_operation_handler,
scic_sds_controller_default_start_operation_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_default_request_handler,
NULL,
NULL
},
scic_sds_controller_default_request_handler,
NULL,
NULL,
NULL,
NULL
},
// SCI_BASE_CONTROLLER_STATE_STARTING
{
{
NULL,
NULL,
NULL,
NULL,
scic_sds_controller_default_start_operation_handler,
scic_sds_controller_default_start_operation_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_default_request_handler,
NULL,
NULL
},
scic_sds_controller_default_request_handler,
scic_sds_controller_starting_state_link_up_handler,
scic_sds_controller_starting_state_link_down_handler,
NULL,
NULL
},
// SCI_BASE_CONTROLLER_STATE_READY
{
{
NULL,
scic_sds_controller_ready_state_stop_handler,
scic_sds_controller_general_reset_handler,
NULL,
scic_sds_controller_ready_state_start_io_handler,
scic_sds_controller_default_start_operation_handler,
scic_sds_controller_ready_state_complete_io_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_ready_state_continue_io_handler,
scic_sds_controller_ready_state_start_task_handler,
scic_sds_controller_ready_state_complete_io_handler
},
scic_sds_controller_ready_state_terminate_request_handler,
scic_sds_controller_ready_state_link_up_handler,
scic_sds_controller_ready_state_link_down_handler,
NULL,
NULL
},
// SCI_BASE_CONTROLLER_STATE_RESETTING
{
{
NULL,
NULL,
NULL,
NULL,
scic_sds_controller_default_start_operation_handler,
scic_sds_controller_default_start_operation_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_default_request_handler,
NULL,
NULL
},
scic_sds_controller_default_request_handler,
NULL,
NULL,
NULL,
NULL
},
// SCI_BASE_CONTROLLER_STATE_STOPPING
{
{
NULL,
NULL,
NULL,
NULL,
scic_sds_controller_default_start_operation_handler,
scic_sds_controller_default_start_operation_handler,
scic_sds_controller_stopping_state_complete_io_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_default_request_handler,
NULL,
NULL
},
scic_sds_controller_default_request_handler,
NULL,
NULL,
NULL,
scic_sds_controller_stopping_state_device_stopped_handler
},
// SCI_BASE_CONTROLLER_STATE_STOPPED
{
{
NULL,
NULL,
scic_sds_controller_failed_state_reset_handler,
NULL,
scic_sds_controller_default_start_operation_handler,
scic_sds_controller_default_start_operation_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_default_request_handler,
NULL,
NULL
},
scic_sds_controller_default_request_handler,
NULL,
NULL,
NULL,
NULL
},
// SCI_BASE_CONTROLLER_STATE_FAILED
{
{
NULL,
NULL,
scic_sds_controller_general_reset_handler,
NULL,
scic_sds_controller_failed_state_start_operation_handler,
scic_sds_controller_failed_state_start_operation_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_default_request_handler,
scic_sds_controller_default_request_handler,
NULL,
NULL
},
scic_sds_controller_failed_state_terminate_request_handler,
NULL,
NULL,
NULL
}
};
/**
* This method implements the actions taken by the SCIC_SDS_CONTROLLER on
* entry to the SCI_BASE_CONTROLLER_STATE_INITIAL.
* - Set the state handlers to the controllers initial state.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_CONTROLLER object.
*
* @return none
*
* @todo This function should initialze the controller object.
*/
static
void scic_sds_controller_initial_state_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller= (SCIC_SDS_CONTROLLER_T *)object;
scic_sds_controller_set_base_state_handlers(
this_controller, SCI_BASE_CONTROLLER_STATE_INITIAL);
sci_base_state_machine_change_state(
&this_controller->parent.state_machine, SCI_BASE_CONTROLLER_STATE_RESET);
}
/**
* This method implements the actions taken by the SCIC_SDS_CONTROLLER on
* entry to the SCI_BASE_CONTROLLER_STATE_RESET.
* - Set the state handlers to the controllers reset state.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_CONTROLLER object.
*
* @return none
*/
static
void scic_sds_controller_reset_state_enter(
SCI_BASE_OBJECT_T *object
)
{
U8 index;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller= (SCIC_SDS_CONTROLLER_T *)object;
scic_sds_controller_set_base_state_handlers(
this_controller, SCI_BASE_CONTROLLER_STATE_RESET);
scic_sds_port_configuration_agent_construct(&this_controller->port_agent);
// Construct the ports for this controller
for (index = 0; index < (SCI_MAX_PORTS + 1); index++)
{
scic_sds_port_construct(
&this_controller->port_table[index],
(index == SCI_MAX_PORTS) ? SCIC_SDS_DUMMY_PORT : index,
this_controller
);
}
// Construct the phys for this controller
for (index = 0; index < SCI_MAX_PHYS; index++)
{
// Add all the PHYs to the dummy port
scic_sds_phy_construct(
&this_controller->phy_table[index],
&this_controller->port_table[SCI_MAX_PORTS],
index
);
}
this_controller->invalid_phy_mask = 0;
// Set the default maximum values
this_controller->completion_event_entries = SCU_EVENT_COUNT;
this_controller->completion_queue_entries = SCU_COMPLETION_QUEUE_COUNT;
this_controller->remote_node_entries = SCI_MAX_REMOTE_DEVICES;
this_controller->logical_port_entries = SCI_MAX_PORTS;
this_controller->task_context_entries = SCU_IO_REQUEST_COUNT;
this_controller->uf_control.buffers.count = SCU_UNSOLICITED_FRAME_COUNT;
this_controller->uf_control.address_table.count= SCU_UNSOLICITED_FRAME_COUNT;
// Initialize the User and OEM parameters to default values.
scic_sds_controller_set_default_config_parameters(this_controller);
}
/**
* This method implements the actions taken by the SCIC_SDS_CONTROLLER on
* entry to the SCI_BASE_CONTROLLER_STATE_INITIALIZING.
* - Set the state handlers to the controllers initializing state.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_CONTROLLER object.
*
* @return none
*/
static
void scic_sds_controller_initializing_state_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller= (SCIC_SDS_CONTROLLER_T *)object;
scic_sds_controller_set_base_state_handlers(
this_controller, SCI_BASE_CONTROLLER_STATE_INITIALIZING);
}
/**
* This method implements the actions taken by the SCIC_SDS_CONTROLLER on
* entry to the SCI_BASE_CONTROLLER_STATE_INITIALIZED.
* - Set the state handlers to the controllers initialized state.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_CONTROLLER object.
*
* @return none
*/
static
void scic_sds_controller_initialized_state_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller= (SCIC_SDS_CONTROLLER_T *)object;
scic_sds_controller_set_base_state_handlers(
this_controller, SCI_BASE_CONTROLLER_STATE_INITIALIZED);
}
/**
* This method implements the actions taken by the SCIC_SDS_CONTROLLER on
* entry to the SCI_BASE_CONTROLLER_STATE_STARTING.
* - Set the state handlers to the controllers starting state.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_CONTROLLER object.
*
* @return none
*/
static
void scic_sds_controller_starting_state_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller= (SCIC_SDS_CONTROLLER_T *)object;
scic_sds_controller_set_base_state_handlers(
this_controller, SCI_BASE_CONTROLLER_STATE_STARTING);
}
/**
* This method implements the actions taken by the SCIC_SDS_CONTROLLER on exit
* from the SCI_BASE_CONTROLLER_STATE_STARTING.
* - This function stops the controller starting timeout timer.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_CONTROLLER object.
*
* @return none
*/
static
void scic_sds_controller_starting_state_exit(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller= (SCIC_SDS_CONTROLLER_T *)object;
scic_cb_timer_stop(object, this_controller->timeout_timer);
// We are done with this timer since we are exiting the starting
// state so remove it
scic_cb_timer_destroy(
this_controller,
this_controller->phy_startup_timer
);
this_controller->phy_startup_timer = NULL;
}
/**
* This method implements the actions taken by the SCIC_SDS_CONTROLLER on
* entry to the SCI_BASE_CONTROLLER_STATE_READY.
* - Set the state handlers to the controllers ready state.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_CONTROLLER object.
*
* @return none
*/
static
void scic_sds_controller_ready_state_enter(
SCI_BASE_OBJECT_T *object
)
{
U32 clock_gating_unit_value;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller= (SCIC_SDS_CONTROLLER_T *)object;
scic_sds_controller_set_base_state_handlers(
this_controller, SCI_BASE_CONTROLLER_STATE_READY);
/**
* enable clock gating for power control of the scu unit
*/
clock_gating_unit_value = SMU_CGUCR_READ(this_controller);
clock_gating_unit_value &= ~( SMU_CGUCR_GEN_BIT(REGCLK_ENABLE)
| SMU_CGUCR_GEN_BIT(TXCLK_ENABLE)
| SMU_CGUCR_GEN_BIT(XCLK_ENABLE) );
clock_gating_unit_value |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
SMU_CGUCR_WRITE(this_controller, clock_gating_unit_value);
//set the default interrupt coalescence number and timeout value.
scic_controller_set_interrupt_coalescence(
this_controller, 0x10, 250);
}
/**
* This method implements the actions taken by the SCIC_SDS_CONTROLLER on exit
* from the SCI_BASE_CONTROLLER_STATE_READY.
* - This function does nothing.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_CONTROLLER object.
*
* @return none
*/
static
void scic_sds_controller_ready_state_exit(
SCI_BASE_OBJECT_T *object
)
{
U32 clock_gating_unit_value;
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller= (SCIC_SDS_CONTROLLER_T *)object;
/**
* restore clock gating for power control of the scu unit
*/
clock_gating_unit_value = SMU_CGUCR_READ(this_controller);
clock_gating_unit_value &= ~SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
clock_gating_unit_value |= ( SMU_CGUCR_GEN_BIT(REGCLK_ENABLE)
| SMU_CGUCR_GEN_BIT(TXCLK_ENABLE)
| SMU_CGUCR_GEN_BIT(XCLK_ENABLE) );
SMU_CGUCR_WRITE(this_controller, clock_gating_unit_value);
//disable interrupt coalescence.
scic_controller_set_interrupt_coalescence(this_controller, 0, 0);
}
/**
* This method implements the actions taken by the SCIC_SDS_CONTROLLER on
* entry to the SCI_BASE_CONTROLLER_STATE_READY.
* - Set the state handlers to the controllers ready state.
* - Stop all of the remote devices on this controller
* - Stop the ports on this controller
* - Stop the phys on this controller
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_CONTROLLER object.
*
* @return none
*/
static
void scic_sds_controller_stopping_state_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller= (SCIC_SDS_CONTROLLER_T *)object;
scic_sds_controller_set_base_state_handlers(
this_controller, SCI_BASE_CONTROLLER_STATE_STOPPING);
// Stop all of the components for this controller in the reverse order
// from which they are initialized.
scic_sds_controller_stop_devices(this_controller);
scic_sds_controller_stop_ports(this_controller);
if (!scic_sds_controller_has_remote_devices_stopping(this_controller))
{
sci_base_state_machine_change_state(
&this_controller->parent.state_machine,
SCI_BASE_CONTROLLER_STATE_STOPPED
);
}
}
/**
* This method implements the actions taken by the SCIC_SDS_CONTROLLER on exit
* from the SCI_BASE_CONTROLLER_STATE_STOPPING.
* - This function stops the controller stopping timeout timer.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_CONTROLLER object.
*
* @return none
*/
static
void scic_sds_controller_stopping_state_exit(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller= (SCIC_SDS_CONTROLLER_T *)object;
scic_cb_timer_stop(this_controller, this_controller->timeout_timer);
}
/**
* This method implements the actions taken by the SCIC_SDS_CONTROLLER on
* entry to the SCI_BASE_CONTROLLER_STATE_STOPPED.
* - Set the state handlers to the controllers stopped state.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_CONTROLLER object.
*
* @return none
*/
static
void scic_sds_controller_stopped_state_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller= (SCIC_SDS_CONTROLLER_T *)object;
scic_sds_controller_set_base_state_handlers(
this_controller, SCI_BASE_CONTROLLER_STATE_STOPPED);
// We are done with this timer until the next timer we initialize
scic_cb_timer_destroy(
this_controller,
this_controller->timeout_timer
);
this_controller->timeout_timer = NULL;
// Controller has stopped so disable all the phys on this controller
scic_sds_controller_stop_phys(this_controller);
scic_sds_port_configuration_agent_destroy(
this_controller,
&this_controller->port_agent
);
scic_cb_controller_stop_complete(this_controller, SCI_SUCCESS);
}
/**
* This method implements the actions taken by the SCIC_SDS_CONTROLLER on
* entry to the SCI_BASE_CONTROLLER_STATE_RESETTING.
* - Set the state handlers to the controllers resetting state.
* - Write to the SCU hardware reset register to force a reset
* - Transition to the SCI_BASE_CONTROLLER_STATE_RESET
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_CONTROLLER object.
*
* @return none
*/
static
void scic_sds_controller_resetting_state_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller= (SCIC_SDS_CONTROLLER_T *)object;
SCIC_LOG_TRACE((
sci_base_object_get_logger(this_controller),
SCIC_LOG_OBJECT_CONTROLLER,
"scic_sds_controller_resetting_state_enter(0x%x) enter\n",
this_controller
));
scic_sds_controller_set_base_state_handlers(
this_controller, SCI_BASE_CONTROLLER_STATE_RESETTING);
scic_sds_controller_reset_hardware(this_controller);
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_RESET
);
}
static
SCI_STATUS scic_sds_abort_reqests(
SCIC_SDS_CONTROLLER_T * controller,
SCIC_SDS_REMOTE_DEVICE_T * remote_device,
SCIC_SDS_PORT_T * port
)
{
SCI_STATUS status = SCI_SUCCESS;
SCI_STATUS terminate_status = SCI_SUCCESS;
SCIC_SDS_REQUEST_T *the_request;
U32 index;
U32 request_count;
if (remote_device != NULL)
request_count = remote_device->started_request_count;
else if (port != NULL)
request_count = port->started_request_count;
else
request_count = SCI_MAX_IO_REQUESTS;
for (index = 0;
(index < SCI_MAX_IO_REQUESTS) && (request_count > 0);
index++)
{
the_request = controller->io_request_table[index];
if (the_request != NULL)
{
if (the_request->target_device == remote_device
|| the_request->target_device->owning_port == port
|| (remote_device == NULL && port == NULL))
{
terminate_status = scic_controller_terminate_request(
controller,
the_request->target_device,
the_request
);
if (terminate_status != SCI_SUCCESS)
status = terminate_status;
request_count--;
}
}
}
return status;
}
SCI_STATUS scic_sds_terminate_reqests(
SCIC_SDS_CONTROLLER_T *this_controller,
SCIC_SDS_REMOTE_DEVICE_T *this_remote_device,
SCIC_SDS_PORT_T *this_port
)
{
SCI_STATUS status = SCI_SUCCESS;
SCI_STATUS abort_status = SCI_SUCCESS;
// move all request to abort state
abort_status = scic_sds_abort_reqests(this_controller, this_remote_device, this_port);
if (abort_status != SCI_SUCCESS)
status = abort_status;
//move all request to complete state
if (this_controller->parent.error == SCI_CONTROLLER_FATAL_MEMORY_ERROR)
abort_status = scic_sds_abort_reqests(this_controller, this_remote_device, this_port);
if (abort_status != SCI_SUCCESS)
status = abort_status;
return status;
}
static
SCI_STATUS scic_sds_terminate_all_requests(
SCIC_SDS_CONTROLLER_T * controller
)
{
return scic_sds_terminate_reqests(controller, NULL, NULL);
}
/**
* This method implements the actions taken by the SCIC_SDS_CONTROLLER on
* entry to the SCI_BASE_CONTROLLER_STATE_FAILED.
* - Set the state handlers to the controllers failed state.
*
* @param[in] object This is the SCI_BASE_OBJECT which is cast to a
* SCIC_SDS_CONTROLLER object.
*
* @return none
*/
static
void scic_sds_controller_failed_state_enter(
SCI_BASE_OBJECT_T *object
)
{
SCIC_SDS_CONTROLLER_T *this_controller;
this_controller= (SCIC_SDS_CONTROLLER_T *)object;
scic_sds_controller_set_base_state_handlers(
this_controller, SCI_BASE_CONTROLLER_STATE_FAILED);
if (this_controller->parent.error == SCI_CONTROLLER_FATAL_MEMORY_ERROR)
scic_sds_terminate_all_requests(this_controller);
else
scic_sds_controller_release_resource(this_controller);
//notify framework the controller failed.
scic_cb_controller_error(this_controller,
this_controller->parent.error);
}
// ---------------------------------------------------------------------------
SCI_BASE_STATE_T
scic_sds_controller_state_table[SCI_BASE_CONTROLLER_MAX_STATES] =
{
{
SCI_BASE_CONTROLLER_STATE_INITIAL,
scic_sds_controller_initial_state_enter,
NULL,
},
{
SCI_BASE_CONTROLLER_STATE_RESET,
scic_sds_controller_reset_state_enter,
NULL,
},
{
SCI_BASE_CONTROLLER_STATE_INITIALIZING,
scic_sds_controller_initializing_state_enter,
NULL,
},
{
SCI_BASE_CONTROLLER_STATE_INITIALIZED,
scic_sds_controller_initialized_state_enter,
NULL,
},
{
SCI_BASE_CONTROLLER_STATE_STARTING,
scic_sds_controller_starting_state_enter,
scic_sds_controller_starting_state_exit,
},
{
SCI_BASE_CONTROLLER_STATE_READY,
scic_sds_controller_ready_state_enter,
scic_sds_controller_ready_state_exit,
},
{
SCI_BASE_CONTROLLER_STATE_RESETTING,
scic_sds_controller_resetting_state_enter,
NULL,
},
{
SCI_BASE_CONTROLLER_STATE_STOPPING,
scic_sds_controller_stopping_state_enter,
scic_sds_controller_stopping_state_exit,
},
{
SCI_BASE_CONTROLLER_STATE_STOPPED,
scic_sds_controller_stopped_state_enter,
NULL,
},
{
SCI_BASE_CONTROLLER_STATE_FAILED,
scic_sds_controller_failed_state_enter,
NULL,
}
};